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EXGEN: Cross-platform, Automated Exploit
Generation for Smart Contract Vulnerabilities

Ling Jin, Yinzhi Cao, Yan Chen, Fellow, IEEE, Di Zhang, and Simone Campanoni

Abstract—Smart contracts, just like other computer programs, are prone to a variety of vulnerabilities, which lead to severe
consequences including massive token and coin losses. Prior works have explored automated exploit generation for vulnerable
Ethereum contracts. However, the scopes of prior works are limited in both vulnerability types and contract platforms. In this paper, we
propose a cross-platform framework, called EXGEN, to generate multiple transactions as exploits to given vulnerable smart contracts.
EXGEN first translates either Ethereum or EOS contracts to an intermediate representation (IR). Then, EXGEN generates symbolic
attack contracts with transactions in a partial order and then symbolically executes the attack contracts together with the target to find
and solve all the constraints. Lastly, EXGEN concretizes all the symbols, generates attack contracts with multiple transactions, and
verifies the generated contracts’ exploitability on a private chain with values crawled from the public chain. We implemented a prototype
of EXGEN and evaluated it on Ethereum and EOS benchmarks. EXGEN successfully exploits 1,258/1,399 (89.9%) Ethereum and
126/130 (96.9%) EOS vulnerabilities. EXGEN is also able to exploit zero-day vulnerabilities on EOS.

Index Terms—Blockchain, Smart Contract, Automated Exploit Generation, Symbolic Execution

1 INTRODUCTION

Smart contracts are computer programs running on
blockchains, such as Solidity code on Ethererum and C/C++
code on EOS. Just like other computer programs, smart con-
tracts are also prone to a variety of vulnerabilities, such as
reentrancy [1] and integer overflows [2]. More importantly,
because such vulnerabilities often have cryptocurrencies
involved, the consequence of a compromise is severe. For
example, a security incident [3] related to integer overflow
in July 2018 causes a loss of 60,686 EOS coins worthing about
$515,831. A popular yet powerful technique in detecting
smart contract vulnerabilities is static analysis and in the
past researchers have extensively proposed static analysis
tools [4]-[10] to find hundreds of smart contract vulnerabili-
ties. One emerging problem of static vulnerability detection
is that the reported vulnerabilities may not be exploitable
because the found path could be unsatisfiable.

Generally speaking, there are two types of approaches,
dynamic and static, to generate exploits for vulnerabilities.
On one hand, dynamic analysis can be used to either
fuzz smart contracts or analyze real-world smart contract
transactions. For example, Zhou et al. [11] analyzes real-
world transactions using graph-based signatures for vulner-
abilities. EasyFlow [12] propagates taint information during
dynamic execution of Ethereum contracts and also generates
transactions with large or small integers as fuzzing inputs
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to trigger integer overflows. Similarly, Zhang et al. [13] and
Jiang et al. [14] also fuzz Ethereum smart contracts to find
and trigger vulnerabilities. However, dynamic analysis, es-
pecially fuzzing, is known to have code coverage issues, i.e.,
it may not trigger the vulnerable code if certain constraints
are not satisfied.

On the other hand, researchers have also proposed static
automated exploit generation on smart contracts: The state-
of-the-art work is called teEther [15], which relies on sym-
bolic execution to generate a transaction triggering the vul-
nerable condition on Ethereum. However, its scopes are lim-
ited in both vulnerability types and contract platforms. That
is, teEther is only applicable to suicidal and call injection
on Ethereum, but not other popular vulnerabilities, such as
integer overflow and reentrancy, let alone those on EOS. The
fundamental reasons are two-fold. First, teEther can only
generate transactions that have straight dependencies in a
line, which is called a path in their paper (e.g., Transaction
A depending on B and then C), while many vulnerabili-
ties require non-straight dependencies (e.g., Transaction C
depending on both transactions A and B). Second, teEther
does not support dataflow constraints, which are required
for many vulnerability types. Take integer overflow for
example. A successful exploitation requires not only the
execution of vulnerable statement but the value, e.g., the
addition of two inputs, overflows the vulnerable variable.

In this paper, we propose the first cross-platform, static,
automated exploit generation framework, called EXGEN, for
smart contract vulnerabilities. The key insight of EXGEN is
that data dependencies among transactions are transitive,
which can be modeled as a partially-ordered set, called
Partially-ordered Transactional Set (PTS) in the paper. PTS
is non-flat (which may have more than one layer) and non-
straight (i.e., with one layer having potentially more than
one transactions).
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Once a PTS is generated, EXGEN further generates an
attack contract as the exploit via two phases. First, Ex-
GEN generates an attack contract with symbolic values.
Specifically, EXGEN generates a totally-ordered sequence
of transactions and thus function calls by traversing the
Hasse diagram of PTS layer by layer. The generated totally-
ordered sequence containing all the partial order relations
in PTS forms into an attack contract with symbolic values.
Second, EXGEN concretizes the generated, symbolic contract
with values. Specifically, EXGEN symbolically executes the
generated attack contract together with the target contract
and concrete values crawled from the public blockchain.
The symbolic execution extracts constraints along a certain
path leading to the vulnerable sink function and tries to
solve all the constraints with a solver. If EXGEN cannot
find a solution after exhausting all possible execution paths,
EXGEN will generate another PTS following other transac-
tional dependencies. When EXGEN finds a solution, EXGEN
deploys the attack contract in a private blockchain with
states crawled from the public to verify its exploitability.

We implemented a prototype of EXGEN on two popular
blockchain platforms, EOS and Ethereum. Our evaluation
on EOS reveals 24 zero-day vulnerable contracts with 50
zero-day vulnerabilities, which includes a high-value EOS
game contract with 10,359 transactions on 147,964 EOS coins
equaling to $835,997. We also evaluated the effectiveness
of EXGEN in generating exploits: The results show that
EXGEN successfully exploit 1,258/1,399 (89.9%) Ethereum
and 126/130 (96.9%) EOS vulnerabilities. As a comparison,
the state-of-the-art approach, namely teEther, only generates
exploits for 17/76 (22.4%) Ethereum vulnerabilities in scope
of their paper.

We make the following contributions.

e We designed and implemented an open-source, auto-
mated exploit generation framework, called EXGEN.

o We designed Partially-ordered Transactional Set (PTS)

for EXGEN to generate a symbolic contract for exploiting

vulnerabilities that require multiple transactions.

EXGEN reports 24 EOS contracts with zero-day vul-
nerabilities, which includes a high-value contract with
10,359 transactions. We reported all findings to contract
developers if we can find them but have not heard from
them yet.

We evaluated EXGEN and showed that EXGEN can
generate exploits for Ethereum and EOS contracts.

2 OVERVIEW

In this section, we start from a motivating example and then
describe our threat model.

2.1 A Motivating Example

In this subsection, we illustrate an EOS smart contract with
an integer overflow vulnerability as a motivating example
in Figure 1. The contract allows an employer like a company
to transfer equivalent amount of tokens from the employer’s
account to several employees via a batchTransfer func-
tion (Line 22). This function has integer overflow vulner-
abilities on the addition and multiplication at Line 28. We
focus on the multiplication in this motivating example:

1 class [[eosio::contract ("IntflowSampleEOS")]]
IntflowSampleEOS : public eosio::contract {
2 private:

3 balance_table balances;

4 std: :vector<name> employees;
5 uint64_t amt;

6 uint64_t rate;

7 uint64_t total;

8

9

public:
[[eosio::action]] void initEmployees (name accounts
[ {

10 int length = sizeof (accounts) / sizeof (name);
11 total = 0;
12 for (int i = 0; i < length; ++1i)
13 employees.push_back (accounts[i]);
14 }
15 [[eosio::action]] wvoid setAmount (uint64_t amount) {
16 if (employees.size() > 0)
17 amt = amount;
18 }
19 [[eosio::action]] void setExRate (uint64_t exrate) {
20 rate = exrate;
21 }
22 [[eosio::action]] wvoid batchTransfer (name from) {
23 require_auth (from) ;
24 require_recipient (from);
25 check (amt > 0, "must transfer positive amount");
26 uint64_t count = employees.size();
27 // Overflow
28 total += amt x count x rate;
29 // Omit some code here.
30 }
31 s

Fig. 1: A Motivating EOS Example Simplified from a Real-
world Integer Overflow Vulnerability

Layer 0 TX1: call
initEmployees
TX2: call TX3: call
Layer 1 setAmount setExRate
TX4: call
Layer 2 batchTransfer

Fig. 2: Hasse Diagram of Partially-ordered Transactional Set
of the Integer Overflow Vulnerability in Figure 1. There are
two totally ordered transaction (TX) chains: TX1-TX2-TX4
and TX3-TX4.

Specifically, the multiplication of three variables (controlled
by an adversary) could be larger than the maximum integer,
thus triggering an overflow.

We now describe how EXGEN generates an attack con-
tract in Figure 3 as an exploit to the vulnerability of the
contract in Figure 1. The generation procedure of the exploit
has two phases. First, in Phase One, EXGEN generates
a symbolic attack contract like Figure 3 without concrete
values. Specifically, EXGEN performs a backward call graph
analysis from the vulnerability location (Line 28) to find an
entry function, e.g., a public method, of the target contract,
which is batchTransfer (Line 22) in Figure 1. Then,
EXGEN finds all the variables that do not have a data
dependency with the entry function’s parameters—those
variables are employees at Line 26, amt at Line 28, rate
at Line 28, and total at Line 28. Next, EXGEN follows the
backward dataflow to find the definition locations of those
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// accounts =
{mom, MM, oM, 3, M4, ngn ngw, mgw wgn wgwy
class AttackContract {
[[eosio::action]]
void main() {
initEmployees (<<SYMBOLl:accounts>>); // TX1l
setAmount (<<SYMBOL2:MAXINT/60>>); // TX2
setExRate (<<SYMBOL3:6>>); // TX3
for (i1=0; il < <<SYMBOL4:1>>; il++)

batchTransfer (<<SYMBOL5:accounts[0]>>); // TX4

R OWVWONOUTREWN

— =

Fig. 3: A Symbolic Attack Contract with Concretized Val-
ues to Exploit the Vulnerable EOS Contract in Figure 1
(<<SYMBOLX: VALUE>> means the symbols and corre-
sponding values.)

variables, i.e., Line 13, Line 17, Line 20, and Line 28.
Similar to the previous analysis on the vulnerability
location, EXGEN finds entry functions of those variable
definition locations and adds a binary relation <
between those functions and the previous entry function
related to the vulnerable location in the Partially-
ordered Transactional Set (PTS). That is, EXGEN

adds TX4:batchTransfer < TX3:setExRate,
TX4:batchTransfer < TX2:setAmount, TX4:
batchTransfer < TX1:initEmployees, and

TX4:batchTransfer < TX4:batchTransfer to PTS.
The process is repeated until no more variables need to be
initiated—for this specific example, EXGEN will also add
TX2:setAmount < TX1:initEmployees to PTS and the
final Hasse diagram is shown in Figure 2. Then, EXGEN
condenses the PTS following the target contract’s call
graph—i.e., if one function calls another and both functions
are in PTS, EXGEN will merge those two functions and
move them to a lower layer of the Hasse diagram. Next,
EXGEN traverses the PTS layer by layer to generate
a symbolic attack contract in Figure 3 with a specific
transaction sequence, i.e., TX1-TX2-TX3-TX4 derived from
the Hasse diagram in Figure 2. EXGEN repeats TX4 for
multiple times with a symbol value, because TX4 also has a
relation with itself, i.e., total at Line 28 also depends on
itself.

It is worth noting that prior work, e.g., teEther, cannot
analyze such complex data dependencies among transac-
tions, because of the non-straight structure. Particularly,
teEther can only extract two paths, which are TX1-TX2-TX4
and TX3-TX4, but cannot combine these two paths together
and generate an exploit.

Second, in Phase Two, EXGEN concretizes the sym-
bolic attack contract in Figure 3 with values. Specifically,
EXGEN symbolically executes the generated attack con-
tract and extracts constraints along a certain path. The
extracted constraints corresponding to an exploitable path
in this example are employees.size()>0 (Line 16),
require_auth (from) (Line 23), and amt>0 (Line 25).
EXGEN also adds a special constraint that overflows the
total variable at Line 28, i.e., total==MAXINT. Then,
EXGEN asks a constraint solver to give a solution, which
concretizes all the symbols in the function parameters of all
the transactions in Figure 2. Therefore, EXGEN generates a
concrete attack contract with values in Figure 3. Note that
values in Figure 3 belong to just one possible solution and

may differ in different runs.

2.2 Threat Model

In this subsection, we describe EXGEN’s threat model,
which assumes that the contract developer is benign but
the developed contract could be vulnerable. The victim
could be other participants or the platform like EOS and
Ethereum; The adversary is one of the participants of the
vulnerable contract, who can commit transactions to the
blockchain or deploy any contracts him or herself. We use
our motivating example in Figure 1 for an explanation. The
adversary is the employee, a special contract participant, be-
cause of access controls in Lines 23-24. The integer overflow
attack consequence is as follows. The adversary steals coins
from the EOS network, because the total number of coins
is unbalanced after transfer. Particularly, some employers,
possibly controlled by the adversary, obtain extra coins, but
the employee does not lose corresponding amounts.

We consider a smart contract vulnerability in-scope if
the vulnerability has an explicit sink function or statement.
We now list several in-scope vulnerabilities below. Our
vulnerability definitions follow prior work [11].

e Suicidal. An adversary exploits an unprotected inter-
face to destruct a victim contract. The vulnerable sink
statement is related to the selfdestruct instruction.
The adversary is any contract located on the blockchain.

e Call injection. An adversary calls a sensitive func-
tion, e.g., ownership transfer, of a victim contract. The
vulnerable sink statements are call, callcode, and
delegatecall instructions. The adversary is any con-
tract located on the blockchain.

e Arbitrary value transfer (e.g., Reentrancy). An ad-
versary transfers either tokens or ether from a victim
contract; if the transfer is repeated, we call it a reentrancy
attack. The vulnerable sink function here is the call of
call.value. The adversary is any contract located on
the blockchain.

o Integer overflow/underflow. An adversary overflows
or underflows an integer variable with a fixed length. The
vulnerable sink statements are add, sub, and mul instruc-
tions. If the vulnerability locates in A function that any
contracts can invoke, the adversary is also any contract
located on the blockchain, which does not have access to
privileged functions, e.g., function with an onlyOwner
modifier. If the vulnerability locates in a function that
special contract(s) can invoke, the adversary is also the
special contract(s) located on the blockchain.

That said, if a vulnerability does not have an explicit sink
function or statement as described above, they are out of
the scope of EXGEN. For example, the definition of Prodigal
contracts [6] is only in-scope when the sink functions fall
into the above list. Then, transaction-ordering dependence
(TOD) is out of scope because it is triggered as long as
the order of transactions changes instead of any explicit
statement or functions. Similarly, denial of service (DoS) is
out of scope because many statements or functions may be
involved in DoS.

It is worth noting that our threat model is broader
than the state-of-the-art approach, i.e., teEther [15]. The first
three vulnerability types (i.e., suicidal, call injection, and
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Fig. 4: EXGEN Architecture

arbitrary value transfer) entirely cover all vulnerabilities
(i.e., both “direct value transfer” and “code injection” types)
defined in the teEther paper. Specifically, “direct value
transfer” is covered in both suicidal and arbitrary value
transfer and “code injection” in call injection. Other than
those covered by teEther, EXGEN also covers call in call
injection, reentrancy and integer overflow. teEther cannot
generate exploit for reentrancy because it does not handle
interactions between contracts; it cannot generate exploit for
integer overflow/underflow vulnerability because it does
not consider constraints extracted from dataflows, e.g., an
input that overflows a fixed-length variable.

3 SYSTEM DESIGN

In this section, we describe the design of our automatic
exploit generation for smart contract vulnerabilities.

3.1

Figure 4 shows the overall architecture of EXGEN with two
major phases and four detailed steps. The first phase with
two steps is to generate a symbolic attack contract when
given a target, vulnerable smart contract on different plat-
forms, such as Ethereum and EOS. Specifically, Step 1.1 in
Figure 4 is to preprocess the target contract via translating it
to a unified intermediate representation (IR) or particularly
LLVM. This step depends on the target contract in different
formats, e.g., Solidity, C++ or wasm binary. Then, Step 1.2
is to perform a backward analysis including call graph and
dataflow and generate Partially-ordered Transactional Set
(PTS). One PTS contains all the transactions that prepare for
the vulnerable states and trigger the final smart contract vul-
nerability. EXGEN traverses the PTS to generate a symbolic
attack contract.

The second phase with two steps as well is to concretize
the symbolic contract with values. Specifically, Step 2.1
in Figure 4 is to symbolically execute the attack contract
together with the target contract and online states crawled
from the blockchain. Then, EXGEN extracts all the con-
straints, such as conditions in i f statements, along one exe-
cution path leading to the vulnerable location. For dataflow
related vulnerabilities such as integer over- or underflows,
EXGEN also adds an additional constraint to trigger the
vulnerability at the vulnerable location. Then, EXGEN asks
a solver, such as z3, to give a solution based on all the
collected constraints. EXGEN will try all possible execution
paths for a solution.

Architecture

TABLE 1: Translation of Solidity Code to LLVM IR

AST node LLVM feature

ContractDefinition Module

FunctionDefinition FunctionType, Function

EventDefinition FunctionType, Function

Block Block

VariableDeclarationStatement IRBuilder.store

VariableDeclaration GlobalVariable, IRBuilder.alloca

Mapping LiteralStructType

StructDefinition LiteralStructType

ArrayTypeName ArrayType

EnumDefinition GlobalVariable

EnumValue Constant

Literal Constant

Assignment IRBuilder.load /store/extract_value,
IRBuilder.insert_value/BinaryOperation

IfStatement Block, IRBuilder.branch/cbranch

WhileStatement Block, IRBuilder.cbranch

ForStatement Block, IRBuilder.cbranch

FunctionCall IRBuilder.call, Function

Continue/Break IRBuilder.branch

Return/Throw IRBuilder.ret

If EXGEN found a solution for a particular symbolic
contract, Step 2.2 in EXGEN is to verify the found exploit,
i.e., an attack contract with concrete values by deploying
it on a private chain with states crawled from public.
Otherwise, if EXGEN cannot solve one symbolic contract
with a particular PTS, EXGEN will try another PTS and
symbolic attack contract in Step 1.2 for constraint extraction
and solving until no more symbolic contracts are available.

3.2 Preprocessing: Code or Binary Translation

In this subsection, we describe how to translate either source
code or binary to an IR form, particularly LLVM.

3.2.1 Solidity—IR

The overall translation as shown in Table 1 works as follows:
EXGEN parses Solidity code into abstract syntax tree (AST)
and then converts each AST node to corresponding LLVM
IRs. EXGEN handles two types of information in Solidity
AST, which are types and keywords. First, types are either
mapped to a corresponding one, like bool in Solidity vs.
intl in LLVM and byte in Solidity vs. int8 in LLVM
or implemented with native LLVM data structures, e.g., a
dynamic array. Second, keywords are converted according
to certain rules, e.g., an if statement to Block and IR-
Builder.branch/cbranch in LLVM. We now describe some
special cases in the translation:
e State and local variables. EXGEN represents state vari-
ables, i.e., those stored on the blockchain, as global in
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LLVM and dynamically allocates memories for local vari-
ables, i.e., those are destroyed after function return.

e Function overloading. EXGEN adds a hash value of the
parameter type list to the function identifier in the mod-
ule and symbol table of LLVM to differentiate overloaded
functions.

e Function modifiers. EXGEN translates a modifier’s
wrapper as an i f-then-else statement: If the i £ condi-
tion is satisfied, EXGEN continues the function execution;
otherwise, EXGEN exits the execution and returns a value.
Take the onlyOwner modifier below for example.

modifier onlyOwner ({
require (msg.sender == owner);
7

}

function close()

}

The modifier is translated to the pseudocode below with
an 1if statement.

public onlyOwner {

if (msg.sender == owner) {
close();

}

e Built-in EVM functions. EXGEN simulates the behav-
ior of the corresponding built-in EVM functions; if the
function is related to blockchain, EXGEN will return a
pseudo value. For example, EXGEN fetches current sys-
tem time and returns it in 256-bit integer when calling
block.timestamp. For another example, EXGEN returns
zero as default for blockchain related built-in functions
such as block.number and blockhash. Note that such a
zero value does not affect EXGEN’s performance, because
EXGEN will later on replace the value with status crawled
from the chain state when generating symbolic attack
contracts.

o Ether units. EXGEN converts floating-point transactions
into lower monetary units, and generates LLVM bitcode
using integer arithmetic, e.g., EXGEN converts 1/2 Ether
to 500 Finney.

e selfdestruct and throw. EXGEN
selfdestruct and throw to program exits.

translates

322 EOS—IR

In this part, we describe how to translate EOS contracts to
LLVM IR. The translation depends on whether source code
of the contract is available.

o Open-source: C++—IR. The translation from C++ in
an EOS contract to LLVM IR is intuitive because the EOS
official compiler eosio.cdt is based on clang, which
directly supports LLVM IRs internally. We skip the details
of translating C++ to LLVM because this is a well-studied
problem in the literature [16].

o Closed-source: wasm binary—IR. The translation from
wasm binary to LLVM IR has two steps. First, EXGEN
converts wasm to C code via transpiling: Note that
such transpiling is a mature technique according to prior
work [17]. Second, EXGEN translates C code to LLVM IR
according to the same procedure in C++—IR.

3.3 Partially-ordered Transactional Set (PTS) Genera-
tion

In this subsection, we describe how to generate Partially-
ordered Transactional Set (PTS) for a given vulnerability and
then convert PTS to a symbolic contract.

3.3.1 PTS Definition

We now introduce the definition of PTS in Definition 1.

Definition 1 (PTS). A partially-ordered transactional set
(PTS) is defined as a set of transactions together with
a binary relation (<) indicating the order of transactions
that appear in time axis.

We would like to note that the binary relation in PTS fol-
lows a partial order, i.e., being reflexive, antisymmetric, and
transitive, because transactions are recorded on blockchain
with exact timestamps. Furthermore, those transactions are
not totally ordered as the order of some transactions, e.g.,
TX2 and TX3 in Figure 2, is unranked on the time axis.
In other words, only a transaction that prepares states for
another transaction, e.g., TX1 and TX2 in Figure 2, has a
partial order relation with and needs to come before the
latter.

3.3.2 Initial PTS Construction via Backward Analysis

We describe how to construct an initial set of PTS via
backward analysis. This construction has three steps: (i)
backward call graph analysis to discover transactions” entry
points, (ii) backward dataflow analysis to discover addi-
tional transactions having data dependencies with existing
ones, and (iii) repeat of (i) and (ii) until no more new
transactions are needed.

Let us describe the steps below. First, EXGEN starts from
a particular IR instruction, e.g., an integer overflow instruc-
tion in the beginning or a def instruction of a particular
variable, follows the call graph to find the entry function
of a transaction, e.g., a public function. Second, EXGEN will
extract all the external variables unrelated to the function
parameters following the call chain. Then, EXGEN follows
the use-def chain to find the instructions that define the
aforementioned external variables. Note that there might be
multiple definitions of a certain use of external variables,
which lead to multiple PTSes. Lastly, EXGEN repeats the
first step to find another entry function and finds external
variables during the process as well.

3.3.3 PTS Condensing via Call Graph

Now we describe how to condense PTS—we need to con-
dense PTS because some entry functions in PTS have call
relations and thus there is no need for two transactions. The
process is as follows. First, EXGEN goes through PTS and
replaces one function call with its direct caller or ancestor for
a transaction if the latter is also in PTS. The original partial
order is kept but replaced with the new transaction. Second,
EXGEN merges identical transactions in PTS and moves the
transaction to the largest layer in the Hasse diagram of PTS.
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3.3.4 PTS— Symbolic Contract

We now present how to convert PTS to a symbolic contract.
EXGEN represents PTS in a Hasse diagram with layers.
EXGEN starts from the first layer, traverses all the transac-
tions in the layer by creating a totally-ordered set, and then
goes to the next layer. The totally-ordered set indicates the
sequence of transactions: EXGEN creates a contract to invoke
all the entry functions of each transaction with symbols as
the parameters.

Note that if a contract also has a relation with itself in
the diagram (e.g., TX4 in Figure 2), EXGEN will handle it
via two ways. If the transaction is the last one targeting a
reentrancy vulnerability, EXGEN creates a fallback function
with that transaction because the fallback function will be
called automatically in a loop. Otherwise, EXGEN creates
a for loop that executes for unknown times, i.e., the loop
number is a symbolic value.

3.4 Symbolic Execution and Constraint Solving

In this subsection, we describe how EXGEN collects con-
straints and concretizes symbols to trigger vulnerabilities
when symbolically executing the attack contract with sym-
bolic values and subsequently the target contract. There are
four steps: (i) initiating storage values with states crawled
from public blockchain, (ii) selection of a certain symbolic
attack contract with a PTS and extraction of constraints
along the execution of the PTS, (iii) generating constraints
related to the vulnerability, and (iv) solving the extracted
constraints and trying other symbolic attack contracts if no
solution is found.

3.4.1 State
Blockchain

The first step is to initialize storage values in symbolic
execution with those crawled from public blockchain in real-
time. Specifically, because storage values are translated as
global variables in the IR form, EXGEN will assign values
directly in the beginning of the symbolic execution as part of
the IR code. It is worth noting that although storage values
are initialized with those from public chain, they can be
changed later by transactions in the attack contract.

Initialization via Crawling from Public

3.4.2 Symbolic Execution and Constraint Extraction

The second step is to symbolically execute the attack con-
tract as well as the target contract. EXGEN starts from the
first transaction and follows the order in the attack contract
in the symbolic execution. EXGEN extracts all the conditions
in the branching statements, such as if and switch, and
specifies the constraint based on the branching condition in
the execution path. We now look at some examples.

e if statement. EXGEN specifies a constraint with the i £
condition as true if the symbolic execution goes to the i £
branch, and as false for the else branch.

e switch statement. EXGEN specifies a constraint with
the switch condition as the executed case condition.

e while or for loop. If the loop body is executed,
EXGEN specifies the condition in either while or for
statement as true.

This symbolic execution stops at the vulnerability state-
ment with an related instruction, such as add, mul,

sub, call.value, selfdestruct, call, callcode and
delegatecall. Then, EXGEN also produces an execution
path depending on which branch that EXGEN takes when
extracting each constraint.

3.4.3 Vulnerability-specific Execution

The third step is to perform vulnerability-specific symbolic
execution at the vulnerable statement. There are two cases.
First, there exists a dataflow constraint to exploit the vulner-
ability and EXGEN will construct a constraint related to the
vulnerability. In this case, EXGEN symbolically executes the
vulnerable instruction and constructs a constraint based on
the vulnerability type if there exists a dataflow constraint.
We list two vulnerability types below.

o Integer Overflow. EXGEN specifies that the addition
or the multiplication result exceeds the maximum value
of the corresponding integer type plus one, e.g., 22°¢ for
uint256.

o Integer Underflow. EXGEN specifies that the subtrac-
tion result is less than zero, which causes an underflow
for an unsigned integer, a common type used in digital
assets like account balance in bank contracts and scores
or points in gaming contracts.

Second, only control-flow constraints are enough for
exploitation. In this case, EXGEN checks whether the vul-
nerability exists. That is, EXGEN checks whether the caller
to call.value is a public function for reentrancy; EX-
GEN also checks whether the parameter to selfdestruct,
call, callcode and delegatecall can be externally
controlled for suicidal and call injection.

3.4.4 Constraint Solving

The last step is to solve the extracted or constructed con-
straints from previous two steps using a constraint solver
and produce concrete values for all the symbols. If EXGEN
cannot find a solution, EXGEN will try another symbolic
attack contract and extract new constraints. EXGEN will
continuously try all the possible symbolic contracts until a
solution is found.

3.5 Exploit Verification

In this subsection, we describe the process of concretizing
the attack contract and verifying whether it can exploit the
target vulnerability on a private chain with states crawled
from the public. Note that due to ethics concerns, we cannot
directly deploy the attack contract on the public chain for
verification.

3.5.1 Attack Contract Concretization

We now introduce how to extract the concrete values solved
by symbolic execution and generate an attack contract.
When EXGEN determines that the extracted constraints
from executing a symbolic attack contract can be solved,
it will assign the concrete values to the corresponding trans-
actions’ parameters according to the totally-ordered set.

e Solidity contract. EXGEN generates a Solidity contract
and then compiles the Solidity code to the bytecode for
deployment.
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e Open-source EOS contract. EXGEN generates a C++
contract and then compiles the contract to wasm using
eosio.cdt.

o Closed-source EOS contract.
tract in wasm directly.

EXGEN generates a con-

3.5.2 Exploit Verification

EXGEN verifies whether the generated attack contract can
exploit the vulnerability via two steps. First, EXGEN deploys
the contract on a private blockchain with values crawled
from the public chain. Second, EXGEN runs a modified
version of Ethereum Virtual Machine (EVM) or EOS Vir-
tual Machine (EOS-VM) with the contract to determine
the exploitability. Specifically, EXGEN instruments all sink
instructions to determine the runtime states.

e add and mul. EXGEN first determines whether the
arithmetic result of the left and right source operands is
less than the destination operand in the modified EVM or
EOS-VM. Then, EXGEN checks whether state variables
stored on the blockchain are changed: If so, EXGEN
considers the exploit as successful.

e sub. EXGEN determine whether the left operand (min-
uend) is less than the right operand (subtrahend) in the
modified EVM or EOS-VM. Then, EXGEN follows the
above to check state variables and determines the exploit
as successful.

e selfdestruct (or named suicide in old Solidity
versions). EXGEN determines whether the balance of
the attacker’s address has increased. If so, EXGEN con-
siders the exploit as successful. Note that the receiving
address of ether transfer is a required parameter of the
selfdestruct instruction.

e call.value. EXGEN determines whether the entry
function, which contains the invocation to call.value
instruction, is called in multiple transactions. Then, EX-
GEN checks whether the balance of the attacker’s address
has increased. If so, EXGEN considers the exploit as
successful.

e call, callcode and delegatecall. EXGEN veri-
fies call injection by injecting a selfdestruct and the
verification boils down to the verification of a suicidal.

4 |MPLEMENTATION

In this section, we describe our prototype implementation
of EXGEN, which has 3,400 Lines of Python and 4,600
Lines of C++ Code. Our implementation is open-source and
available at Google Drive [18]. We now describe how each
step of EXGEN is implemented.

e Preprocessing. Our Solidity—LLVM translator imple-
mentation with 1,478 lines of Python code is based
on ANTLR4 grammar and llvmlite [19] 0.31.0, a third-
party Python library. Our binary EOS—LLVM adopts
the wasm2c tool in the WebAssembly Binary Toolkit
(WABT) to convert wasm to C code and then use the
clang compiler with the -emit-llvm option to compile the
header and source code files to LLVM IRs. Our source-
code EOS—LLVM adopts eosio.cdt with 245 lines of
modifications to the libraries.

e Backward Analysis and PTS Generation. Our imple-
mentation of backward analysis and PTS generation is

a customized LLVM analysis module with 1,324 lines
of Python code. This module of our prototype EXGEN
implementation analyzes functions, basic blocks and in-
structions to construct a call graph and a dataflow graph
represented in Python classes.

e Symbolic Execution and Constraint Solving. Our imple-
mentation of symbolic execution is based on KLEE [20],
a LLVM-based symbolic virtual machine, as our symbolic
executor. KLEE supports several solvers and we adopt
the famous Z3 solver [21] with the —solver-backend
option in KLEE. The total implementation of this part has
4,271 lines of C++ code, which does not include the code
of KLEE itself.

o Exploit Generation and Verification. The exploit gen-
eration is a 600-Line Python script that traverses our
totally-ordered set and generates a contract with concrete
values. Then, the exploit verification is as follows. EXGEN
deploys the contract on a private chain with several
accounts and then interacts with it via APIs provided by
web3.py (Ethereum client in Python version) and cleos
(Official EOS client). The implementation also instru-
ments EOS-VM (C++) and EVM (Go) with approximately
200 Lines of Code each to check the value of balance and
the arithmetic instructions including i32_add_t and
i64_sub_t in base_visitor of EOS-VM and opAdd
or opSub in Go Ethereum (Geth).

5 EXPERIMENTAL SETUP EVALUATION

BENCHMARK

In this section, we describe our experimental setup and
evaluation benchmark. All our experiments are performed
atop a DELL XPS9570 machine using i7-8750H CPU with
six cores and 12 threads and running a virtualized 32-
bit Ubuntu v16.04 with 20 GB of RAM. Our evaluation
benchmark has two parts depending on the platform: one on
Ethereum and the other on EOS. Table 2 shows the number
of exploitable vulnerabilities and their breakdown based on
types on each platform. We now describe them below.
Ethereum Benchmark. Our Ethereum benchmark has 562
real-world vulnerable contracts with 1,399 vulnerabilities
and 798 real-world safe contracts. We obtain the vulnerable
contracts from datasets provided by prior works, namely
HuangGai [22], ContractFuzzer [14], Zeus [5] and Ever-
evolving Game (EEG) [11]. Table 2 shows the breakdown of
vulnerabilities from different sources and we also describe
them below:

AND

o HuangGai. This dataset contains 100 integer over-
flow /underflow vulnerabilities, 30 reentrancy vulnerabil-
ities and 32 suicidal vulnerabilities from 101 real-world
contracts.

ContractFuzzer. This dataset consists of 41 real-world
contracts, covering two types of vulnerability. Specifically,
this dataset contains 31 call injection and 18 reentrancy
vulnerabilities.

Zeus. This dataset contains 31 contracts with reentrancy
and 458 with integer overflows. Our manual verifica-
tion confirms 39 reentrancy vulnerabilities from 26 con-
tracts and 1,029 integer overflow/underflow from 365
contracts. The rest contracts are false positives of Zeus
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TABLE 2: Evaluation Benchmark on Ethereum and EOS.

s . . Ethereum EOS
vulnerability type instructions
HuangGai ContractFuzzer Zeus EEG Total Real-world Synthetic Total

add 54 - 624 50 728 30 28 58
Overflow

mul 7 - 209 14 230 12 5 17
Underflow sub 39 - 196 33 268 9 46 55
Arb. value transfer (e.g., Reentrancy) call.value 30 18 39 10 97 - - -
Suicidal selfdestruct 32 - - 13 45 - - -
Call Injection call callcode - 31 - - 31 - - -

delegatecall
Total 162 49 1,068 120 1,399 51 79 130

because they are unexploitable: This is also the necessity
of EXGEN in finding and solving constraints.

e Ever-evolving Game (EEG). This dataset contains 97
integer overflow/underflow vulnerabilities, 10 arbitrary
value transfer vulnerabilities and 13 suicidal vulnerabili-
ties from 35 real-world contracts.

We obtain our safe contracts by both pre-filtering via

existing works and manual verification. Specifically, we first
obtain 66,103 untagged contracts from HuangGai [22] and
scan them with Slither [23], which reports 803 contracts as
safe. Next, we use Securify [24] for a further scanning and
then manually verify the rest, which in the end produces
798 safe contracts.
EOS (C++ & wasm) Benchmark. Our EOS benchmark
has 162 real-world, unlabelled contracts crawled from
eospark.com on April 2020. Our manual verification reveals
51 real-world zero-day exploitable vulnerabilities from 24
contracts in those contracts. Additionally, we also asked
a graduate student (independent of the paper authors) to
generate 79 synthetic vulnerabilities via removing assert and
check statements from 36 contracts. The generation takes the
student 64 hours. Note that sometimes, he needs rewrite the
contract code in old version based on the latest grammar
in 1.6, such as removing the typedefs of account_name
and renaming checksum() or public_key() APIs. Then, the
student manually wrote an exploit for each generated EOS
contract and deployed the contract using cleos to verify
the exploit. To summarize it, details of the real-world and
synthetic vulnerabilities and their break-downs are shown
in Table 2.

6 EVALUATION

We describe the research questions (RQs) to answer in our
evaluation.

e RQI1 [Effectiveness]: What is the success rate of EXGEN
in generating exploits for verified, vulnerable contracts
when comparing with the state-of-the-art approach?

e RQ2 [Zero-day and Unexploitable]: Can EXGEN find
and exploit zero-day vulnerabilities?

e RQ3 [Overhead and Scalability]: What is the overhead
and scalability of EXGEN in exploit generation?

e RQ4 [Solvable Symbolic Contracts]: How many sym-
bolic attack contracts will EXGEN produce and how many
of them are solvable?

o RQ5 [Constraints]: How many constraints will EXGEN
produce in analyzing solvable symbolic attack contract?

6.1 RQ1: Effectiveness

In this subsection, we answer the question of how effective
EXGEN is in generating exploits for vulnerable contracts in
our benchmarks. The evaluation methodology is as follows.
We use EXGEN to exploit each vulnerability in the vulnera-
ble contract and then verify the generated exploit using an
offline private chain with public chain states. There are two
things worth noting here. First, EXGEN generates multiple
exploits if the contract has more than one vulnerability.
Second, as a sanity check, we also run EXGEN on Ethereum
and EOS safe contracts and the results show that none of the
safe contracts is exploitable.

Table 3 shows the success rate of EXGEN in exploiting
existing Ethereum (Solidity) vulnerabilities. EXGEN exploits
1,258 out of 1,399 vulnerabilities, i.e., 488 out of 562 vul-
nerable contracts. 118 out of 141 failed cases are due to our
translator implementation: Currently, the Solidity—LLVM
translator has limited support on heterogeneous struct
type, e.g., int, mapping, and array in the same struct
type. The other 23 failed cases are that the symbolic execu-
tion cannot generate PTS due to timeout.

As a comparison, teEther [15] only successfully exploits
17 out of 76 vulnerabilities that it supports. Such a low
success rate is two-fold. First, teEther does not finish an-
alyzing many contracts after one hour or cannot generate
vulnerability spanning across multiple contracts. The total
of such case takes about 60% of unexploited contracts.
Second, around 20% of contracts need transactions with
non-straight dependencies for exploitation.

We also breakdown the success rate on Ethereum by
different datasets and show them in Table 4. The numbers
are most consistent across different datasets. It is interesting
that the success rate on EEG, which contains mostly vulner-
able contracts with real-world attacks, is very high. That is,
EXGEN is very effective in generating exploits that are used
by real-world attackers.

Apart from Ethereum, Table 5 shows the success rate of
EXGEN in exploiting existing EOS (C++/wasm) vulnerabil-
ities. EXGEN successfully exploits 122 out of 130 vulnera-
bilities in 55 open-source contracts and 120 out of 130 vul-
nerabilities in 53 closed-source EOS contracts. Interestingly,
when we combine them together, EXGEN can exploit 126 out
of 130 vulnerabilities in 58 EOS contracts, because the failing
reasons are different on open- and closed-source contracts.
The major reason of failing to exploit open-source contracts
is that some types, such as vectors, are unsupported in
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TABLE 3: [RQ1] Exploitation Results for Ethereum (Solidity) Vulnerabilities of EXGEN and Comparison with teEther.

o . . teEther EXGEN
vulnerability type instructions
# exploitable # exploited success rate # exploitable # exploited success rate
Overflow add - - - 728 669 91.9%
mul - - - 230 201 87.4%
Underflow sub - - - 268 228 85.1%
Arb. val. trans. call.value - - - 97 88 90.7%
Suicidal selfdestruct 45 10 22.2% 45 44 97.8%
Call Injection call or callcode or delegatecall 31 7 22.6% 31 28 90.3%
Total 76 17 22.4% 1,399 1,258 89.9%

TABLE 4: [RQ1] Breakdown of Exploit Generation Effective-
ness by Different Datasets on Ethereum (Solidity).

# exploitable # exploited success rate
HuangGai 162 159 98.1%
ContractFuzzer 49 44 89.8%
Zeus 1,068 941 88.1%
EEG 120 114 95.0%
Total 1,399 1,258 89.9%

the implementation; the major reason of failing to exploit
closed-source contracts is timeout. Some of unsupported
types are converted to a lower-level representation if con-
verted to wasm and thus can be handled by EXGEN.

6.1.1 A Case Study

In this part, we introduce a case study on an Ethereum
contract that can be detected by EXGEN but not teEther.
The Ethereum contract, called Ethsplit [25], is a ERC
token with a reentrancy vulnerability. Figure 5 shows
the source code of the Ethsplit contract with two reen-
trancy vulnerabilities at Line 6 and 12 respectively. Here
is how EXGEN generates exploit for the second reen-
trancy. The PTS only has one transaction with a self-
dependency and therefore EXGEN creates an exploit and
another fallback function. Then, EXGEN extracts two con-
straints, which are amIOnTheFork.forked () == false
and fee == msg.value/100 based on the if statement
branch. Next, EXGEN solves the value of fee as 0.01 when
setting msg.value as 1 and generates a concrete attack
contract at Line 18-26. Lastly, EXGEN fetches on-chain state,
in which the stored value amIOnTheFork. forked returns
false, and verifies that the exploit works.

[RQ1] Take-away: EXGEN significantly outperforms
state-of-the-art exploit generation approach, namely
teEther, in (i) success rate of exploitation (89.9% vs.
22.4%), (ii) number of vulnerability types (5 vs. 2),
and (iii) number of platforms (Ethereum + EOS vs.
Ethereum only).

6.2 RQ2: Zero-day Vulnerabilities

In this research question, we evaluate EXGEN against 162
EOS contract for its capability in detecting and exploiting

1 /% Source code of the vulnerable contractx/

2 contract Ethsplit {

3 function split (address ethAddress, address etcAddress
) A

4 if (amIOnTheFork.forked()) {

5 // if on the forked chain send ETH to ethAddress

6 ethAddress.call.value (msg.value) ();

7 }

8 else {

9 // send ETC to etcAddress less fee

10 uint fee = msg.value/100;

11 fees.call.value (fee);

12 etcAddress.call.value (msg.value—fee) ();

13 }

14 }

15 e

16 }

17 /% Attack contract targeting the vulnerable contractx*/
18 contract AttackContract {

19 Ethsplit target = Ethsplit (TARGET_ADDRESS) ;

20 function exploit () public payable {

21 target.split (<<SYMBOL1:ATTACKER_ADDRESS>>, <<
SYMBOLZ2 : ATTACKER_ADDRESS>>) .value (<<SYMBOL3
c1>>);

22 }

23 function () external payable {

24 target.split (<<SYMBOLL:ATTACKER_ADDRESS>>, <<
SYMBOL2 : ATTACKER_ADDRESS>>) .value (<<SYMBOL3
:1>>);

25 }

26 )

Fig. 5: [RQ1] An Ethsplit Ethereum Contract with a Reen-
trancy.

zero-day vulnerabilities. The results show that EXGEN pro-
duces 50 exploits for 24 real-world contracts with zero-day
vulnerabilities. We reported all vulnerabilities and exploits
to the contract developers if we can find them. It is worth
noting that one contract is an EOS game contract, called
Gameworldcom [26], which is vulnerable to integer over-
flow. The contract is very popular with 10,359 transactions
totaling 147,964 EOS coins in the past.

Now, we introduce a case study on an EOS contract
called Blaster [27], which creates deferred transactions for
performance testing. This contract has an integer underflow
vulnerability at Line 7 in Figure 6. Suppose a tester inputs
a past time when testing the performance of a contract, the
integer underflow vulnerability may cause an endless pe-
riod before committing the transactions. Here is the exploit
generation of EXGEN. The PTS only has one transaction
and EXGEN extracts one constraint related to the vulnerable
location. Then, EXGEN solves the value of blast_time
as 0 considering that the value of the current timestamp
is always positive. In the end, EXGEN generates an ex-
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TABLE 5: [RQ1] EXGEN’s Exploitation Results for EOS (C++/wasm) Vulnerabilities on EOS Benchmarks.

Real-world Vulnerabilities

Synthetic Vulnerabilities Total

code instr (vuln)
# exploitable # exploited success rate # exploitable # exploited success rate # exploitable # exploited success rate
add (overflow) 30 28 93.3% 28 26 92.9% 58 54 93.1%
Cost mul (overflow) 12 11 91.7% 5 5 100% 17 16 94.1%
sub (underflow) 9 8 88.9% 46 44 95.7% 55 52 94.6%
Total 51 47 92.2% 79 75 94.9% 130 122 93.9%
add (overflow) 30 29 96.7% 28 25 89.3% 58 54 93.1%
wasm Ml (overflow) 12 10 83.3% 5 5 100% 17 15 88.3%
sub (underflow) 9 8 88.9% 46 43 93.5% 55 51 92.7%
Total 51 47 92.2% 79 73 92.4% 130 120 92.3%
C++/wasm Total 51 50 98.0% 79 76 96.2% 130 126 96.9%

1 /% Source code of the vulnerable contract =/
2 class blaster : public contract {
3 void blast ( uinté64_t blast_time, uint32_t start,
uint32_t iterations ) {
4 for (uint32_t i = start;i<start + iterations;i++) {
5 transaction deferredTrans{};
6 R
7 deferredTrans.delay_sec = blast_time -
current_time_point () .time_since_epoch () .count
(O
8 deferredTrans.expiration = time_point_sec(
current_time_point () .time_since_epoch () .count
() + (60 * 60 % 24));
9 uint128_t sender_id = (uintl28_t (i) << 64) |
blast_time;
10 deferredTrans.send (sender_id, _self);
11 }
12 }
13
14 class AttackContract {
15 [[eosio:action]]
16 void main () {
17 blast (<<SYMBOL1:0>>, <<SYMBOL2:ANY_ VALUE>>, <<
SYMBOL3:ANY_POSITIVE_VALUE>>);
18 }
19
20 /% JSON objects of EOS ABI
21 ¢
22 "code": "blaster",
23 "action": "blast",
24 "args": {
25 "blast_time": 0,
26 "start": O,
27 "iterations": 1
28 }
29 1} «/

Fig. 6: [RQ2-Zero-day] An Blaster EOS Contract with an
Integer Underflow.

ploit example shown in Figure 6. EOS RPC requires JSON-
format data to submit the transaction, in which function
name and parameter values are provided using key-value
pairs. This JSON object is converted to binary through
abi_json_to_bin and then posted to the chain by EOS
RPC. Attackers can also use the cleos client with the com-
mand cleos push action to submit the transactions.

[RQ2] Take-away: On platforms with no prior detec-
tion tools on certain vulnerability types such as integer
overflows (i.e., EOS), EXGEN is able to exploit zero-day
vulnerabilities.

6.3 RQ3: Overhead and Scalability

In this subsection, we answer the research question of what
the performance overhead of EXGEN is and whether EXGEN

is scalable as the number of path increases.

6.3.1 Performance Overhead

We start from evaluating the overhead of EXGEN using
the Ethereum and EOS benchmarks. Figure 7 shows the
cumulative distribution function (CDF) of the performance
overhead of Ethereum and EOS contracts. EXGEN is effi-
cient in analyzing all the contracts: EXGEN analyzed 90%
of Ethereum and 75% of EOS (C++) contracts within 100
seconds and 80% EOS (wasm) contracts within 300 seconds.

There are three things worth noting here. First, the
analysis of EOS contract in wasm triples the time spent on
the one with source code. One major reason is that EXGEN
translates wasm code to C instead of C++, which needs
implementations of many C++ libraries. Another reason is
that many high-level semantics, such as loops, are lost in the
wasm format.

Second, EXGEN takes more time to analyze EOS con-
tracts than Ethereum. The reason is that the logics of EOS
contracts are generally more complex than the ones of
Ethereum and thus have more lines of code. Particularly, the
execution of Ethereum contracts needs gas and the amount
of gas depends on the number of instructions: Therefore, de-
velopers tend to write small, simple contracts on Ethereum.

Third, there are sudden increases on the CDF graph.
For example, the CDF graph of Ethereum contracts has
a big increase between 100 and 110 seconds. The reason
is that many contracts in the Ethereum benchmark are
derived from three popular tokens, i.e., “Proof of Weak
Hands (PoWH)”, “Ponzi”, and “EthPyramid (EPY)”, and
the analysis time of those contracts are very similar. For
another example, there is also an increase between 45 and 60
seconds (C++) and between 120 and 135 seconds (wasm). It
is because those contracts in the EOS benchmark implement
their transfer functions based on the eosio.token contract
from the official EOSIO documentation.

Figure 7 also shows the performance overhead of
teEther [15] as a comparison to EXGEN. The number of time-
out contracts of EXGEN and teEther after 300 seconds is
similar. The sharp increase at the beginning for teEther is
due to that 95% contracts fail to compile leading to a quick
error under one second.

6.3.2 Overhead Breakdown

In this part, we further break down the overhead of four
Ethereum contracts in Table 6 based on the overhead of
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TABLE 6: [RQ3] Breakdown of Overhead in Seconds for Ethereum and EOS Sample Contracts.

benchmarks Contract Total Time*  Translator PTS Generation Symbolic Execution LoC
HmcDistributor [28] 6.854 0.071 2.477 4.306 108
Ethereum NumbersToken?2 [29] 98.972 0.733 3.504 94.735 279
Agricoin [30] 159.08 0.403 4.365 154.312 690
dacservice 38.184 2.759 3.195 32.230 126
EOS (C++) eosdtnutoken 59.675 3.091 4.868 51.716 306
happyeosslot 183.361 3.891 5.935 173.535 821
dacservice 95.612 5.87 8.503 81.239 6,436**
EOS (wasm) eosdtnutoken 144.177 6.557 10.181 127.439 9,581
happyeosslot 452413 7.306 12.98 432.127 18,027

*: The total time includes the one to generate an exploit but not verification time (which depends on the number of exploits to verify).
**: The number in EOS (wasm) refers the lines of reverse engineered C code.

————
-

-

—Ethereum
++<EQOS (C++)
--EQS (wasm)

11

teEther

0 30 60 90 120150180210240270300330
Total Time in Seconds
Fig. 7: [RQ3] CDF of Performance Overhead

different steps of EXGEN. Symbolic execution and constraint
solving together are the most timing-consuming and in-
crease as the lines of code (LoC) because EXGEN needs
to explore all different possible paths. The performance
overhead on PTS generation also increase linearly as LoC
but in a very slow pace. The translator’s performance is
almost unrelated with LoC because the LoC is generally
small and does not impact its performance.

6.3.3 Scalability

We evaluate the scalability of EXGEN as the number of
generated symbolic attack contracts increases. Specifically,
we plot a graph with the y-axis as the total analysis time
and the x-axis as the number of symbolic contracts. Figure 8
shows the results: All the points in the analysis aligns well
with linear lines. The lines of EOS (C++) and Ethereum are
close, because the overhead in analyzing source code are
similar. The line of EOS (wasm) is much higher than the one
of EOS (C++) and Ethereum, because reverse engineered
source code is much longer than the original.

[RQ3] Take-away: EXGEN finishes analyzing most vul-
nerable contracts within five minutes and is scalable to
the contract size.

6.4 RQ4: Solvable Symbolic Attack Contract

In this subsection, we summarize the number of total and
exploitable symbolic attack contracts using a CDF graph in
Figure 9. We only draw one CDF line for EOS, because the
number of generated symbolic attack contracts for open-
and closed-source target EOS contracts are the same. We
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Fig. 8: [RQ3] Overhead vs. # of Symbolic Attack Contracts

have several observations. First, EOS contracts tend to have
more symbolic attack contracts than Ethereum, because the
logics of EOS contracts are more complex than the ones of
Ethereum. It is probably because EOS does not charge gas
for contract execution.

Second, the solvable symbolic contract rate of EOS is
lower than Ethereum: It is because EOS contracts also have
more constraints, which limits the solvability of some sym-
bolic attack contracts with a particular function invocation
sequence. For example, one unsolvable case is that the
symbolic contract divides a value with a number and then
times the intermediate result with another number that is
smaller than the former. Therefore, the final result will not
be overflowed given all the constraints.

[RQ4] Take-away: The performance overhead of EX-
GEN increase linearly as the number of generated
symbolic attack contracts.

6.5 RQ5: Constraints

In this subsection, we show a CDF graph on the number of
extracted constraints when generating exploits for Ethereum
and EOS contracts in Figure 10. There are two things
worth noting here. First, most contracts, i.e., nearly 85% of
Ethereum contracts have no more than 100 constraints and
80% of EOS (C++) ones have no more than 150 constraints.
This is smaller than desktop applications, which may have
thousands or tens of thousands of constraints.

Second, EOS (wasm) contracts have much more con-
straints than EOS (C++) because one constraint in a C++
code may be broken into multiple in the wasm format.
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Fig. 10: [RQ5] CDF of Number of Constraints.

Take an if statement for example. A wasm binary and
the reverse engineered C code will first store the condition,
likely a comparison, into a register or a variable and then
compare the stored result with zero. That is, one single
constraint becomes two in wasm.

[RQ5] Take-away: The number of constraints in smart
contracts is relatively small due to the natural of con-
tract functionality.

7 DISCUSSION

In this section, we discuss some commonly raised questions.

First, we would like to note that the prototype imple-
mentation only supports Solidity code, EOS C++ code, and
EOS wasm binary. That said, our prototype of EXGEN does
not support smart contracts in other formats, such as Solid-
ity binary and Java on the Hyperledger Fabric platform. We
will leave them as our future work.

We also want to mention that our current implemen-
tation of Solidity—+LLVM translator has some limitations.
Our translator implementation of dynamic arrays and map-
pings are based on arrays with fixed length rather than dy-
namic allocation. In addition, our implementation does not
fully support constant hex values. These implementation
compromises do not affect exploit generation in practice—
EXGEN adopts a fixed, sufficiently-large length and converts
hex to decimal.

Second, our prototype implementation of wasm built-
in functions is restricted to the EOS benchmark. We be-
lieve that this is sufficient for our evaluations and leave
a full implementation of all wasm built-in functions as a

future work. Additonally, the dataflow analysis of EXGEN
is coarse-grained on the variable type, such as st ruct and
array instead fine-grained on different fields of a struct
variable. We believe that such dataflow analysis is sufficient
to generate PTS in practice.

Third, we want to discuss the general problem of
path explosion in symbolic execution. EXGEN can find all
the paths in practical smart contracts, because the logics
of smart contracts are relatively simple compared with
large-scale desktop or mobile applications. One reason for
Ethereum contracts is that the execution of each instruction
requires a gas fee and therefore developers tend to keep
contracts simple.

Fourth, we discuss the impacts of compiler optimization
of arithmetic operations on EXGEN. In a one-sentence sum-
mary, such optimization does not have impacts on EXGEN
because EXGEN disables optimization in the translator and
thus the translated LLVM IRs preserve the original integer
overflow vulnerabilities. Specifically, our translation from
Solidity to LLVM is a customized implementation without
optimization; we disable compiler optimization in translat-
ing EOS source code to LLVM. Furthermore, we deploy
generated attack contracts on a private chain to confirm that
integer overflows can be triggered.

Fifth, we discuss some control-flow condition checks
that happened after vulnerability location. This is specific
to smart contracts because they can abort transactions at
any time. EXGEN will generate exploits for such contracts
but the verificaiton step (Step 2.2) will fail because of such
checks.

Sixth, we discuss non-contract format exploit gener-
ated by EXGEN. This is possible if some contracts check
“msg.sender” with “tx.origin” and such constraints are ex-
tracted by EXGEN. If so, EXGEN will generate an exploit as
multiple single transactions from a human account.

Lastly, we discuss how compiler-level protection of inte-
ger overflows, such as LLVM’s sanitizer and GCC’s built-
in function, affects EXGEN. We would like to note that
existing contracts, particularly those on Ethereum and EOS,
do not have any protection enabled. Those contracts—which
cannot be changed once deployed based on the nature of
blockchain—are the target of ExGen to generate exploits.

8 RELATED WORK

In this section, we discuss related work.

Automatic Exploitation and Contract Testing. teEther [15]
from Krupp et al. is probably the closest related work, which
automatically generates exploits for a given vulnerable con-
tract’s bytecode. Specifically, teEther classifies four binary
operations as potential injection points for exploit genera-
tion. As a comparison, teEther cannot generate exploits for
integer overflows due to lack of dataflow information into
arithmetic operations.

Targeting at stack overflows and format string attacks,
Avgerinos et al. [31] first proposes control flow hijacking
exploit generation for programs with source code. For com-
piled binaries, MAYHEM [32] and CRAX [33] address path
selection and symbolic execution during exploit generation
by implementing binary AEG features. Gollum [34] designs
a grey-box approach to generate exploits focusing on heap
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overflows in interpreters. FUZE [35] contributes to exploit-
ing kernel UAF vulnerabilities by utilizing kernel fuzzing
and symbolic execution. Leveraging capability modeling
of OOB writes, KOOBE [36] can be applied to heap OOB
write and other types of kernel vulnerabilities with the
inherently multi-interaction nature of kernel. These works
do not handle hash values and blockchain states in the
execution environment of the EVM or the EOS. Therefore,
their AEG methodology cannot be applied to smart contract
vulnerabilities.

Zhang et al. [13] and Jiang et al. [14] test Ethereum

smart contracts via dynamic fuzzing. Inspired by the well-
known fuzzer for C programs AFL [37], sFuzz [38] pro-
poses an adaptive strategy for improving seed selecting.
SMARTIAN [39] leverages both static and dynamic analysis
to deterministically identify critical transaction sequences
which effectively provides feedback for guided fuzzing.
EasyFlow [12] also generates transactions with large or
small integers to trigger integer overflows via fuzzing.
Dynamic fuzzing may not trigger the vulnerable code due
to the lack of constraint solving and is complementary to
exploit generation. As a comparison, EXGEN is a static anal-
ysis framework using symbolic execution to solve constraint
along the exploit path.
Vulnerability Detection and Patching in Existing Smart
Contract. People have also proposed many prior works
in detecting vulnerabilities in smart contracts. Those work
can be classified into static analysis, dynamic analysis, and
formal verification. First, Oyente [4] from Luu et al. and
ZEUS [5] from Kalra et al. adopt static analysis to detect
many smart contract vulnerabilities. There are also other
popular symbolic execution tools, such as Mythril [40], MA-
IAN [6], Mueller [7], Osiris [8], Lai [9] and Vandal [10]. In
addition, Torres [41] used symbolic execution to observe the
rising of honeypot contracts and summarized the techniques
adopted by the honeypots. GASPER [42] and MadMax [43]
investigate gas-focused vulnerabilities to prevent contracts
from out-of-gas conditions. Zhou [44] developed Erays that
reverse engineers EVM bytecode to high-level, human-
readable pseudocode. As a comparison, prior works can
only detect the possible existence of a vulnerability but do
not generate concrete exploits.

EOSSafe [45] is a static analysis tool that detects EOS
vulnerabilities including fake EOS, fake receipt, rollback
and missing permission check using symbolic execution. As
a comparison, vulnerabilities considered by EXGEN, e.g.,
integer overflow/underflow, are out of scope of EOSSafe.
Moreover, EOSSafe, unlike EXGEN, only detects vulnerabil-
ities but does not generates exploits.

Second, researchers have adopted dynamic analysis
focusing on real-world transactions to detect vulnera-
bilities. The aforementioned EasyFlow [12] is one such
work that propagates taints to detect integer overflows
in runtime. Zhang [46] proposed TXSPECTOR to detect
Re-entrancy, UncheckedCall and Suicidal vulnerabilities.
GROSSMAN [47] defines a safety property, called ECFE to
prevent the exploitation of the vulnerability in the DAO.
SODA [48] is an online detection framework supporting ver-
ification of inconsistencies between a contract and a corre-
sponding standard or user-defined pattern. Rodler [49] pro-
posed a tool called Sereum to protect existing contracts from

reentrancy attacks. Their technology is based on runtime
monitoring and verification. Sereum effectively protects
the security of the contracts which are already published.
Livshits [50] proposed a new DoS attack aimed at exploiting
EVM by generating resource exhaustive contracts, whose
throughputs are significantly slower than typical contracts.
As a comparison, these dynamic analysis works depend on
the existence of real-world exploit transactions—EXGEN can
generate exploits even if there are no existing transactions.
Third, people have also proposed to formally verify
smart contracts or patch them. Bhargavan et al. [51] trans-
lates Solidity into F*, a functional programming language
designed for better formal verification. Grishchenko et al.
[52] further formalizes EVM bytecode in the F* proof as-
sistant, and proposes eThor [53] for automated and static
analysis of EVM bytecode. Tikhomirov [54] translated So-
lidity into an XML-based IR, and checked if the contracts
violate the X Path patterns. EthBMC [55] adopts bounded
model checking to detect vulnerabilities. EVMPatch [56]
has proposed to automatically update and patch vulnerable
contracts via a proxy pattern. None of these works can
automatically generate exploit for smart contracts.
Blockchain Security and Privacy. We describe some gen-
eral works on blockchain security and privacy in this sub-
section. Many prior works [24], [57]-[62] illustrated the
basic framework of Ethereum and surveyed the security
issues of Ethereum contracts from different perspectives.
Zhou et al. [11] performed the first comprehensive study of
Ethereum transactions and measured real-world adoptions
of attacks and defenses. Lee et al. [63] addressed the void
in the investigation into EOS blockchain and introduced
four attacks (not targeting at integer overflows) whose
root causes stem from the unique characteristics of EOS.
Delmolino et al. [64] provided their own experience in
building safer smart contracts. Konoth et al. [65] proposes
MineSweeper to detect cryptojacking based on the intrinsic
characteristics of cryptomining code. People also propose
to use blockchain together with Tor to protect privacy and
security [66], [67]. Other papers [68]-[70] presented their
mechanism to motivate security research on contracts.

9 CONCLUSION

In this paper, we propose the first cross-platform, open-
source framework, called EXGEN, to automatically generate
exploits for smart contracts on EOS and Ethereum. First,
EXGEN generates partially-ordered transactional set (PTS)
and symbolic attack contracts following data dependencies
among different transactions preparing for the vulnerable
states. Then, EXGEN symbolically executes the generated
contracts to concretize symbolic values by extracting and
solving constraints. Our evaluation shows that EXGEN suc-
cessfully outperforms state-of-the-art tool, namely teEther,
in generating exploits for vulnerable Ethereum (Solidity)
contracts. The evaluation also shows that EXGEN is able to
find 50 zero-day vulnerabilities of 24 EOS smart contracts.
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