
Efficient Detection of Java Deserialization Gadget Chains via Bottom-up Gadget
Search and Dataflow-aided Payload Construction

Bofei Chen1, Lei Zhang1∗, Xinyou Huang1, Yinzhi Cao2, Keke Lian1∗, Yuan Zhang1∗, Min Yang1∗
1: Fudan University, {bfchen22, xinyouhuang22}@m.fudan.edu.cn

1∗: Fudan University, {zxl, kklian20, yuanxzhang, m yang}@fudan.edu.cn
2: Johns Hopkins University, yinzhi.cao@jhu.edu

Abstract—Java Object Injection (JOI) is a severe type of
vulnerability affecting Java deserialization, which allows adver-
saries to inject a well-crafted, serialized object, thus triggering
a series of chained internal methods (called gadgets) and then
achieving attack consequences such as Remote Code Execution
(RCE). Prior works studied the problem of detecting and
chaining gadgets for JOI vulnerability using static search for
possible gadget chains and dynamic construction of payload via
fuzzing. However, prior works face two following challenges:
(i) path explosion in static gadget search and (ii) a lack of fine-
grained object relations connected via object fields in dynamic
payload construction.

In this paper, we design and implement a novel Java
deserialization gadget detection framework, called JDD. On
one hand, JDD solves the static path explosion problem by a
bottom-up approach, which first looks for gadget fragments
and then chains gadget fragments from sinks to sources. The
approach reduces maximum static search time from exponen-
tial to polynomial, i.e., from O(eMn

) to O(M2n3
+ enM),

where n is the number of dynamic function calls in a gadget
chain, M is the average number of dynamic function call
candidates, and e is the number of entry points. On the other
hand, JDD constructs a so-called Injection Object Construction
Diagram (IOCD), which models the dataflow dependencies
between injection objects’ fields to facilitate dynamic fuzzing.
Our evaluation of JDD upon six real-world Java applica-
tions reveals 127 zero-day, exploitable gadget chains with
six Common Vulnerabilities and Exposures (CVE) identifiers
assigned. We also responsibly reported these vulnerabilities to
application developers and obtained their acknowledgments
and confirmations.

1. Introduction

Java serialization and deserialization greatly facilitate
the cooperation and collaboration of different Java systems
(e.g., server and client), allowing different Java programs
to conveniently exchange and share data and code. Despite
their easiness and powerfulness, one well-known and serious
security vulnerability faced in Java deserialization is an
implicit attack surface called Java Object Injection (JOI).
The JOI vulnerability enables a remote attacker to inject
a well-crafted serialized object, which triggers a chain of

internal Java methods (called gadgets), finally achieving a
wide range of severe attack consequences, e.g., remote code
execution (RCE) and denial of service (DoS) attacks.

In past years, many works [1]–[4] have focused on the
problem of JOI, and proposed several JOI vulnerability
detection techniques. For example, ODDFuzz [2] statically
searches for possible gadgets via a Depth First Search (DFS)
strategy, and then dynamically fuzzes the target program as
a greybox for verifying gadget chains. However, existing
work still fell short in two major limitations, impacting their
practicality and effectiveness.

First, prior work often adopted a top-down static ap-
proach for checking gadgets extensively from a source to a
sink for potential paths. However, such a search often suffers
from path explosion, especially when common Java meth-
ods such as equals and put are involved in the gadget
chain. For example, our experiment shows that the static
analysis approach like ODDFuzz cannot finish analyzing a
small 3.6MB Java application. Fundamentally, the search
complexity is exponential, i.e., O(eMn

), where n is the
number of dynamic function calls in a gadget chain, M is
the average number of dynamic function call candidates, and
e is the number of entry points.

Second, many of prior tools conducted static analysis
against JOI vulnerability detection, thus inevitably having
high false positives. Beyond these, ODDFuzz additionally
introduced dynamic fuzzing for reducing false positives.
However, ODDFuzz did not consider the constraints that
should be satisfied in each gadget. In particular, the fine-
grained data flows between different object fields in each
gadget, leading to the imprecision of object structure and
thus an incorrect payload.

In this paper, we design a novel gadget chain detection
framework, called JDD (Java Deserialization Vulnerability
Detector), to statically detect possible gadget chains using a
bottom-up approach and dynamically generate payloads, i.e.,
exploitable injection objects, relying on dataflow relations
between object fields. JDD addresses the aforementioned
two challenges as follows.

First, JDD addresses the path explosion challenge via a
bottom-up search strategy. JDD first searches for possible
gadget fragments and then chains fragments together from
sinks to sources. Our key observation here is that a top-down
search repeats the analysis of the same low-level gadget

fragment when a top-level gadget changes, leading to a
huge redundancy and a waste of analysis time. Instead, the
bottom-up search adopted by JDD finds gadget fragments
that can be reused by different top-level gadgets in the chain.
Therefore, the search complexity changes from exponential
to polynomial, i.e., from O(eMn

) to O(M2n3
+ enM).

More importantly, JDD is able to reuse existing gadget frag-
ments discovered in previous vulnerabilities, which further
speeds up the search process.

Second, JDD addresses the challenge of the lack of ob-
ject field relations via a novel data structure, called Injection
Object Construction Diagram (IOCD), to better represent
the dataflow dependencies between injection objects’ fields.
The high-level idea is that JDD follows the call sequence
in a statically-discovered gadget chain to construct dataflow
dependencies between possible injection objects’ fields as an
IOCD. Such an IOCD is further used by JDD in dynamic
fuzzing to exploit the JOI vulnerability.

We evaluate JDD upon six popular Java applications in
their latest version, which finds 127 zero-day exploitable
gadget chains with six Common Vulnerabilities and Expo-
sures (CVE) identifiers assigned. We also responsibly re-
ported our findings of all 127 gadget chains to related devel-
opers and received their confirmation. For example, Dubbo’s
developers not only acknowledged the gadget chains but also
admitted that it is almost “impossible” for them to recognize
all possible gadget chains, which emphasizes the urgency of
our automated tool.

We also compare JDD with the state-of-the-art approach,
namely ODDFuzz, in a well-known benchmark (i.e., the
ysoserial repository [5]) with 34 confirmed gadget chains.
JDD missed only seven of 34 confirmed with a False Neg-
ative Rate (FNR) of 20.6% and identified 91 previously-
unknown gadget chains (which were confirmed as correct in
manual analysis). As a comparison, OddFuzz only detected
16 gadget chains, resulting in an FNR of 52.9%, and it did
not discover any previously-unknown ones.

We summarize the contributions of this paper as below:
● JDD solves the path explosion problem of static search

for chained gadgets via a bottom-up approach that dis-
covers intermediate gadget fragments and then chains
them together from sinks to sources.

● JDD constructs the so-called Injection Object Con-
struction Diagram (IOCD) to better model dataflow
dependencies between object fields and assist dynamic
fuzzers for payload construction.

● JDD discovered 127 zero-day gadget chains of real-
world Java applications in their latest version and out-
performs ODDFuzz in detecting legacy gadget chains.

2. Overview

In this section, we first provide a brief background on
JOI attacks in Section 2.1, then describe Java deserialization
gadget chains in Section 2.2 using a real-world motivat-
ing example, and then present research challenges faced
by state-of-the-art approaches in detecting this example in
Section 2.3.

2.1. Background of JOI Attacks

Java Naming and Directory Interface (JNDI) injection
is a commonly used technique in JOI attacks. The attack
occurs because the JNDI interface’s lookup method can
remotely load a malicious Java class based on its param-
eters (e.g., an attacker-controlled URL), thereby executing
arbitrary code in the victim server. A typical scenario for this
attack involves a web service running on the victim server,
listening on a port and deserializing data received on the
port. During deserialization, if there is a JOI vulnerability,
the program execution will invoke some security-sensitive
methods based on the injected object.

In addition to JNDI injection attacks, common meth-
ods of exploiting JOI vulnerabilities to attack remote
servers include dynamic code loading (such as using
URLClassLoader.loadClass to load remote class
files or using ClassLoader.defineClass to directly
load bytecode files), and command execution (such as
Runtime.exec), etc. They all require: (1) An execution
path that can invoke a security-sensitive method that can
execute malicious code (or upload arbitrary files, deny ser-
vice, etc.) during the deserialization process, called gadget
chain; (2) A serialized object that drives the execution of
the gadget chain, called injection object.

Thus, to detect JOI vulnerabilities, JDD has two major
detection goals: (1) Uses static analysis to find potential
gadget chains in the victim server; (2) Dynamically gener-
ates exploitable injection objects to verify the exploitability
of gadget chains. As a result, the exploitable gadget chains
detected by JDD can be used to help developers specify a
more complete blacklist defense mechanism to better defend
against JOI attacks.

2.2. A Motivating Example

Figure 1 illustrates a zero-day gadget chain found by
JDD in sofa-rpc [6], i.e., popular Java libraries that
are widely used in the server-side cloud of many enter-
prise companies, e.g., Alipay. The gadget chain starts from
a Java deserialization method (e.g., HashMap.put() in
Line 4, shown in Figure 1). The chain ends up with a
Java reflection call at Line 54 and then launches a JNDI
injection attack at Line 59. Note that each Java method
call along the chain is considered as a gadget, e.g., the
put() method at Line 4. Then, Java method calls between
two dynamically-dispatched methods are considered as a
gadget fragment, e.g., the combination of methods get()
and getFromHashtable() in Figure 1 as Fragment IV,
as the latter is statically determined. We also illustrate the
exploit code in Figure 2. An adversary serializes the returned
object in Line 22 of Figure 2 and sends it to the server, which
triggers the gadget chain in Figure 1 for exploitation.

We first describe the gadget chain with five different
gadget fragments of Figure 1 in detail. The gadget starts
from Fragment I (Line 1), where the put() method (Line
4) of an object HashMap is invoked upon deserialization.
If two elements in the HashMap have the same hash value,

 1 /* Gadget Fragment I : HashMap.put()->HashMap.putVal() */

 2 class HashMap extends AbstractMap ...{

 3 Node<K,V>[] table;

 4 V put(K key, V value) { return putVal(hash(key), key, value, ...); }

 5 V putVal(int hash, K key, V value,...) { ...

 6 Node<K,V> p = table[(int) index]; // p is an element in table

 7 if (p.hashCode() == key.hashCode() & p.key != key & key != null)

 8 key.equals(p.key);

 9 ... }

10 }

11 /* Gadget Fragment II: NodeImpl.equals()-> Object.equals(Line 17) */

12 class NodeImpl implements ... {

13 Object key;

14 int hashCode = -1;

15 boolean equals(Object obj) {

16 if (o instanceof NodeImpl) { ...

17 this.key.equals(((NodeImpl) obj).key);

18 }

19 int hashCode() {

20 if (this.hashCode == -1) this.hashCode = this.buildHashCode();

21 return this.hashCode;

22 }

23 /* Gadget Fragment III: ConcurrentHashMap.equals()-> Map.get() */

24 class ConcurrentHashMap<K,V> extends AbstractMap<K,V> ...{

25 boolean equals(Object o) {

26 if (o instanceof Map) { ...

27 ((Map<?,?>)o).get(ConcurrentHashMap.this.table[index].key);

28 ...}}

29

30 }

31 /* Gadget Fragment IV: UIDefaults.get()-> ... -> LazyValue.createValue() */

32 class UIDefaults extends Hashtable<Object,Object>{

33 Object get(Object key) { Object value = getFromHashtable(key); ...}

34 Object getFromHashtable(final Object key) {

35 // UIDefaults.table should contain an Entry that “key” is key

36 Object value = super.get(key);

37 if ((value != PENDING) && !(value instanceof ActiveValue) &&

38 !(value instanceof LazyValue)) return value;

39 if (value instanceof LazyValue) ((LazyValue) value).createValue(this);

40 }

41 }

42 class Hashtable<K,V> ... {

43 Entry<K,V>[] table;

44 V get(Object key) {

45 Entry<K,V> e = this.table[(int) index]; // e is an element of table

46 if ((e.key.hash == key.hash) && e.key.equals(key)) return (V) e.value;

47 return null; }

48 }

49 /* Gadget Fragment V: ProxyLazyValue.createValue()->...-> Method.invoke() */

50 class ProxyLazyValue extends Hashtable<Object,Object> {

51 Object createValue(final UIDefaults table) {...

52 Class c = Class.forName(this.className);

53 Method m = c.getMethod(this.methodName, this,args);

54 return MethodUtil.invoke(m, c, this.args); ...}

55 }

56 /* Gadget Fragment VI: InitialContext.doLookup()-> InitialContext.lookup() */

57 class InitialContext implements Context {

58 static <T> T doLookup(String name) throws NamingException {

59 return (T) (new InitialContext()).lookup(name); // JNDI attack }

60 }

Candidates:2751

Candidates:12

Candidates:2751

Candidates:148

n1 n2

cctmap uft

uft cctmap.table[i].key

cctmap.table[i].key

cctmap.table[i].key

plv uft

plv

plv.args

plv.args

cctmap.table[i].key

Figure 1: A Motivating Example of a Zero-day Gadget
Chain with Five Fragments (Note that code is simplified
for easy understanding.)

the equals() method (Line 8) will be invoked, which may
have a polymorphic implementation in NodeImpl class,
thus triggering Fragment II (Line 10). Then, the field key
of the NodeImpl class triggers another equals() method
(Line 17), which may have a polymorphic implementation in
the ConcurrentHashMap class, thus triggering Fragment
III (Line 25). Next, the get() method has a polymorphic
implementation in the UIDefaults class, leading to Frag-

 1 // Gadget Fragment IV

 2 UIDefaults uft = new UIDefaults();

 3 // Gadget Fragment V

 4 Object plv = createWithObjectNoArgsConstructor(

 5 Class.forName(“javax.swing.UIDefaults$ProxyLazyValue”));

 6 uft.put(“aaa”, plv)

 7 // Gadget Fragment VI

 8 setFieldValue(plv, “className”, “security-sensitive class name”);

 9 setFieldValue(plv, “args”, new Object[]{“malicious URL”});

10 setFieldValue(plv, “methodName”, “security-sensitive method name”);
11 // Gadget Fragment III

12 ConcurrentHashMap cctmap = new ConcurrentHashMap();

13 cctmap.put(“aaa”, “any”);
14 // Gadget Fragment II

15 NodeImpl n1 = createWithObjectNoArgsConstructor(NodeImpl.class);

16 NodeImpl n2 = createWithObjectNoArgsConstructor(NodeImpl.class);

17 setFieldValue(n1, “hashCode”, 3);

18 setFieldValue(n2, “hashCode”, 3);

19 setFieldValue(n1, “key”, cctmap);

20 setFieldValue(n2, “key”, uft);

21 // Gadget Fragment I

22 HashMap map = Gadgets.makeMap(n2, n1); // put n1 and n2 into a HashMap

Figure 2: Exploit Code of Our Motivating Example in
Figure 1 (An adversary serializes the returned object in Line
20 and sends it to the server).

ment IV, which further calls the getFromHashtable()
method (Line 34). Lastly, the createValue() method
calls at Line 39 invokes the polymorphic method definition
in Line 51 belong to Fragment V, which calls Java reflection
at Line 54 and thus the JNDI attack at Line 59 of Fragment
VI.

Next, we describe how an adversary utilizes the gadget
chain with the exploit code in Figure 2. An adversary first in-
stantiates a HashMap object at Line 22 of Figure 2 to trigger
the put() method of Fragment I. Then, two NodeImpl
objects are instantiated with the same hashCode (Lines
15–18 of Figure 2) so that the equals() method in
Fragment II is invoked. Next, the adversary assigns n1.key
as a ConcurrentHashMap object (Lines 12–13 and 19
of Figure 2) to trigger another equals() method in
Fragment III. After that, the adversary assigns n2.key
as a UIDefaults object (Lines 2 and 20 of Figure 2)
to trigger the get() method in Fragment IV. Lastly, the
adversary manipulates the elements stored in uft.table
to return a ProxyLazyValue object (Line 6 of Fig-
ure 2), which implements LazyValue interface with three
values to trigger Fragment V. Specifially, the adversary
assigns the method InitialContext.doLookup() as
the className and the methodName together with the
correct args (Lines 8–10 of Figure 2) to trigger Fragment
VI.

2.3. Challenges and Solution Overview

We now describe two challenges faced by prior works
in their static and dynamic analysis using the motivating
example presented in Figure 1. Then, we present the solu-
tions proposed by us in designing JDD to solve these two
challenges.

HashMap

table

NodeImpl NodeImpl

key key

UIDfaults ConcurrentHashMap

table table

ProxyLazyValue

(a) Correct Injection Object

Structure

NodeImpl

key

ConcurrentHashMap

table

UIDfaults

table

ProxyLazyValue

(b) Erroneous Injection Object

Structure Deduced by Oddfuzz

HashMap

table

......

Field Node
Class-Field

Dependence
Class Node

n2 n1

uft cctmap

plv

 i. n1.hashCode() == n2.hashCode()

 ii. uft.containsKey(cctmap.table[i].key) == true

iii. Class.forName(plv.className)

 .getMethod(plv.methodName,plv.args) != null

iv. ...

Constraints Info
 i. n1.hashCode() == n2.hashCode()

 ii. uft.containsKey(cctmap.table[i].key) == true

iii. Class.forName(plv.className)

 .getMethod(plv.methodName,plv.args) != null

iv. ...

Constraints Info

Figure 3: Injection Object Structure of Motivation Example.

Challenge I: Static Path Explosion. The first challenge
is that the number of all possible paths between sources
and sinks is exponential, leading to path explosion. Let
us use Figure 1 as an example to describe the challenge.
The number of potential candidates for the equals()
method between Fragments I and II could be 2,751 and
the same applies to the other equals() method between
Fragments II and III. Then, the candidate number is 148
for get() between Fragments III and IV, and 12 for
createValue() between Fragments IV and V. Therefore,
if a Depth-first-search (DFS) is used to find a gadget chain
like what ODDFuzz does, the total number execution path
could be 2751×2751×148×12 = 13,440,769,776, which is
impossible to search from.

Our Solution: Bottom-up Gadget Search. Our key obser-
vation is that a top-down search like a DFS will analyze
some methods multiple times, leading to redundancies. For
example, one get() method candidate between Fragments
III and IV may be analyzed once for one equals()
method candidate between Fragments II and III and then
again for another candidate between Fragments II and III.
Instead, JDD analyzes all possible gadgets between sources
and sinks once and forms them into gadget fragments. Then,
JDD adopts a bottom-up search from the sink to the source,
which chains all the fragments into a chain. Specifically,
JDD only needs to analyze (12 + 2751 + 148) = 2,911
program execution paths and at most (2911 × 2911 - 2751
× 2751 - 148 ×148 - 12 × 12) × 2 + 2751 = 1,770,495
times fragment linking check for our motivating example in
Figure 1, which is only 0.01% of the top-down approach,
significantly reducing the static gadget search space.

Challenge II: Parallel and Embedded Injection Object
Structure. The second challenge is that the payload, i.e.,
the injection object, may have complex structures, such

as embedded or parallel objects. Figure 3 (a) shows the
injection object structure for our motivating example in
Figure 1. UIDfaults and ConcurrentHashMap are
two keys under NodeImpl objects in a correct payload.
However, prior works, such as ODDFuzz, only consider the
class hierarchy inferred from the gadget chain and therefore
they will generate a wrong object structure as shown in
Figure 3 (b) because the get() method of UIDfaults
is invoked after ConcurrentHashMap.
Our Solution: Dataflow-aided Construction of Injection
Object Construction Diagram (IOCD). Our key obser-
vation is that different injection objects, e.g., their fields,
are connected via dataflows. Specifically, two dotted lines
in different colors of Figure 1 show such two dataflows.
key (Line 8) flows to this.key (Line 17) and then
this.table[index].key (Line 27); then, p.key
(Line 8) flows to ((NodeImpl) obj).key (Line 17)
and then (Map<?,?>)o (Line 27). Therefore, JDD infers
that there are two NodeImpl objects and UIDfaults
is under the key of one NodeImpl object instead of
the table of ConcurrentHashMap. More specifically,
JDD constructs an IOCD like Figure 3 (a) following such
dataflows, which can be used for follow-up fuzzing.

3. Design

In this section, we describe the system architecture of
JDD and then the detailed steps.

3.1. System Architecture

We show an overview of JDD ’s architecture with two
main stages in Figure 4. In Stage I, JDD detects possible
gadget chains and then in Stage II, JDD generates injection
objects to exploit the detected gadget chains for validation.
Specifically, there are five steps. In Step 1, JDD identifies
deserialization entry points. Then, in Step 2, JDD starts from
entry points to identify gadget fragments with static analysis.
After that, JDD links gadget fragments to construct gadget
chains using a bottom-up approach, which finishes Stage 1
with possible gadget chains. Next, in Step 4, JDD constructs
Injection Object Construction Diagram (IOCD) based on the
injection object related constraints. Lasty, in Step 5, JDD
utilizes IOCD-enhanced directional Fuzzing to verify gadget
chains’ exploitability.

We now describe how each step works for our mo-
tivating example. Here is Stage I. First, in Step 1, JDD
starts with identifying the entry points in sofa-rpc [6],
and then use them as the sources to begin our static taint
analysis. Second, in Step 2, JDD traverses the control- and
data-flow graph of the target program starting from each
source (i.e., entry points in the beginning) until a dynamic
method invocation and considers this as a fragment. Then,
JDD treats the implementation of the dynamic method as
the new source until the next dynamic method invocation
and considers code in between as a new fragment. During
this process, JDD identifies some gadget fragments con-
taining a sink, e.g., MethodUtil.invoke() in Gadget

Fragment V. Then, in Step 3, JDD uses this fragment to
find the gadget fragment IV that has a dynamic method
invocation LazyValue.createValue() and the object
value that is used to invoke the createValue() method
based on previous taint analysis result. Next, JDD uses the
Gadget Fragment IV as the new start to find the Gadget
Fragment III and repeats this procedure until it reaches a
source point, resulting in a gadget chain. After chaining the
gadget fragments I-V, to complete the gadget chain, JDD
will independently gather potential fragments that could
execute remote attacker-controlled code, for example, the
gadget fragments VI which contains a JNDI capability. Since
the gadget fragment V has a reflection capability and the
parameter is controlled by the attacker, JDD would further
connect it to the gadget fragment VI.

We then describe Stage II. In Step 4, JDD extracts the
constraints for gadget chain chaining, which include (1)
structured constraints (i.e. the class hierarchy relationships
between object and field instances), (2) field dependency
constraints (e.g., the hash code of n1.key and n2.key should
be the same for our example), and (3) conditional branches.
Note that JDD labels constraints shared by different execu-
tion paths as dominator, meaning that they are required by
all the execution paths. After extracting these constraints,
JDD uses a novel data structure, termed Injection Object
Construction Diagram (IOCD) to model dataflow depen-
dencies between object fields and guide dynamic fuzzing.
Lastly, in Step 5, JDD instruments the collected constraints
of the target program and uses the number of covered domi-
nator constraints to guide the fuzzing for generating an injec-
tion object that can exploit this gadget chain. Specifically,
JDD first initializes an instance object based on the class
hierarchy in the IOCD graph. Then, for assigning adequate
value for each field in the object, JDD utilizes a constraint
solver to solve the dominator constraints. Then, JDD uses
this object as the seed to drive the directional fuzzing
and uses the number of covered dominator constraints to
evaluate its energy.

3.2. Step 1: Identifying Deserialization Entry
Points

The first step of our analysis is to identify the entry
points of deserialization in a given Java program. JDD ex-
tract such entry points from both the deserialization methods
of Java language and popular Java deserialization protocols
as shown in Table 1. There are two categories of entry meth-
ods: (i) deserialization methods provided by Java language,
e.g., readObjectNoData(), readExternal() and
readObject(), and (ii) interfaces provided by popular
Java deserialization protocols, e.g., Map.put() for Hes-
sian protocol. Note that since many of these entry points
are defined as interfaces, JDD further identifies and analyzes
their overridden or implementation methods as the entry
points.

Table 1: Popular Deserialization Protocols

Protocol Entry Points Supported
Dynamic Feature

Unserializable
Class Support

JDK

readObject()
readObjectNoData()

readResolve()
readExternal()

Polymorphism
Reflection

Proxy
NO

T3/IIOP

readObject()
readObjectNoData()

readResolve()
readExternal()

Polymorphism
Reflection

Proxy
NO

Hessian Map.put()
toString()

Polymorphism
Reflection YES

Hessian-lite [7] Map.put() Polymorphism
Reflection NO

Hessian-sofa [8] Map.put()
toString()

Polymorphism
Reflection YES

XStream readObject()
Map.put()

Polymorphism
YESReflection

Proxy

3.3. Step 2: Identifying Gadget Fragments with
Static Taint Analysis

In this step, JDD detects useful gadget fragments that
could be chained together to construct gadget chains from
entry points using static analysis. There are two substeps: (i)
gadget fragment formation and (ii) data-flow analysis within
a fragment. First, JDD starts from each source, i.e., en-
try points or implementations of previous dynamic method
invocation, until the next dynamic method invocation and
treats code in between as a fragment. Second, JDD also
performs a data-flow analysis to record taint propagation
from the parameters of the first method in the fragment.
Specifically, we design a fragment-based summary that,
for each gadget fragment, records the pollution behavior
between its first method and the last method parameters and
maintains a sink-reachable condition record. Our purpose of
converting inter-procedure analysis of methods into jumps
between gadget fragments is to flexibly simulate dynamic
method invocations and reduce the computational complex-
ity of inter-procedure searches.

Next, we first describe the definitions of gadget frag-
ments and then a classification of gadget fragments.

Gadget Fragment Definition. A gadget fragment is a
straight-line gadget sequence (i.e., methods could be exe-
cuted in Java deserialization), and its execution starts from
the fragment’s head to its endpoint. For each fragment, its
endpoint commonly is a security-sensitive method or a dy-
namic method invocation that points to another fragment, for
example, Object.equals() could connect to almost all
the method “equals()” implemented by any class. During de-
serialization, this kind of dynamic method invocation indeed
introduces many possibilities of the program’s execution
direction, thus they work like the jump/goto instructions.

In detail, the methods in a gadget fragment have:
● Head, which is the entry method of this fragment

and there exist some dynamic method invocations that
could jump to this method.

● End, which is the exit method of this fragment and
commonly a dynamic method invocation or security-
sensitive method.

Stage I: Gadget Chain Detection Stage II: Exploitable Injection Object Generation

Reusable
Fragments
Extraction

Gadget
Fragments
Searching

Gadget
Fragments

Linking

Constrains
Collection

Injection Object
Generation & Mutation

Fuzzing-based
Exploitability Validation

Injection

Object

New Exploitable Injection Object

Dominator

Constraints-based

Feedback

IOCD
Generation

Fragment
Data Set

Gadget
Chains

IOCD

Entry
Points

Identification

1 Identify Entries1 Identify Entries Identify Fragments2 Link Fragments3 Generate IOCD4 Validate Exploitability5

ExploitsExploits

Target
Application

Target
Application

Figure 4: The Overall Architecture of JDD with Two Stages.

● Other gadgets, which are non-dynamic methods and
executed in sequence during deserialization to connect
the head and end.

Dynamic Method Invocation Types for Gadget Frag-
ments. There are the following three types of dynamic
method invocations in gadget fragments:

● Polymorphic: JDD recognizes the inheritance hierarchy
of the target program’s classes and identifies the over-
ridden methods. Then, when a method in a parent class
is invoked, JDD connects it to the corresponding over-
ridden methods implemented by its child classes. For
example, considering a class B that overrides method
”m” of class C, any fragment, where End is C.m(),
could jump to other fragments, where Head is B.m().

● Dynamic Proxy [9]: Java language supports objects
under type interface, Object and other generic
types to be implemented as a dynamic proxy instance,
and when the instance invokes any method, it would
be redirected to a specific invocation handler, i.e., the
invoke() method implemented in this proxy. Such
handlers commonly deploy method routes based on the
properties (e.g. method name) of the trigger method.
Thus, for each handler, JDD conducts a path-sensitive
analysis to understand its method routs for ensuring
the trigger method will not connect to a wrong ex-
ecution path in invocation handlers. In practice, JDD
first identifies gadget fragments in all execution paths
inside an invocation handler and then labels the gadget
fragments with corresponding method property require-
ments based on their execution paths.

● Reflection [10]: Unlike other dynamic features, Java
reflection could invoke almost all methods imple-
mented in the program based on its parameters. JDD
first checks if the reflection’s parameters are attacker-
controlled (so that JOI can lead to RCE) and then
limits it to connect fragments that contain code ex-
ecution capabilities. Note that JDD allows reflection
to connect any gadget in its successor fragments but
prefers two kinds of gadgets, based on the analysis of
existing gadget chains: (1) methods with no parameters,
especially getter or is methods, and implementation of
interface methods, and (2) methods with one parameter
of Boolean or String type.

3.4. Step 3: Linking Gadget Fragments to Con-
struct Gadget Chains using a Bottom-up Approach

Upon completing the search of gadget fragments, JDD
performs a bottom-up search to chain fragments together,
thereby constructing all potential gadget chains as shown in
Algorithm 1. First, JDD obtains three types of fragments: (1)
Source Fragments, whose head is a source, e.g., the Gadget
Fragment I in Figure 1; (2) Free-State Fragments, which
records method exection sequence between two dynamic
method invocations, e.g., the Gadget Fragments II-IV in
Figure 1; (3) Sink Fragments, whose end is a sink, e.g.,
Fragments V, VI in Figure 1. Then, JDD constructs potential
gadget chains by chaining Sink Fragments with Free-State
Fragments and then Source Fragments with the following
steps. Note that JDD needs to consider taint requirements
and method invocation conditions corresponding to different
dynamic features. For example, sink fragments commonly
require specific parameters should be controlled by attack-
ers. Then, when finding precursors for Sink Fragments,
JDD would iteratively check if the corresponding parameters
could be tainted.

We now describe the details in Algorithm 1. First, JDD
connects the Free-State Fragments that can transition to Sink
Fragments. As shown in Algorithm 1, during each round
(Line 2–19), JDD traverses each fragment fragfs in Free-
State Fragments. Based on the summary of fragfs, JDD
checks whether the linking conditions to sink fragments are
satisfied. If so, fragfs is added to newSinkFragments as
the Sink Fragment (Line 8–9) for the next iteration, while
keeping track of the taint requirements to be satisfied for
the connection (merging them if they are identical to the
already recorded taint requirements) (Line 11). Since each
iteration can pick out all fragments that can potentially
connect to the current sink fragments, the iteration process
terminates if there are no new Sink Fragments, i.e., when
newSinkFragments is empty (Line 15–16) or reaching the
maximum number of search attempts. Next, the Source
Fragments are traversed, and the same approach is employed
to detect connectable successor fragments, thereby obtaining
all potential gadget chains (Line 20–26).

Lastly, assuming there are n′ distinct dynamic method
invocations, let us explain why the upper limit for the
maximum number of iterations is n′. If the number of

Algorithm 1 Gadget Fragments Linking
Input: Sink Fragments Dataset Dsk

Input: Source Fragments Dataset Dsrc

Input: Free-state Fragments Dataset Dfs

Output: Gadget Chain DataSet S
1: // n′ is the number of distinct dynamic method invocations in context.
2: for i← 1 to n′ do
3: newSinkFragments← ∅
4: for fragfs in Dfs do
5: for fragsucc in Dsk .getFragStartWith(fragfs.end) do
6: // Checking whether the taint requirements are satisfied
7: if isLinkable(fragfs, fragsucc) then
8: newSinkFragments← newSinkFragments ∪ fragfs

9: Dsk .add(fragfs)
10: // link fragfs with fragsucc and merge taint requirements
11: updateTaintRequirements(fragfs, fragsucc)
12: end if
13: end for
14: end for
15: if newSinkFragments == ∅ then
16: break
17: end if
18: Dsk ← newSinkFragments
19: end for
20: for fragsrc in Dsrc do
21: for fragsucc in Dsk .getFragStartWith(fragsrc.end) do
22: if isLinkable(fragsrc, fragsucc) then
23: S ← S ∪ link(fragsrc, fragsucc)
24: end if
25: end for
26: end for
27: return S

iterations exceeds n′, the longest fragments will necessarily
contain candidates with two fragments whose ends are the
same dynamic method. Since the attacker has the ability
to invoke any candidate with the same dynamic method,
the attacker can directly supply the class implementation in
the latter call to the first to reduce the total length, so the
path between two identical dynamic method invocations is
redundant.
Time Complexity. JDD reduces the static search time from
O(eMn

) (i.e., those of state of the art, e.g., ODDFuzz [2])
to O(M2n3

+enM) according to Theorems 1 and 2 below.

Theorem 1. The search complexity of Algorithm 1 is
O(n3M2

+enM), where n is the number of dynamic method
invocations, M is the average number of candidates for
these invocations, and e is the number of entry points.

Proof. See Appendix A.1.

Theorem 2. The search complexity of ODDFuzz [2] is
O(eMn

), where all notations follow Theorem 1.

Proof. See Appendix A.2.

3.5. Step 4: Constructing IOCD based on Injection
Object related Constraints

There are two substeps here: (i) constraint extraction and
(ii) IOCD generation. First, JDD follows the call sequence
of this gadget chain to extract the execution paths, and then
uncovers three types of constraints that affect inputs:
● Class hierarchy relationships between object and field

instances. After JDD performs bottom-up fragment

linking, it will perform top-down class hierarchy infer-
ence according to the fragment connection sequence.
Specifically, for each gadget fragment, JDD first uses
dataflow analysis to determine which of its fields is
linked to the next fragment, and then uses the header
method of the subsequent fragment to determine the
actual type of the field. For example, in the Gadget
Fragment I in Figure 1, JDD finds the HashMap object
has a field table (Line 3) and table should store
two objects (i.e. n1, n2) based on the dataflow to Line
8. Another important problem here is to identify the
exact class type of these fields, considering many of
them are defined as generic type or Object, e.g. the
key in Line 8, the field key of n1 and n2 (i.e. this.key,
obj.key) in Line 17, etc. To solve this problem, JDD
continues the dataflow tracing and finds that the key
connects Fragment I with II, and the header method
of Fragment II is NodeImpl.equals. Thus, key
should be a NodeImpl instance. Similarly, this.key
and obj.key connect Fragment II with III and Fragment
III with IV, respectively. Therefore, JDD infers that
the field key of two NodeImpl instances, n1, n2 are
ConcurrentHashMap and UIDefaults instances,
as indicated by the header methods of successor Frag-
ment III and IV. Based on the approach, JDD ultimately
deduces the correct class hierarchy of the injection
object as illustrated in Figure 3 (a).

● Conditional branches related to fields, which exist in
the execution paths of the gadget chain, and note that
JDD labels constraints shared by different execution
paths as dominator meaning that they are required
by all the execution paths. During the process of
dataflow tracing, JDD concurrently collects conditional
branch constraints related to fields by identifying if the
variables checked in the constraints could be tainted
by fields. Moreover, to ensure the program execution
would not trigger an exception, these exist several
implicit constraints should be satisfied. For example, a
field could not be null when it invokes some methods.
Another example is forced type casting, which requires
the field should be an instance of specific type.

● Field dependency constraints, which encompass condi-
tional constraints among fields, i.e. the constraints i-iii
as shown in Figure 3. Note that sink points commonly
require specific fields be controlled by the attacker
to inject payloads. JDD would label these fields to
check if they can be tainted by input. To find field
dependency constraints, in general, JDD filters those
conditional constraints that affect multiple fields and
then labels these fields with related constraints as field
dependencies. Furthermore, JDD also considers specific
requirements for Java reflection. For example, the three
fields className, methodName, and args used in
Java reflection should ensure the target class contains
the target method.

Second, after extracting these constraints, JDD uses
a novel data structure, termed Injection Object Construc-

tion Diagram (IOCD) to model the object structure and
dependencies of fields. There are two sub-steps. (i) JDD
treats the instantiated objects contained in a gadget chain
as ClassNodes. Each ClassNode stores the following infor-
mation: the class name and the related FieldNodes, which
represent the fields that may be utilized during the deserial-
ization. The FieldNode, on the other hand, stores the relevant
constraint information for these fields and marks whether
these constraints are statically determinable as dominator.
(ii) Based on the structural constraints, the ClassNodes are
interconnected through FieldNodes using directed edges,
thereby indicating the hierarchical relationships between
instantiated objects. For example, in the motivation example,
JDD will construct ClassNodes representing the instances of
NodeImpl, UIDfaults, and ConcurrentHashMap.
Then, following the structural constraints, JDD establishes
edges from the UIDfaults and ConcurrentHashMap
ClassNodes to the same FieldNode (i.e. key) of the
NodeImpl ClassNode, which implies the existence of
at least two NodeImpl instances. Thus, JDD will in-
clude an additional NodeImpl ClassNode to signify the
existence of two NodeImpl instances, where the field
key of each instance is assigned to UIDfaults and
ConcurrentHashMap instances, respectively, as illus-
trated in Figure 3 (a).

3.6. Step 5: IOCD-enhanced Directional Fuzzing

After modeling the structure of injection object and the
constraints should be satisfied, JDD further utilizes IOCD to
enhance our directional fuzzing. In general, given a gadget
chain, the fuzzing goal is to generate an injection object
that could reach and exploit its sink point. Specifically,
JDD first generates initial seeds based on the IOCD and
then uses them to drive the fuzzing. In the exploration
phase of directional fuzzing, JDD utilizes the number of
covered dominator constraints to evaluate the seed’s energy
and guide the fuzzer to cover more dominator constraints
until reach the sink point. In the exploitation phase of
directional fuzzing, JDD only mutates the fields related to
the sink point. During each field’s mutation, JDD adjusts
other related fields to fix the cross-field dependencies based
on IOCD.

IOCD based Seed Generation. Considering the cross-field
dependencies and nested object structure, JDD adopts the
IOCD-guided fuzzer to generate objects with the correct
class hierarchy while taking into account the constraints
among fields. Specifically, JDD generates parameterless in-
stances based on ClassNodes from the IOCD and estab-
lishes the class hierarchy of these instances according to
directed edges, as illustrated in Figure 3. Subsequently,
starting from the root ClassNode node, a Breadth-First
traversal is performed on each FieldNode. JDD will extract
dominator constraints of these FieldNodes, and invoke the
constraint solver to generate appropriate values, which are
then assigned to the corresponding fields. In situations where
bidirectional edges exist between FieldNodes, indicating the

existence of constraint dependencies between two fields,
JDD extracts dominator condition constraints from the rel-
evant FieldNodes. These constraints are then solved using a
constraint solver to find values that simultaneously satisfy
these constraints.

Dependency-aware Seed Mutation. IOCD significantly
enhances the efficiency of fuzzing from the following three
aspects: (1) Selecting appropriate fields for mutation; (2)
Reducing the uncertain mutation space through constraint
information; (3) Considering fields dependencies and nested
object structure. That is when mutating a field, the constraint
relationships between this field and other related fields or
upper-level instance objects containing this field are consid-
ered. Detailed strategies can be found in Table 2.

(i) Mutation based on condition constraints. Firstly,
based on the feedback information obtained from seed ex-
ecution, JDD matches suitable condition constraints from
IOCD that are derived from the specified program execu-
tion flow of gadget chains. And these condition constraints
are utilized to selectively guide the structural mutation of
injection objects. In order to record the selected condition
constraint strategies, JDD defines a unique identifier and
assigns a 2-bit flag to indicate the mutate strategy for each
condition constraint. The first bit is used to indicate whether
the constraint is used (0: not selected, 1: selected), and
the second bit signifies whether the constraint is satisfied
(true or false). With this identifier, JDD prefers to select
unused strategies to cover more kinds of combinations of
condition constraints. The following explains how to gener-
ate condition constraint branch strategies based on feedback
information:

(1) If JDD resolves the ClassCastException or
NullPointerException exception information,
relevant fields causing the exception can be matched
from IOCD based on error location information (class
name, code line number), and JDD will require these
fields to satisfy specific constraints, i.e. field ! = null,
field instanceof X.class.

(2) Extract all constraints between the current reached and
the next dominator condition constraints, and select a
mutation strategy based on each constraint’s identifier.

(3) If there are no non-dominator condition constraints
between the current and the next dominator condition
constraints, random mutation strategies are selected for
the current dominator and the preceding conditional
constraints, note that dominator condition constraints
do not alter the second bit flag.

(4) If the program has reached the sinks but has not
triggered the expected malicious instructions, JDD first
checks whether there are multiple ways to construct
malicious data (i.e., constructed from different fields).
If such variations exist, JDD uses the information
recorded in IOCD to call different fields to construct
malicious data. Otherwise, randomly changing the con-
dition constraints strategies.

(5) If all combinations of strategies for condition con-
straints have been used, a 50% probability is assigned

Table 2: Mutation Strategy.

Property(prop)
Type

Constraint(cnst)
Type Example Mutation Strategy

Class

Class
Method

String

if(prop==cnst)
if(prop.getDeclaredMethods().contains(cnst))
if(prop.name==cnst)
if(prop.superClassName==cnst)
if(prop.interfaceName==cnst)

set prop to cnst
set prop to a Class instance that contains cnst Method
set prop to a Class instance of cnst
set prop to a Sub-Class instance of cnst
set prop to a Implementation Class instance of cnst

Method
Class
String
int

if(prop.declaringClass==cnst)
if(prop.name.startWith(cnst))
if(prop.parameterNums==0)

set prop to a Method instance of cnst Class
set prop to a Method instance with proper name
set prop to a Method instance with proper args numbers

Object Class if(prop instanceof cnst) correct prop to an instance of cnst

Collection/Map
int
Class
Object

if(prop.size ≥ cnst)
if(prop.item instanceof cnst)
if(prop.contains(cnst))

add/remove elements
correct the element type
add/remove elements

to randomly select fields from IOCD that have not
been marked with existing condition constraints for
mutation.

(6) When the program reaches sinks and captures mali-
cious instructions being written, that means the injec-
tion object is exploitable, and the corresponding gadget
chain is classified as exploitable. If the time threshold is
exceeded, or based on the specific type of information
mentioned above, it can be directly determined as
non-exploitable, the current test is terminated, and the
next IOCD corresponding to the next gadget chain is
invoked to start a new round of testing.

(ii) Mutation based on object structure constraints. After
obtaining the condition constraints, JDD invokes the con-
straint solver to adjust the object’s structure. Nevertheless,
as demonstrated by IOCD, there exist intricate constraint
relationships between fields. Modifying one of these fields
can affect not only the corresponding ClassNode but also
its fields and the fields associated with other ClassNodes.
Consequently, a simplistic adjustment of an individual field
based solely on condition constraints may compromise the
structural validity of the object.

To address this issue, we propose our cascading mutation
strategy. When JDD adjust a field, it cascadingly exam-
ines whether other fields affected by this field also require
adjustments. If necessary, it adjusts them simultaneously
to maintain the structural validity of the injection object.
Specifically, the mutation strategy can be categorized into
two levels: single-field and cross-field:
● Single-Field level. Mutating an individual field, which

does not have any constraints with other fields. Uti-
lizing constraint solvers to resolve relevant conditional
constraints for adjusting the assignment of the field.

● Cross-Field level. When mutating a field with mutual
constraints among other fields, ensure that relevant
information in associated fields is preserved, and main-
tain the validity of the object structure.

(iii) Mutation based on field dependency constraints.
Based on the insight of making minimal modifications to
the affected fields to avoid disrupting valid information after
mutation, and leveraging knowledge of class hierarchies,
JDD has implemented the following two cross-field level

mutators, i.e. nested field value reuse, sequential fixed ad-
justments.
● Nested field value reuse. After mutating a specific field

(i.e., mutatedField), recursively check and adjust its
associated fields. Specifically, start by adjusting the
fields of mutatedField based on the relevant domina-
tor constraints on the IOCD. Then, detect the fields
affected by the current constraint strategy, and reuse
instances shared between the post-mutation and pre-
mutation field instances.

● Sequential fixed adjustments. If JDD intends to mutate
a specific field (i.e., field1), and there exists a constraint
associated with multiple fields (i.e., field2, field3), JDD
extracts the constraints relevant to these three fields
separately. It then calls a constraint solver to find
values for field1 that satisfy all related constraints while
minimizing field2 and field3 adjustments. Specifically,
the constraint solver first fixes field2 and field3 and then
determines an appropriate value for field1. If it is unable
to find a solution that satisfies the other constraints
on field1, it progressively adjusts field2 and field3 and
continues the solving process.

4. Implementation

We implemented JDD with over 25,000 lines of new Java
code (excluding any third-party libraries). We will open-
source JDD in the camera-ready version of the paper. The
static taint analysis module of JDD is implemented based
on Soot [11] and FlowDroid [12], a flow-sensitive, object-
sensitive, and context-sensitive data-flow analysis tool. To
identify the gadget fragments in dynamic proxies, we im-
plemented a path-sensitive analysis inner their method invo-
cation handlers. Moreover, we also conducted a lightweight
pointer-to analysis to reduce the jump candidates in iden-
tifying gadget fragments. The dynamic fuzzing module of
JDD is implemented based on JQF [13], [14]. We first use
ASM [15] to instrument the target Java program for collect-
ing the needed runtime context to guide our fuzzing engine.
Then, we customized JQF to build a directional fuzzing
framework for the generation of exploitable injection ob-
jects. To avoid JDD stuck in a hard-to-detect chain, we set

the time limitation for identifying each gadget fragment in
the static analysis as 30 seconds and each round of fuzzing
as 120 seconds, empirically.

5. Evaluation

In this section, we evaluate the performance of JDD on
real-world Java programs and compare it with state-of-the-
art tools via addressing four main research questions below:
● RQ1: How does JDD compare with state-of-the-art tools

in detecting gadget chains?
● RQ2: How do the core modules of JDD contribute to its

performance?
● RQ3: How many zero-day JOI-based RCE vulnerabilities

can JDD detect?
● RQ4: How does JDD perform in analyzing real-world Java

applications?

5.1. RQ1: Comparison with State of the Art

In this section, we compare JDD with state-of-the-art
approaches in detecting (un)known gadget chains using
two benchmarks. Specifically, we choose three state-of-
the-art tools, namely GadgetInspector [3], SeHybrid [4],
ODDFuzz [2]. To reduce randomness, we conducted five
repetitions of each experiment and reported the average
statistical results. All experiments were conducted on a
Linux workstation with an Intel(R) Xeon(R) Gold 5218 CPU
@ 2.30GHz and 128 GB of RAM, running Ubuntu 18.04
LTS.

Benchmarks. We conducted this experiment using a dataset
of 61 well-known gadget chains that can be exploited to con-
duct JOI attacks. Among these gadget chains, 34 come from
the well-known ysoserial repository [5], which has been
widely used in prior work [2]–[4]. Additionally, we collected
26 other gadget chains by analyzing 32 recently disclosed
JOI vulnerabilties. These vulnerabilities could cover popular
deserialization protocols that are not included in ysoserial,
for example, Hessian [16] and T3/IIOP [17] [18]. The new
benchmark will be available together with our open-source
repository.

Overall Results. Table 3 summarizes the overall results
of the experiment. In this table, we present the quantities
of gadget chains identified through static analysis (Iden-
tified chains), the number of gadget chains confirmed as
exploitable (confirmed chains), and the number of new-
discovered gadget chains beyond the scope of the known
dataset (unknown chains). Note that, since SerHybrid, ODD-
Fuzz, and JDD have dynamic validation modules, their
confirmed chains come from the verified results of their
dynamic analysis. For GadgetInspector, a tool that is solely
reliant on static analysis, we manually verify the reported
results to determine the number of confirmed chains.

Overall, for the capability of detecting known gadget
chains, the effectiveness of JDD is higher than existing tools.
Particularly, JDD covers 27 known and 91 (including two

variants of known chains) unique unknown chains in ysose-
rial repository, which is much larger than GadgetInspector
(three known + zero unknown), SerHybrid (two known +
zero unknown), and ODDFuzz (16 known + zero unknown).

Note that JDD supports the identification and reuse of
gadget fragments in known exploits. Since existing tools
do not rely on known exploits, Table 3 does not include
known exploits as input for the reason of fairness. We now
describe the improvement if JDD is further improved by
introducing the gadget fragments of known exploits. Take
C3P0 as an example. If JDD is equipped with the known
chain of C3P0, JDD can detect not only the gadget chains
in Table 3 but also another five unknown gadget chains.
Additionally, in the expanded dataset of 26 gadget chains
extracted from recently disclosed JOI vulnerabilities, JDD
also achieves a better result by detecting 24 known and 140
unknown chains.

False Positive Rates. The existing tools for static detection
of gadget chains commonly exhibit a high false positive
rate. For example, GadgetInspector reaches a false positive
rate as high as 97.6%. However, SerHbrid, ODDFuzz, and
JDD reduce the false positive rate of final results to 0% by
introducing dynamic verification.

False Negative Rates. As shown in Table 3, JDD missed
seven known gadget chains in ysoserial, resulting in a false
negative rate of 20.6% (7/34). GadgetInspector and ODD-
Fuzz have false negative rates of 91.2% (31/34) and 52.9%
(18/34) respectively. SerHybrid could not support the test
of all Java apps in ysoserial. On the dataset they tested,
SerHybrid has a false negative rate of 83.3% (2/12). JDD
demonstrated significantly lower rates of false negatives.

We then break down the seven known gadget chains
that missed by JDD. First, four of them require specific do-
main knowledge to identify some of their gadget fragments.
Specifically, JDD lacks domain knowledge of security-
sensitive methods in Jython app, making it unable to
detect the chain. Additionally, generating valid serialization
data for the case in C3P0 requires rewriting a specific
method. Moreover, JDD lacks the knowledge about how the
return value of a dynamic proxy’s invocation handler affects
program execution, thus failing to detect two chains in
Spring (i.e. Spring1,2). As aforementioned, we could
use known exploits to further enhance JDD by identifying
the gadget fragments used in them. For instance, JDD can
automatically extract reusable fragments based on the ex-
ploit of Spring1 and further identify Spring2. Second,
the rest three gadget chains contain many fields with a
generic type, e.g., an Object type, leading to a time-out.

Benefits in Supporting Java Dynamic Features. Bene-
fiting from the bottom-up fragment search strategy, JDD
has the capacity to support more Java dynamic features
to expand its detection capabilities, including Polymorphic,
dynamic proxy and reflection, in which the last two are
commonly unsupported by existing tools. As a result, JDD
could detect more gadget chains related to these dynamic
features than existing tools.

Table 3: Gadget chain detection comparison among GadgetInspector, SerHybrid, ODDFuzz, and JDD (Our Approach). The
number in parentheses indicates the detected known chains in the benchmark.

Application Known
Chains

GadgetInspector SerHybrid ODDFuzz JDD

Identified
Chains

Confirmed
Chains

Identified
Chains

Confirmed
Chains

Identified
Chains

Confirmed
Chains

Identified
Chains

Confirmed
Chains

Unkown
Chains

Ysoserial Benchmark

AspectJWeaver 1 8 0 N/A N/A 9 0
CommonsBeantuils 1 4 0 0 0 8 1 108† 25 20
CommonsCollections 5 4 1 1 1 97 3
BeanShell 1 2 0 1 0 8 0 587 5 4
C3P0 1 2 0 N/A N/A 13 1 15 0 0
Click 1 4 0 N/A N/A 8 1 6 1 0
Clojure 1 12 1 N/A N/A 184 1 6 3 2
CommonsCollections4 2 4 0 1 1 112 2 230 26 24
Groovy 1 4 0 3 0 13 0 413 5 4
JavassistWeld 1 2 0 N/A N/A 8 0 6 1 0
JBossInterceptors 1 2 0 N/A N/A 8 0 7 1 0
JDK 4 5 0 N/A N/A 9 1 16 8 5
JSON 1 7 0 N/A N/A 9 0 147 6 5
Jython 1 42 1 N/A N/A 32 0 0 0 0
MozillaRhino 2 3 0 N/A N/A 7 2 4 2 0
Hibernate 2 3 0 3 0 8 2 14 5 4
Myfaces 2 2 0 N/A N/A 7 0 52 3 2
ROME 1 2 0 0 0 5 1 48 9 8
Spring 2 2 0 N/A N/A 10 0 5 0 0
Vaadin 1 6 0 N/A N/A 13 1 109 14 13
FileUpload 1 3 0 N/A N/A 8 0 1 1 0
Wicket 1 3 0 N/A N/A 7 0 1 1 0

Total 34 126 3 (3) 9 2 (2) 583 16 (16) 1362 116 (27) 91

Recently Disclosed Vulnerabilities

Weblogic 21 53 0 N/A N/A N/A N/A 642 126 107
MarshalSec(Hessian)‡ 5 2 0 N/A N/A N/A N/A 119 38 33

Total 26 55 0 (0) - - - - 761 164 (24) 140
† Due to the shared use of the CommonsCollections dependency in detecting Gadget Chains in AspectJWeaver and CommonsBeanutils, we simultaneously

conducted analysis on these three packages.
‡ MarshalSec is a deserialization vulnerability exploitation tool, and we include its Hessian protocol-based Exploits as part of our evaluation dataset.

First, due to its support for the dynamic proxy feature,
in our benchmark data set (i.e., the ysosearial repository),
JDD can detect additional 16 gadget chains (3 known and
13 unknown chains) compared to existing tools.

Second, with the support of Java reflection, JDD can
detect more variants of gadget chains. An example is
Hibernate, which contains two variants of one unique
chain in our benchmark. The difference of these two vari-
ants is in the last fragments, i.e, their targets of Java re-
flection. JDD successfully detects three unique chains in
Hibernate and additionally identifies two fragments that
could be linked as the targets of Java reflection to conduct
code execution attacks. Another example is Vaadin. JDD
first detects 14 gadget chains in it, which all end with Java
reflection and JDD additionally identifies three fragments
that could be linked to conduct code execution attacks.

5.2. RQ2: How do the core modules of JDD con-
tribute to its performance?

We conducted two ablation studies on the task of gadget
chain detection and exploitability verification by comparing
JDD with the following variants to evaluate the effectiveness
of JDD’s different modules:

● JDD-top-down. We replace JDD’s bottom-up strategy
with top-down strategy proposed by previous tools, i.e.
a Depth-first-search (DFS) starting from a source to a
sink.

● JDD-NoIOCD. We remove JDD’s IOCD guidance in
the fuzzing module. Instead, JDD-NoIOCD employs an
approach like ODDFuzz to infer the class hierarchy
and randomly mutates fields based on a pre-defined
dictionary.

● JDD-NoClassHierarchy: We replace JDD’s class hier-
archy inference approach with the approach proposed
by previous tools, e.g., ODDFuzz.

● sys-NoConFd: We remove JDD’s condition-constraints-
aware and field-dependency-constraints-aware muta-
tion. Because these two types of constraints are closely
related, we remove them together. Additionally, JDD-
NoConFd mutates fields randomly based on a pre-
defined dictionary, similar to ODDFuzz.

First, we verify whether the bottom-up strategy is more
effective than the top-down strategy, by comparing how
many exploitable gadget chains can be found by these
two methods. JDD completed the analysis in seven min-
utes and 58 seconds with no timeouts and detected 116

Table 4: The Detected Chains and Performance Evaluation Results of JDD on Real-World Java Apps.

Application
Basic Information Detected Chains Performance

Stars Class
Number

Method
Number

Identified
Chains

Confirmed
Chains

Vendor
Reply

Search and Link
Gadget Chains

Construct
IOCD

Dynamic Verify
(Detected Chains)

Apache Dubbo 39K 88.5K 936.4K 31 7 CVE Assigned 8min29s 53s 36min15s (31)
Motan 6K 53.7K 454.7K 695 93 CVE Assigned 15min25s 47min13s 6h (358)
Solon 1.5K 280.9K 2,797.9K 117 35 CVE Assigned 39min56s 29min16s 2h35min59s (117)
XXL-Job 24.5k 52.5K 411.1K 843 110 CVE Assigning 7min24s 52min8s 6h (363)
Sofa-rpc 4.8K 94.9K 883.9K 205 43 CVE Assigned 37min15s 8min6s 3h43min3s (205)
Apache Tapestry 0.1K 28.8K 241.1K 16 5 CVE Assigning 54s 9s 19min38s (16)

exploitable gadget chains. In comparison, JDD-top-down
took about 17 hours and only detected 15 gadget chains.
After further analysis, we found that the analysis of 900
sources in JDD-top-down timed out, thus missing 101 ex-
ploitable gadget chains. For example, in the analysis of
CommonsCollections4 app, JDD-top-down failed to
complete the analysis of PriorityQueue.readObject
within the time threshold (e.g. five minutes). As a result,
JDD-top-down missed two exploitable chains.

Second, we evaluate the effectiveness of three types of
guidance information in dynamic verification - class hier-
archy constraints, conditional constraints and field depen-
dency constraints, as well as the effectiveness of dataflow-
based class hierarchy inference approach, by comparing
the detection capabilities of JDD with JDD-NoIOCD, JDD-
NoClassHierarchy and JDD-NoConFd on exploitable gadget
chains.

Experimental results show that JDD performs best, with
a total of 116 exploitable gadget chains detected, far ex-
ceeding JDD-NoIOCD (31), JDD-NoClassHierarchy (41)
and JDD-NoConFd (38). The experimental results prove
that to generate exploitable injection objects for gadget
chains efficiently, the three types of constraint information in
IOCD (described in Section 3.5) are essential, especially for
complex chains. For example, for the chain in our motivating
example, JDD-NoClassHierarchy and JDD-NoIOCD will
infer the wrong class hierarchy as shown in Figure 3 (b),
causing subsequent mutations to be meaningless. Although
JDD-NoConFd can generate seeds with the correct class
hierarchy, it is challenging to generate an object that si-
multaneously satisfies the constraints (e.g. i-iii in Figure 3)
within the time threshold, so this case is easily missed.

In addition, compared with ODDFuzz, JDD-NoIOCD
detected 15 more exploitable chains on the same benchmark
ysoserial. This is because JDD ’s static analysis module
can provide more high-quality candidate chains, which also
means that JDD ’s static analysis module can help to im-
prove ODDFuzz’s detection capabilities.

5.3. RQ3: Discovering Zero-day Vulnerabilities

In this section, we run JDD atop real-world popular
Java applications to detect zero-day JOI-based RCE vul-
nerabilities. Specifically, we first collected 80 popular Java
open-source apps from Github [19] with more than 100
stars. Then, we implement a semi-automatic tool to check

if they contain public entries for Java object injection and
deserialization. As a result, we successfully recognized six
apps (shown in Table 4) and use them as the dataset of this
experiment. For these six popular Java apps, we conducted
our analysis based on the default or recommended configu-
ration within their open-source projects. In this experiment,
the total time limitation for dynamic testing is 6 hours.

Table 4 shows the results, which indicates that JDD
successfully identified zero-day JOI vulnerabilities in all of
these six Java apps as well as generated exploitable injection
objects for the 293 found gadget chains (127 unique chains).
We have reported these gadget chains to the app developers
and received confirmation from them. For example, the de-
velopers of Dubbo admitted that it is impossible for them to
uncover these gadget chains, which indicates the urgency of
our automatic tool. All 127 zero-day gadget chains detected
by JDD are capable of bypassing the latest patch defenses
at the time and, hence are vulnerabilities. Noting that, since
we reported multiple gadget chains for each attack point to
help developers design and implement more comprehensive
defenses, we ultimately obtained six CVEs, less than the
total count of chains.

To demonstrate how our fragment based bottom-up ap-
proach can benefit the detecting of gadget chains, we use
real-world zero-day vulnerabilities found by JDD for case
study.

Case Study #1: JOI based RCE Attacks. JDD discovered a
JOI based RCE vulnerability that impacts many popular Java
apps such as Sofa, Solon, and XXL-Job, in which XXL-Job
is a highly popular distributed task scheduling framework
with a remarkable number of GitHub stars (24.9k) and forks
(10.3k) as well as be widely used by large enterprises with
over 256 million consumers. This vulnerability could allow
attackers to take over the victim server by sending a request
with a well-crafted injection object.

Thses application utilize the Hessian/Hessian-sofa
protocol to deserialize the received serialized data. The
main attack process for this vulnerability is illustrated
in Figure 5, wherein the attacker initializes a HashMap
object and places two other HashMap objects (i.e. hmap1,
hmap2) inside it, as well as ensures that hmap1, hmap2 have
identical hash values to trigger the jump from Fragment
1 to 2. Then, to facilitate the jump from Fragment 2 to
Fragment 3 and then to 4, the attacker needs to insert a
Type instance and a JSONObject instance into hmap1
and hmap2, and alternate the order of insertion. Then, based

Fragment 1

HashMap.put()

HashMap.putVal()

Fragment 2

AbstractMap.equals()

Fragment 3

AudiofileFormat$Type.equals()

Case 1
Fragment 4a

fastjson2.JSONObject.toString()

Fragment 5b

fastjson2.JSONWriterUTF16.write()

Fragment 6c

fastjson2.ObjectWriter2.write()

Fragment 7d

fastjson2.FieldWriterObject.write()

fastjson2.getFieldValue.write()

reflect.Method.invoke()

Fragment 4a

jackson.JSONObject.toString()

...

Fragment 5b

jackson.SerializableSerializer.serialize()

Fragment 6c

jackson.POJONode.serialize()

...

Fragment 7d

jackson.BeanSerializer.serialize()

...

Fragment 8

jackson.BeanPropertyWrite.serializeAsField()

reflect.Method.invoke()

Fragment 10

ContinuationContext.getTargetContext()

NamingManager.getContext()

NamingManager.getObjectInstance()

Case 2

Fragment 9

ServerManagerImpl.getActiveServer()

ServerTableEntry.isValid()

ServerTableEntry.activate()

Runtime.exec()

Fragment 11

UnixPrintServiceLookup.getDefaultPrintService()

UnixPrintServiceLookup.getDefulatPrinterBSD()

UnixPrintServiceLookup.execCmd()

Runtime.exec()

/* This HashMap stores

 * hmap1 & hmap2

 */

Figure 5: Simplified Gadget Chains of Case Study #1 and
Case Study #2, where Case #2 is an evolution of Case #1
with some gadget fragments being replaced.

on the information about the object (i.e., obj) contained
in the JSONObject instance, the deserialization process
will jump from Fragment 4a to 7d, and subsequently
invoke reflective calls to methods related to the fields
of obj, such as ”getDefaultPrintService()” method of
a UnixPrintServiceLookup object. This method
further leads to the execution of arbitrary commands
injected by the attacker through Runtime.exec().
Alternatively, as a variant, this gadget chain also
can utilize Java reflection in Fragment 7d to invoke
ContinuationContext.getTargetContext()
and carry out JNDI based code injection attacks.

Case Study #2: The Evolution of Case Study #1. By
replacing certain fragments in a gadget chain, an attacker can
rapidly discover new gadget chains that can affect another
app. Taking the gadget chain introduced in Case Study 1
as an example, this chain can affect apps like Sofa-RPC,
solon, XXL-Job. However, due to the absence of the required
Java library dependency in Motan by default, this gadget
chain cannot be used to exploit Motan, as some of its gadget
fragments missed.

However, if the missed fragments could be replaced by
gadget fragments in Motan, it could generate a new chain.
Actually, in Motan, JDD detected an equivalent fragment
that depends on Jackson [20], a widely-used third-party
dependency for data-binding functionality and tree-model.
Thus, the Fragment 4a-8 (in # Case 2) can replace the
Fragment 4a-7d (in # Case 1), resulting a new chain, as
illustrated in Figure 5.

Furthermore, the gadget chain in Case Study
1 uses the ”getDefaultPrintService()” method of a
UnixPrintServiceLookup object to load and execute
code from remote attackers. However, this method could

only be invoked in a Unix-like system. For those non-Unix
systems, JDD could further find alternative fragments
to replace it thus fixing the chain, for example, using
”getActiveServers()” method in ServerManagerImpl
class.

5.4. RQ4: Performance

In this section, we evaluate the performance of JDD in
analyzing real-world Java apps. Table 4 shows the results.
For the easy of statistic, we separate the analysis time of
JDD into three parts: (i) the gadget chain searching and
linking (i.e., Steps 1–3 in Section 3), (ii) IOCD construction
(i.e., Step 4 in Section 3), and (iii) directional Fuzzing (i.e.,
Step 5 in Section 3). The results indicate that JDD could
finish its analysis for most of real-world apps in the time
limitation (six hours for each app).

We have two observations. First, the static analysis part
of JDD (Steps I–III) is very efficient, finishing with 20 mins
in most cases. The reason is that JDD’s static search time is
polynomial, i.e., efficient in finding possible gadget chains.
The analysis of Solon is slower but still within 40 minutes
because the number of possible gadget fragments is large.
Second, the dynamic analysis part of JDD may still have
performance issues. Specifically, the analysis of Motan and
Sofa-rpc times out after six hours due to false positives in
gadget chains reported by JDD’s static analysis. The main
reason is the imprecision in our points-to analysis and path
insensitivity outside invocation handlers of dynamic proxy.
We leave the improvement of static analysis’s precision as
our future work.

6. Discussion

Expandability for Incomplete Patching Problem. One
common problem facing JOI vulnerabilities and their
patches is that remote attackers may find alternatives for
the blocked gadgets in the patch and derive new exploitable
gadget chains from the original ones. For example, Figure 6
illustrates the gadget chains’ reuse relationships among 23
JOI vulnerabilities that affect WebLogic [21], a widely-
used J2EE application server employed by over 430K Java
applications. Notably, CVE-2015-2852 continuously evaded
security patches by successively replacing parts of the frag-
ments that were blacklisted, leading to a total of 11 follow-
up CVEs over a period of six years.

There are two methods for users to expand JDD for
the incomplete patching problem. First, users may expand
the fragment data set of JDD with known fragments, e.g.,
all possible gadgets in CVE-2015-2852. Second, users may
expand the source set of JDD with known sources. These
two methods will help users to find possible derivative
vulnerabilities, thus making the patch more complete.

Lightweight Pointer-to Analysis and Restricted Path-
sensitive Analysis. We leverage pointer-to analysis and
path-sensitive analysis to mitigate the erroneous generation

CVE-2015-2852 CVE-2016-0638 CVE-2016-3510
CVE-2017-3248

CVE-2018-2826

CVE-2018-2893

Sep.2015 Apr.2016 Jul.2016 Jan.2017 Apr.2018 Jul.2018

CVE-2018-3245

CVE-2018-3248

CVE-2018-3191

Oct.2018

CVE-2020-2555

Jan.2020

CVE-2020-2883

Apr.2020

The gadget fragments is used by

Disclosed Vulnerability

CVE-2020-14645

Jul.2020 Oct.2020

CVE-2020-14825

Jan.2021

CVE-2020-14756

Apr.2021

CVE-2021-2135

CVE-2021-2136

Jul.2021

CVE-2020-2551

Jan.2022

CVE-2021-2394

Jan.2023

CVE-2022-21350

CVE-2023-21839

Apr.2023

CVE-2023-21931

May.2016

CommonsCollections5(ysoserial)

Mar.2016

JRMPListener(ysoserial)

Figure 6: WebLogic’s JOI vulnerabilities and the reuse of their gadget fragments, which lead to the incomplete patch
problem.

and concatenation of fragments, thereby reducing false pos-
itives in static analysis and lowering the computational load
of fuzzing.

The misidentification of an object’s type can result
in the erroneous identification of dynamic method invo-
cations, consequently leading to false positives in frag-
ment generation and linking. The utilization of pointer-
to analysis techniques effectively reduces false positives
caused by this issue. For instance, in the analysis of
the CommonCollections4 application, applying the
lightweight pointer-to analysis results in a reduction of 806
false positive chains.

Furthermore, dynamic proxies are widely used in many
Java apps. Specifically, an invocation handler of dynamic
proxy usually selects different program handling logic based
on the method properties (e.g., method name) that triggers
the handler, resulting in many possible execution paths
during static analysis. Thus, it requires a path-sensitive
analysis to identify accurate execution paths when linking
gadget fragments in invocation handlers of dynamic proxies.
But applying the path-sensitive analysis to a larger scope
(e.g., the entire codebase) will significantly slow down static
analysis with limited gains in reducing false positives, so
we limit the scope of path-sensitive analysis to balance
performance and false positives.

Limitations. We discuss two limitations of JDD: (i) per-
formance of dynamic analysis, and (ii) implicit constraints.
First, while JDD significantly improves the performance of
static analysis, the fuzzing part of dynamic analysis may
still have performance issues during mutation, particularly
when the number of false positives from static analysis is
large for some Java applications due to over-approximation.
The main reasons for such false positives are that our points-
to analysis is lightweight, leading to imprecisions in many
cases, and our path sensitivity is restricted inside invocation
handlers of dynamic proxies, i.e., the analysis outside is
path insensitive. Second, while JDD considers some implicit
constraints, such as the nullpointer exceptions and forced
type casting, there are still other implicit constraints that
need to be solved during exploit generation.

7. Related Work

We describe both attacks and defenses related to dese-
rialization vulnerabilities.

7.1. Deserialization Vulnerability Mining

In recent years, a substantial body of research [22]–[24]
has been devoted to the automated mining of deserialization
vulnerabilities using both static and dynamic methods.

GadgetInspector [3] is one of the most well-known
automated gadget chain mining tools. It utilized static taint
analysis to discover execution paths from manually defined
source points to sink points. However, its effectiveness is
limited in intricate scenarios due to inherent design limi-
tations in data-flow and control-flow analysis. Chen et al.
proposed Tabby [25], which utilizes Soot [11] to transform
Java programs into Code Property Graphs (CPG) [26]–
[29] and imports them into Neo4j database [30]. Then,
they extract gadget chains through querying CPG, using
manually crafted Cypher [31] statements. These approaches
commonly demand significant expertise in deserialization
vulnerabilities, thus constraining their scalability. Compared
with them, during static analysis, JDD do not rely on domain
knowledge about JOI vulnerabilities. It only leverages the
understanding of Java dynamic features to identify gadget
fragments and link them together. Moreover, JDD also de-
signs a novel bottom-up approach to greatly improve the
efficiency of its static module.

Considering that static analysis often introduces numer-
ous false positives, SerHybrid [4] proposed to automate
the verification of exploitable gadget chains through the
construction of heap abstractions for generating injection
objects. Building upon Tabby, GCMiner [1] incorporated
an overriding-guided object generation strategy to automate
verification during fuzzing. And ODDFuzz [2] utilized di-
rected fuzzing to enhance verification efficiency. In addi-
tion, black-box scanning tools like Marshalsec [32] and
Java Deserialization Scanner [33] have also been proposed.
Compared with them, JDD guides fuzzing by recognizing
data-flow dependencies between injection objects’ fields. On
one hand, this approach enables the inference of complex
injection object structures, such as parallel and embedded
injection object, which were commonly uncovered in pre-
vious work. Furthermore, JDD significantly improves seed
mutation’s efficiency by considering constraints from the
program’s execution flow specified by gadget chains. It is
noteworthy that, to the best of our knowledge, JDD is the
first tool capable of automatic generation of exploitable
injection objects based on gadget chains.

7.2. Deserialization Vulnerability Defense

Implementing effective strategies to enhance application
security is often necessary, particularly in the context of
defense against deserialization vulnerabilities [34]. Exist-
ing strategies are commonly referred to as look-ahead de-
fenses [35], wherein an audit is conducted on classes that
require deserialization, and only those that are permitted can
be deserialized. One notable look-ahead defense is JEP290
[36], which offers a blacklist of prohibited malicious classes
during deserialization, along with interfaces for user exten-
sions. In addition to the JDK’s built-in standard solutions,
Runtime Application Self-Protection (RASP) [37] frame-
works [38] [39] are frequently employed to defend against
deserialization vulnerabilities. These frameworks leverage
bytecode instrumentation tools to intercept risky APIs for
auditing. Some work also concentrate on automating the
generation of deserialization strategies. Trusted [40] is a
two-phase defense framework that learns from benign dese-
rialization workloads to create an allowlist, which is then en-
forced during the deserialization process. Another approach
by François et al. [41] involves training a Markov chain
with malicious Gadget Chains, which is then used to predict
malicious Injection Objects at runtime.

In summary, this thread of work commonly enforce
security checks on risky sources, sinks, and gadgets used in
Java deserialization. Compared with them, JDD focuses on
another important research problem – mining risky sources,
sinks, and gadgets that could be abused as much as possible.
Thus, the output of JDD can significantly support them. Take
the white list adopted by Trusted as an example. JDD could
check if the classes in the white list are enough to construct
gadget chains. Another example is RASP based approach.
Their efficiencies highly depend on the completeness of
risky sink points, and JDD could help to verify if specific
methods could be exploited by injection objects and thus
should be protected.

8. Conclusion

In this paper, we design a novel, scalable approach
for automated detection and verification of JOI vulnerabil-
ities, called JDD. On one hand, JDD solves the static path
explosion problem by a bottom-up approach, which first
looks for gadget chain fragments and then chains gadget
fragments from sinks to sources. The approach reduces
static search time from exponential to polynomial, i.e., from
O(eMn

) to O(M2n3
+ enM), where n is the number of

dynamic function calls in a gadget chain, M is the average
number of dynamic function call candidates, and e is the
number of entry points. On the other hand, JDD constructs
a so-called Injection Object Construction Diagram (IOCD),
which models the data-flow dependencies between injection
objects’ fields to facilitate dynamic fuzzing. Our evaluation
of JDD upon six real-world Java applications reveals 127
zero-day, exploitable gadget chains with six being assigned
with Common Vulnerabilities and Exposures (CVE) identi-
fiers. We also responsibly reported these vulnerabilities to

application developers and obtained their acknowledgments
and confirmations.

Acknowledgments

We would like to thank the anonymous reviewers for
their insightful comments that helped improve the qual-
ity of the paper. This work was supported in part by
the National Key Research and Development Program
(2021YFB3101200), National Natural Science Foundation
of China (62172104, 62172105, 61972099, 62102093,
62102091), and National Science Foundation (NSF) (CNS-
21-54404 and CNS-20-46361). Yuan Zhang was supported
in part by the Shanghai Rising-Star Program under Grant
21QA1400700 and the Shanghai Pilot Program for Basic
Research - FuDan University 21TQ1400100 (21TQ012).
Dr. Yinzhi Cao was supported in part by Johns Hopkins
Catalyst Awards and DARPA Young Faculty Award under
Grant Agreement D22AP00137-00 as well as a gift from
Visa Research. Min Yang is the corresponding author, and
a faculty of Shanghai Institute of Intelligent Electronics &
Systems and Engineering Research Center of Cyber Security
Auditing and Monitoring.

References

[1] S. Cao, X. Sun, X. Wu, L. Bo, B. Li, R. Wu, W. Liu, B. He,
Y. Ouyang, and J. Li, “Improving java deserialization gadget chain
mining via overriding-guided object generation,” in IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 2023, pp.
397–409.

[2] S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu, T. Su,
L. Bo, B. Li, C. Ma, J. Li, and T. Wei, “Oddfuzz: Discovering java
deserialization vulnerabilities via structure-aware directed greybox
fuzzing,” in IEEE Symposium on Security and Privacy (SP), 2023,
pp. 2726–2743.

[3] I. Haken, “Automated discovery of deserialization gadget chains,”
Proceedings of the Black Hat USA, vol. 48, 2018.

[4] S. Rasheed and J. Dietrich, “A hybrid analysis to detect java se-
rialisation vulnerabilities,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020,
pp. 1209–1213.

[5] Ysoserial. https://github.com/frohoff/ysoserial.

[6] Sofa-rpc. https://github.com/sofastack/sofa-rpc.

[7] https://github.com/apache/dubbo-hessian-lite.

[8] https://github.com/sofastack/sofa-hessian.

[9] G. Fourtounis, G. Kastrinis, and Y. Smaragdakis, “Static analysis of
java dynamic proxies,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2018,
pp. 209–220.

[10] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing java reflec-
tion,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 28, no. 2, pp. 1–50, 2019.

[11] Soot. https://github.com/soot-oss/soot.

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269,
2014.

https://github.com/frohoff/ysoserial
https://github.com/sofastack/sofa-rpc
https://github.com/apache/dubbo-hessian-lite
https://github.com/sofastack/sofa-hessian
https://github.com/soot-oss/soot

[13] R. Padhye, C. Lemieux, and K. Sen, “Jqf: Coverage-guided property-
based testing in java,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019,
pp. 398–401.

[14] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon, “Se-
mantic fuzzing with zest,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
329–340.

[15] Asm. https://asm.ow2.io/.

[16] Hessian protocol. https://en.wikipedia.org/wiki/Hessian (Web
service protocol).

[17] T3 protocol. https://docs.oracle.com/cd/E14571 01/web.1111/
e13721/rmi t3.htm#WLRMI143.

[18] Iiop protocol. https://www.ibm.com/docs/en/iad/7.2.1?topic=i-
internet-inter-orb-protocol-iiop.

[19] Github. https://github.com/.

[20] Jackson. https://github.com/FasterXML/jackson.

[21] Oracle weblogic server. https://www.oracle.com/java/weblogic/.

[22] S. Park, D. Kim, S. Jana, and S. Son, “{FUGIO}: Automatic ex-
ploit generation for {PHP} object injection vulnerabilities,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 197–
214.

[23] M. Shcherbakov and M. Balliu, “Serialdetector: Principled and prac-
tical exploration of object injection vulnerabilities for the web,”
in Network and Distributed Systems Security (NDSS) Symposium
202121-24 February 2021, 2021.

[24] S. Cristalli, E. Vignati, D. Bruschi, and A. Lanzi, “Trusted execu-
tion path for protecting java applications against deserialization of
untrusted data,” in Research in Attacks, Intrusions, and Defenses:
21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings 21. Springer, 2018, pp. 445–
464.

[25] Z. J. Y. F. X. L. X. F. X. Chen, B. Wang and Q. Liu, “Tabby: Auto-
mated gadget chain detection for java deserialization vulnerabilities,”
2023.

[26] “Code property graph - Wikipedia — en.wikipedia.org,” https://en.
wikipedia.org/wiki/Code property graph, [Accessed 04-08-2023].

[27] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors
and security flaws using pql: a program query language,” Acm Sigplan
Notices, vol. 40, no. 10, pp. 365–383, 2005.

[28] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in 2014 IEEE
Symposium on Security and Privacy. IEEE, 2014, pp. 590–604.

[29] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of php application vulnerabilities,” in
2017 IEEE european symposium on security and privacy (EuroS&P).
IEEE, 2017, pp. 334–349.

[30] neo4j. https://neo4j.com/.

[31] Cypher. http://opencypher.org/.

[32] marshalsec. https://github.com/mbechler/marshalsec.

[33] Java deserializer sanncer. https://github.com/federicodotta/Java-
Deserialization-Scanner.

[34] “CWE - CWE-502: Deserialization of Untrusted Data (4.12) —
cwe.mitre.org,” https://cwe.mitre.org/data/definitions/502.html, [Ac-
cessed 04-08-2023].

[35] R. Seacord, “Combating java deserialization vulnerabilities with look-
ahead object input streams (laois),” NCC Gr Whitepaper, 2017.

[36] jeps290. https://openjdk.org/jeps/290.

[37] Z. L. Z. Yin and Y. Cao, “A web application runtime application self-
protection scheme against script injection attacks,” p. 566–577, 2018.

[38] openrasp. https://github.com/baidu/openrasp.

[39] P. Čisar and S. M. Čisar, “The framework of runtime application self-
protection technology,” in 2016 IEEE 17th International Symposium
on Computational Intelligence and Informatics (CINTI), 2016, pp.
000 081–000 086.

[40] D. B. S. Cristall, E. Vignati and A. Lanzi, “Trusted execution path
for protecting java applications against deserialization of untrusted
data,” Research in Attacks, Intrusions, and Defenses, M. Bailey, T.
Holz, M. Stamatogiannakis, and S. Ioannidis, Eds. Cham: Springer
International Publishing, pp. 445–464, 2018.

[41] F. Gauthier and S. Bae, “Runtime prevention of deserialization
attacks,” in Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: New Ideas and Emerging
Results. New York, NY, USA: Association for Computing
Machinery, 2022, p. 71–75. [Online]. Available: https://doi.org/10.
1145/3510455.3512786

[42] “Cauchy–Schwarz inequality - Wikipedia — en.wikipedia.org,” https:
//en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz inequality,
[Accessed 04-08-2023].

Appendix A.
Time Complexity of Bottom-up and Top-down
Approaches

A.1. Proof of Theorem 1

Proof. If there are n dynamic method invocations in a chain,
and the average number of candidates for these invocations
is M , the number of source is e. According to Lemma 1,
the search complexity for a source is O(n3M2

).
As for each source, the maximum number of connection

checks is nM , and the overall search complexity of Algo-
rithm 1 to search for all sources is O(n3M2

+ enM).

Lemma 1. The per-entry search complexity of Algorithm 1
is O(M2n3

), where n is the number of dynamic method
invocations, and M is the average number of candidates
for these invocations.

Proof. In Algorithm 1, n′ represents the number of distinct
dynamic method invocations, with each dynamic method
having x1, x2, ..., xn′ , candidates, as difference groups,
and a total of N = x1 + ... + xn′ candidates. We can then
compute the searching complexity for Algorithm 1 through
the following three steps.

● Max Searching Times per Round: By employing
a bottom-up search, it becomes possible to store the
exact input requirements connecting each fragment to
Sink Fragments and avoid repeated searching. Mean-
while, there will not be two Sink Fragments with the
same dynamic method implementation serving as the
Head. And the fragment with the candidate of the p-
th dynamic method invocation as the Head requires
checking for connections with a maximum of N − xp

other fragments. Considering these most complex sce-
narios, using equations (1) and (2), we can calculate

https://asm.ow2.io/
https://en.wikipedia.org/wiki/Hessian_(Web_service_protocol)
https://en.wikipedia.org/wiki/Hessian_(Web_service_protocol)
https://docs.oracle.com/cd/E14571_01/web.1111/e13721/rmi_t3.htm#WLRMI143
https://docs.oracle.com/cd/E14571_01/web.1111/e13721/rmi_t3.htm#WLRMI143
https://www.ibm.com/docs/en/iad/7.2.1?topic=i-internet-inter-orb-protocol-iiop
https://www.ibm.com/docs/en/iad/7.2.1?topic=i-internet-inter-orb-protocol-iiop
https://github.com/
https://github.com/FasterXML/jackson
https://www.oracle.com/java/weblogic/
https://en.wikipedia.org/wiki/Code_property_graph
https://en.wikipedia.org/wiki/Code_property_graph
https://neo4j.com/
http://opencypher.org/
https://github.com/mbechler/marshalsec
https://github.com/federicodotta/Java-Deserialization-Scanner
https://github.com/federicodotta/Java-Deserialization-Scanner
https://cwe.mitre.org/data/definitions/502.html
https://openjdk.org/jeps/290
https://github.com/baidu/openrasp
https://doi.org/10.1145/3510455.3512786
https://doi.org/10.1145/3510455.3512786
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality

the maximum number S of linkage detection attempts
during the search process.

x1 + x2 + ... + xn′ = N <=Mn (1)
Sp = xp(N − xp) (2)

S = N2
− (x2

1 + ...x
2
n′) (3)

According to the Cauchy-Schwarz inequality [42], for
any real numbers a1, a2, ..., an and b1, b2, ..., bn, we
have:

(a21 + a
2
2 + ... + a

2
n′)(b

2
1 + b

2
2 + ... + b

2
n′)

>= (a1b1 + a2b2 + ... + an′bn′)
2 (4)

When we set a1 = x1, a2 = x2, ..., an′ = xn′ , and b1 =
b2 = ... = bn′ = 1, equation (4) is transformed into (5),

(x2
1 + x

2
2 + ... + x

2
n′) >=

(x1 + x2 + ... + xn′)
2

n′

=
N2

n′
(5)

From equations (5) and (3), it follows that

S <= N2
(1 −

1

n′
) (6)

, and the maximum value of S is obtained when
x1 = x2 = ... = xn =

N
n′

.

● Searching Complexity Since the search requires a
maximum of n′ iterations, the overall algorithm’s max-
imum number of search attempts is

n′N2
(1 −

1

n′
) < n′N2

<= n3M2 (7)

We define the search complexity O(1) as a one-time
fragment linking check. Note that, after JDD identi-
fies the fragments, it will merge the fragments whose
headers are the implementations of the same dynamic
method but meet the conditions based on the special
cases described in Appendix B. The complexity of this
step is O(N); Therefore, the final maximum search
complexity is O(n3M2

+ N) = O(n3M2
) for each

source.

A.2. Proof of Theorem 2

Proof. All symbols follow the Theorem 1. Based on the
description in the ODDFuzz paper, when an attacker-
controllable dynamic method call is searched, all overridden
methods will continue to be searched. Therefore, under the
assumption of a search strategy that avoids false negatives
as much as possible, and also considers the computational
complexity in the worst case, conducting a DFS (Depth-
First Searching) for potential gadget chains from a source
to a sink can be equivalent to detecting all paths of a tree
with depth n, and each node in the tree having an average
of M branches, starting from the root node, using the DFS

algorithm. The computational complexity of this process can
be determined accordingly.
● The notation O(1) is defined as follows: when the tree

is an empty tree (has no nodes) or consists of only one
node, the number of paths is 0 or 1 respectively. This
serves as the termination condition for the recursion.
The search complexity is denoted by S(1) = O(1).

● The recursive hypothesis. Assuming that for a node
at a depth d in the tree, the searching complexity of
the Depth-First Search (DFS) algorithm is denoted by
S(d).

● The recursive step: For a node at depth d − 1, we
recursively invoke the DFS function to process its child
nodes. Each node can have M child nodes, so in the
worst case, the DFS function needs to be called M
times for each child node located at depth d − 1. Ac-
cording to the induction hypothesis, the DFS processes
nodes at depth d−1 with a searching complexity of S(d-
1). Therefore, the time complexity to process a node at
depth d is O(M) × S(d − 1).
Based on the recursive relation, we can expand

S(d) = O(M) × S(d − 1)

= O(M2
) × S(d − 2)

= ...

= O(Md
) × S(0)

= O(Md
)

Therefore, for a single source, the search complexity
is O(Mn

), and when performing DFS searches from e
entry points, the search complexity becomes O(eMn

).

Appendix B.
An analysis of historical gadget chains

We collected 79 gadget chains from well-known deseri-
alization vulnerability databases, including ysoserial, Mar-
shalSec, and 113 CVE reports of JOI vulnerabilities.

When studying these 79 gadget chains, we first explored
which methods are typically chained after Java reflection.
The results show that 39 of the 79 gadget chains use Java
reflection, and they can all be summarized into two major
types. Specifically, 27 chains use parameterless methods as
follow-up methods. Of these 27 chains, six require getter
or is methods and four must be overridden methods of
interface methods. The remaining 12 chains use methods
with a parameter of type String or Boolean as follow-up
methods to unsafe reflection. Therefore, we prioritize testing
the two types of successor methods in Section 3.3.

Then, among these 79 historical gadget chains, only
nine have the same dynamic method calls nested, and the
reasons for nesting the same dynamic method calls can be
attributed to two categories: (1) Implement chain calls of
Method.invoke, sequentially calling insecure methods in

the program to execute malicious instructions, such as CVE-
2020-2555. (2) Satisfy common specific strong constraints
- hash collision, such as the conditional constraints shown
in Line 7 in Figure 1. Therefore, we let JDD support both.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper proposes JDD, a new framework to detect
Java deserialization vulnerabilities. The main focus in on
improving the efficiency of the analysis. First, it mitigate the
path explosion problem by employing a bottom-up search
strategy to avoid redundancies in top-down approaches,
which reduce the time needed for static gadget chain search
from exponential time to polynomial time. Second, it uses
the Injection Object Construction Diagram (IOCD) to track
dependencies between data fields of the various injected
objects, which reduces the search scope. Third, it tracks
control dependencies during fuzzing to collect more fine-
grained progress feedback. Evaluation shows that the proto-
type tool is able to find more deserialization gadget chains
than previous state-of-the-art approaches.

C.2. Scientific Contributions

● Provides a New Data Set For Public Use
● Creates a New Tool to Enable Future Science
● Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance

1) The paper is well-written
2) The paper tackles with an interesting and timely topic:

deserialization vulnerabilities in Java
3) JDD discovered 127 unknown deserialization chains in

6 real-world Java apps
4) JDD outperformed the previous state-of-the-art, in

terms of scalability and false negative rate

	Introduction
	Overview
	Background of JOI Attacks
	A Motivating Example
	Challenges and Solution Overview

	Design
	System Architecture
	Step 1: Identifying Deserialization Entry Points
	Step 2: Identifying Gadget Fragments with Static Taint Analysis
	Step 3: Linking Gadget Fragments to Construct Gadget Chains using a Bottom-up Approach
	Step 4: Constructing IOCD based on Injection Object related Constraints
	Step 5: IOCD-enhanced Directional Fuzzing

	Implementation
	Evaluation
	RQ1: Comparison with State of the Art
	RQ2: How do the core modules of JDD contribute to its performance?
	RQ3: Discovering Zero-day Vulnerabilities
	RQ4: Performance

	Discussion
	Related Work
	Deserialization Vulnerability Mining
	Deserialization Vulnerability Defense

	Conclusion
	References
	Appendix A: Time Complexity of Bottom-up and Top-down Approaches
	Proof of Theorem 1
	Proof of Theorem 2

	Appendix B: An analysis of historical gadget chains
	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

