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Abstract. Lyme disease is a severe skin disease caused by tick bites,
which affects hundreds of thousands of people. One task in diagnosing
Lyme disease is lesion segmentation, i.e., separating benign skin from
lesions, which can not only help clinicians to focus on lesions but also
improve downstream tasks such as disease classification. However, it is
challenging to segment Lyme disease lesions due to the lack of well-
segmented, labeled Lyme datasets and the nature of Lyme, e.g., the
typical bull’s eye lesion and its closeness to normal skin. In this paper,
we design a simple yet novel data preprocessing and alteration method,
called EDGEMIXUP, to help segment Lyme lesions on imbalanced training
datasets. The key insight is to deploy a linear combination of lesion edge,
either detected or computed, and the source image highlights the affected
lesion area so that a learning model focuses more on the preserved lesion
structure instead of skin tone, thus iteratively improving segmentation
performance. Additionally, the improved edge from lesion segmentation
can be further used for Lyme disease classification—e.g., in differentiat-
ing Lyme from other similar lesions including tinea corporis and herpes
zoster—with improved model fairness on different subpopulations.

1 Introduction

Medical Image Analysis has greatly benefited from advances in Al [1] yet some
improvements still remain to be addressed, importantly in areas that allow both
algorithmic performance and fairness [2], and in certain medical applications that
promise to significantly lessen morbidity and mortality. Early detection of skin
lesions is such an endeavor as it can aid in identifying infectious diseases with
cutaneous manifestations. Lyme disease is an example of that with a potentially
diagnostic skin lesion [3]—which is caused by the bacterium Borrelia burgdorferi
and leads to nearly 476,000 cases per annum during 2010-2018 [4]. The earliest
and most treatable phase of Lyme disease is manifested via a red concentric
lesion at the site of a tick bite, called erythema migrans (EM) [5]. While the
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EM pattern may appear simple to recognize, its diagnosis can be challenging for
those with or without a medical background alike, as only 20% of United States
patients have the stereotypical bull’s eye lesion [6]. When skin lesions are atypical
they can be mistaken for other diseases such as tinea corporis (TC) or herpes
zoster (HZ), two other diseases acting as confusers for Lyme, considered herein.
This has increased interest in medical applications of deep learning (DL), and
using deep convolutional neural networks (CNNs), to assist clinicians in timely
and accurate diagnosis of conditions including Lyme disease, TC and HZ [7-9].

One important diagnosis task is to segment Lyme lesion, particularly the
EM pattern, from benign skins. Such DL-assisted segmentation not only helps
clinicians in pre-screening patients but also improves downstream tasks such as
lesion classification. However, while Lyme disease lesion segmentation is intu-
itively simple, it is challenging due to the following reasons. First, there lacks
of a well-segmented dataset with manual labels on Lyme disease. On one hand,
some datasets—such as HAM10000 [10] and ISBI Challenges [11]—have manual
annotated segmentations for diseases like melanoma, but they do not have Lyme
disease lesions. On the other hand, some datasets—such as Groh et al. [12]—have
Lyme disease and skin tone and classification labels, but not segmentation.

Second, the segmentation of Lyme lesion is itself challenging due to the nature
of EM pattern. Specifically, a typical Lyme lesion exhibits a bull’s eye pattern
with one central redness and one outer circle, which is different from darkness
lesion in cancer-related skin disease like melanoma. Furthermore, clinical data
collected for training is usually imbalanced in some properties, e.g., more sam-
ples with light skins compared with dark skins. Therefore, existing skin disease
segmentation [13] as well as existing general segmentation works, such as U-
Net [14], polar training [15], ViT-Adapter [16], and MFSNet [17], usually suffer
from relatively low performance and reduced fairness [2,18,19].

In this paper, we present the first Lyme disease dataset that contains labeled
segmentation and skin tones. Our Lyme disease dataset contains two parts: (i)
a classification dataset, composed of more than 3,000 diseased skin images that
are either obtained from public resources or clinicians with patient-informed con-
sent, and (ii) a segmentation dataset containing 185 samples that are manually
annotated for three regions—i.e., background, skin (light vs. dark), and lesion—
conducted under clinician supervision and Institutional Review Boards (IRB)
approval. Our dataset with manual labels is available at this URL [20].

Secondly, we design a simple yet novel data preprocessing and alternation
method, called EDGEMIXUP, to improve Lyme disease segmentation and diag-
nosis fairness on samples with different skin-tones. The key insight is to alter a
skin image with a linear combination of the source image and a detected lesion
boundary so that the lesion structure is preserved while minimizing skin tone in-
formation. Such an improvement is an iterative process that gradually improves
lesion edge detection and segmentation fairness until convergence. Then, the de-
tected, converged edge in the first step also helps classification of Lyme diseases
via mixup with improved fairness. Our source code is available at this URL [20].
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(a) Original image (b) Heat map for EnpceMixupr (c) Heat map for legacy analysis

Fig. 1: A motivating example to illustrate why EDGEMIXUP improves model perfor-
mance and reduces biases via mixing up lesion boundary with original image (Heatmap
is generated via Grad-CAM).

We evaluate EDGEMIXUP for skin disease segmentation and classification
tasks. Our results show that EDGEMIXUP is able to increase segmentation utility
and improve fairness. We also show that the improved segmentation further
improves classification fairness as well as joint fairness-utility metrics compared
to existing debiasing methods, e.g., AD [21] and ST-Debias [22].

2 Motivation

In this section, we motivate the design of EDGEMIXUP by showing that added
lesion boundary helps a DL model focus more on the lesion part instead of other
features such as skin or background. Note that not all skin disease datasets are
carefully processed either due to the large amount of work required or the scarcity
of data samples collected, e.g., SD-198 [23] contains samples that are taken
under variant environments. Specifically, we train two ResNet-34 models using
the same dataset with and without EDGEMIXUP for a classification task of skin
disease. We keep all hyper-parameters exactly the same for two models, and only
augment the same image with and without mixing lesion boundary up with the
original image. We generate initial lesion edges using EdgeMixup, which we will
elaborate in following sections. Figure 1 shows the original image (Figure la) as
well as two models’ attention as heat-maps where red color represents the highest
attention, yellow a higher attention, and purple the least attention. EDGEMIXUP
helps the model to focus more on the lesion area comparing Figure 1b and lc.
The reason is that a legacy diagnosis has no information about lesion and does
not know where to locate its focus, thus easily gets distracted by fingers instead
of the lesion pattern.

3 Method

In this section, we first give the definition for model fairness, and we then de-
scribe the design of EDGEMIXUP for the purpose of de-biasing in Figure 2 and
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Fig. 2: EdgeMixup Process

Algorithm 1. We consider any model f, either a classification model f. 455 Or
a segmentation model fy.4, to be biased against certain skin-tone st if given
metrics M and samples x4, and x4, from class y, where st; and sty are differ-
ent skin-tones according to their ITA scores, M (f(zst,),y) > M(f(st,),y). If
there exists a model f such that M(f(zst,),y) = M(f(%st,,y)), we consider it
perfectly fair for st; and sto skin-tone samples.

EDGEMIXUP improves model fairness on light and dark skin samples in both
segmentation and classification tasks, and it has two major components: (i) edge
detection using mixup, and (ii) data preprocessing and alteration for downstream
tasks. More specifically, our proposed edge detection has two parts: initial edge
detection and iterative improvement.

Initial Edge Detection: The purpose of initial detection, which is documented
in the Initial edge detection function of Algorithm 1, is to provide a start-
ing point, i.e., a rough boundary, for the next step of iterative improvement.
The high-level idea is that EDGEMIXUP detects several edge candidates using
the color range of ground-truth lesions in both Red-Green-Blue (RGB) and Hue-
Saturation-Value (HSV) color space and then selects the target edge using a
learning model based on the output confidence score. First, EDGEMIXUP trains
a classification model based on a mixup of the ground-truth segmentation under
clinician supervision and the original image (Line 7). Second, EDGEMIXUP gen-
erates many edge candidates. For example, EDGEMIXUP collects the mean range
of lesion color from the training set and use the range as threshold to filter out
any given sample for a candidate mask (Line 9). Lastly, EDGEMIXUP selects an
edge candidate with the highest confidence score output by the learning model
(Line 11) and returns it as the edge for this given sample. Note that the initial
edge detection is irrelevant to the sample size of a particular subpopulation, thus
improving the fairness. That is, even if the original dataset is imbalanced, as long
as one sample from a subpopulation exists, the color range of the sample’s lesion
is considered in the initial detection.

Iterative Edge Improvement: EDGEMIXUP includes iterative edge improve-
ment in the training phase of our segmentation model to further improve model
utility. The intuitive reason of utilizing such algorithm is that by applying the



EpGEMIxup 5

Algorithm 1 Pseudo-code of EDGEMIXUP

Dtrain

Input: A labelled sample (z,y) € D, mixup weights «, ground-truth edged training set edge gt

Output: dataset Dsinar eage in which each sample has it lesion edge highlighted (Teages Y)
1: function main( )

2: Dinitial _edge = Initial edge detection(D, )

3: Dsinal_ eage = Iterative_edge_improvement(Dinimﬂ_edge7 @)

4: return Drina1_eage

5: end function

6: function Initial edge detection(D, )

7: Train classification model miass using D:z;’:gc

8: for each sample x € D do

9: Get all edge candidates {edges, edges, .., edge,} for each sample x
10: Mixup each edge candidate with x

11: Query Meiass using all mixed-up {Teage; s -+ Teagen } and choose the optimal edge edge,,
12: Generate edged sample Zeqge = Mixup(z, edge,,, o)

13: end for

14: return Degge

15: end function
16: function Iterative edge improvement(Degge, @)

17: Train the first model miter using edged dataset D;i;ei“

18: Evaluate miter using D:g;z and get current_Jaccard

19: best_Jaccard =0

20: iter =1

21: while current Jaccard > best Jaccard do

22: best _Jaccard = current_Jaccard

23: Predict lesion masks using miter, convert them to lesion edge edge
24: Generate new training set for next model Mixup(Dyyain, edge, @)
25: Train a model for next iteration Mmiter41

26: Evaluate migert1 using edged D;j;: and get current Jaccard
27: iter +=1

28: end while

29: end function

30: function Mixup(z, edge, @)

31: return (a -z + (1 — @) - edge)
32: end function

(a) iteration 1 (loss= 0.15) (b) iteration 2 (loss = 0.13) (c) iteration 3 (loss = 0.08)

Fig. 3: Illustration of iterative edge improvement on different iterations with train loss

mixup of detected edge and original image, given the lesion boundary feature
detected in the previous iteration, the next-iteration segmentation model can
converge better and the lesion boundary predicted by it is fine-grained. Specifi-
cally, EDGEMIXUP iteratively trains segmentation models from scratch, and we
let the model trained in the previous iteration to predict lesion edge, which is
then mixed-up with original training samples as the new training set for next-
iteration model. The high-level idea is that when the lesion is restricted in a small
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Table 1: Annotated segmentation and classification dataset characteristics, bro-
ken down by ITA-based skin tones (light skin/ dark skin) and disease types.

Split ‘ Skin SD-sub
| NO EM HZ TC Total DF KA PG TC TF Total
seg

- 47/15 46/16  40/21  133/52

885 740 698 704 3027
822/63 682/58 608/90 609/95 2721/306

23/7 27/3 27/3 24/6 29/1 130/20

40 40 40 200
36,4 36/4 29/1 33/7 30/0 164/16

‘ - 62 62 61 185 ‘ 30 30 30 150
class ‘

affected area, further detection will refine and constrain the detected boundary.
Besides, EDGEMIXUP calculates a linear combination of original image and le-
sion boundary, i.e., by assigning the weight of original image as « and lesion
boundary as 1 — «a. Figure 3 shows the edge-mixed-up images for different iter-
ations. EDGEMIXUP removes more skin areas after each iteration and gradually
gets close to the real lesion at the third iteration.

4 Datasets

We present two datasets: (i) a dataset collected and annotated by us (called
Skin), and (ii) a subset of SD-198 [23] with our annotation (called SD-sub). First,
We collect and annotate a dataset with 3,027 images containing three types of
disease/lesions, i.e., Tinea Corporis (TC), Herpes Zoster (HZ), and Erythema
Migrans (EM). All skin images are either collected from publicly available sources
or from clinicians with patient informed consent. Then, a medical technician
and a clinician in our team manually annotate each image. For the segmentation
task, we annotate skin images into three classes: background, skin, and lesion;
then, for the classification task, we annotate skin images by classifying them
into four classes: No Disease (NO), TC, HZ, and EM. We name it as Skin-class
for later reference. Second, we select five classes from SD-198 [23], a benchmark
dataset for skin disease classification, as another dataset for both segmentation
and classification tasks. Note that due to the amount of manual work involved
in annotation, we select those classes based on the number of samples in each
class. The selected classes are Dermatofibroma (DF), Keratoacanthoma (KA),
Pyogenic Granuloma (PG), Tinea Corporis (TC), and Tinea Faciale (TF). We
choose 30 samples in each class for segmentation task, and we split them into
0.7, 0.1, and 0.2 ratio for training, validation, and testing, respectively.

Table 1 show the characteristics of these two datasets for both classification
and segmentation tasks broken down by the disease type and skin tone, as cal-
culated by the Individual Typology Angle (ITA) [24]. Specifically, we consider
tan2, tanl, and dark as dark skin (ds) and others as light skin (ls). Compared
to other skin tone classification schemas such as Fitzpartick scale [25], we divide
ITA scores into more detailed categories (eight). One prominent observation is
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Table 2: Segmentation: Performance and Fairness (margin of error reported in
parenthesis)

| Method | Unet Polar MFSNet ViT-Adapter ~EDGEMIXUP
Skin | Jaccard|0.7053(0.0035) 0.7126(0.0033) 0.5877(0.0080) 0.7027(0.0057) 0.7807(0.0031)
Jgp | 0.0809(0.0001) 0.0813(0.0001) 0.1291(0.0076) 0.2346(0.0035) 0.0379(0.0001)
SDoseg | Jaccard [0.7134(0.0031) 0.6527(0.0036) 0.6170(0.0052) 0.5088(0.0042) 0.7799(0.0031)
€| Jgp |0.0753(0.0001) 0.1210(0.0003) 0.0636(0.0033) 0.2530(0.0021) 0.0528(0.0001)

that ls images are more abundant than ds images due to a disparity in the avail-
ability of ds imagery found from either public sources or from clinicians with
patient consent.

5 Evaluation

We implement EDGEMIXUP using python 3.8 and Pytorch , and all experiments
are performed using one GeForce RTX 3090 graphics card (NVIDIA).
Segmentation Evaluation. Our segmentation evaluation adopts four base-
lines, (i) a U-Net trained to segment skin lesions, (ii) a polar training [15]
transforming images from Cartesian coordinates to polar coordinates, (iii) ViT-
Adapter [16], a state-of-the-art semantic segmentation using a fine-tuned ViT
model, (iv) MFSNet [17], a segmentation model with differently scaled feature
maps to compute the final segmentation mask. We follow the default setting
from each paper for evaluation. Our evaluation metrics include (i) Jaccard in-
dex (IoU score), which measures the similarity between a predicted mask and
the manually annotated ground truth, and (ii) the gap between Jaccard values
(Jgap) to measure fairness.

Table 2 shows the performance and fairness of EDGEMIXUP and different
baselines. We compare predicted masks with the manually-annotated ground
truth by calculating the Jaccard index, and computing the gap for subpopula-
tions with ls and ds (based on ITA). EDGEMIXUP, a data preprocessing method,
improves the utility of lesion segmentation in terms of Jaccard index compared
with all existing baselines. One reason is that EDGEMIXUP preserves skin lesion
information, thus improving the segmentation quality, while attenuating markers
for protected factors. Note that EDGEMIXUP iteratively improves the segmen-
tation results. Take our Skin-seg dataset for example. We trained our baseline
Unet model for three iterations, and the model utility is increased by 0.0468 on
Jaccard index while the Jg., between subpopulations is reduced by 0.0193.
Classification Evaluation. Our classification evaluation involves: (i) Adversar-
ial Debiasing (AD) [26], (ii) DexiNed-avg, the average version of DexiNed [27]
as an boundary detector used by EDGEMIXUP, and (iii) ST-Debias [22], a debi-
asing method augmenting data with conflicting shape and texture information.
Our evaluation metrics include accuracy gap, the (Rawlsian) minimum accuracy
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Table 3: Skin disease classification and associated bias. Samples contain skin
tones as a protected factor. (margin of error reported in parentheses, subpopu-
lation reported in brackets)

Metrics ResNet34 Baselines EdgeMixup (ours)

AD DexiNed-avg ST-Debias U-Net Mask-based

acc  88.08(3.66) 81.79(4.35) 69.87(5.17) 76.52(5.23) 86.75(3.82)  86.09(3.90)
accgp  16.38(12.21) 5.33(11.69) 19.79(13.52) 2.64(8.05) 8.280(9.66) 1.923(8.49)

acCun  73.33[ds] 76.92[ds] 51.85|ds] 71.12[ds]  79.41[ds] 84.38[ds]
CAIp. s - 2.380 -10.81 1.090 3.385 6.233
= CAIg.7s - 6.715 -7.110 7.415 5.743 10.35
=4
W auc 0.977(0.02) 0.956(0.02) 0.889(0.04) 0.933(0.03) 0.974(0.02)  0.973(0.02)
AUCg,  0.039(0.07) 0.009(0.05) 0.090(0.11) 0.035(0.04) 0.011(0.02) 0.01 (0.05)
AUCh,  0.942[ds] 0.955[ds] 0.807[ds] 0.910[ds] " 0.973[ds] 0.964[ds]
CAUCIg.5 - 0.004 -0.069 -0.024 0.012 0.013
CAUCIgo.75 - 0.017 -0.060 -0.014 0.020 0.022
acc  75.60(14.26) 73.53(14.83) 63.13(16.08) 71.73(13.01) 74.17(13.30) 76.47(11.26)
accgy  28.12(54.98) 25.00(54.30) 25.21(51.20) 18.66(13.21) 18.51(11.50) 15.00(9.62)
acCpin 50.00][ds] 50.00[ds]| 43.75 [ds] 70.59]1s| 72.11]1s] 75.00]1s]
- CAIp. 5 - 0.525 -4.780 2.795 4.090 6.995
Z CAlors - 1.822 -0.934 6.127 6.850 10.06
S ac 0.922(0.10) 0.962(0.06) 0.824(0.13) 0.941(0.08) 0.953(0.11) 0.970(0.06)
AUCg,  0.429(0.35) 0.319(0.36) 0.175(0.29) 0.255(0.31) 0.178(0.29) 0.170(0.29)
AUChn  0.500[ds] 0.650[ds] 0.650]ds] 0.711[ds]  0.784[ds] 0.800[ds]
CAUCIg 5 - 0.075 0.078 0.097 0.140 0.153
CAUCIg.75 - 0.092 0.166 0.135 0.196 0.206

across subpopulations, area under the receiver operating characteristic curve
(AUC), and joint metrics (CAI, and CAUCI,).

Table 3 shows utility performance (acc and AUC) and fairness results (gaps
of acc and AUC between ls and ds subpopulations). We here list two variants
of EDGEMIXUP, and one of which, “Unet”, uses the lesion edge generated by
the baseline Unet model while “mask-based” implements deep-learning model
involved methodology introduced in Section 3. By adding the “Unet” variant, we
demonstrate here that simply applying lesion edge predicetd by the baseline Unet
model, while not optimal, efficiently reduces model bias on different skin-tone
samples. EDGEMIXUP outperforms SOTA approaches in balancing the model’s
performance and fairness, i.e., the CAI, and CAUCI, values of EDGEMIXUP are
the highest compared with the vanilla ResNet34 and other baselines.

6 Related Work

Skin Disease Classification and Segmentation: Previous researches mainly
work on improving model utility for both medical image [28] and skin lesion [29]
classification. As for skin lesion segmentation tasks, few works has been proposed
due to the lack of datasets with ground-truth segmentation masks. International
Skin Imaging Collaboration (ISIC) hosts challenges of International Symposium
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on Biomedical Imaging (ISBI) [11] to encourage researches studying lesion seg-
mentation, feature detection, and image classification. However, official datasets
released, e.g., HAM10000 [10] only contains melanoma samples and all of the
samples are with light skins according to our inspection using ITA scores.

Bias Mitigation: Researchers have addressed bias and heterogeneity in deep
learning models [18,30]. First, masking sensitive factors in imagery is shown
to improve fairness in object detection and action recognition [31]. Second,
adversarial debiasing operates on the principle of simultaneously training two
networks with different objectives [32]. The competing two-player optimization
paradigm is applied to maximizing equality of opportunity [33]. As a comparison,
EDGEMIXUP is an effective preprocessing approach to debiasing when applied to
skin disease particularly for Lyme-focused classification and segmentation tasks.

7 Conclusion

We present a simple yet novel approach to segment Lyme disease lesion, which
can be further used for disease classification. The key insight is a novel data pre-
processing method that utilizes edge detection and mixup to isolate and highlight
skin lesions and reduce bias. EDGEMIXUP outperforms SOTAs in terms of Jac-
cord index for segmentation and CAI, and CAUCI, for disease classification.
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