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Abstract
Many online communications systems use perceptual hash
matching systems to detect illicit files in user content. These
systems employ specialized perceptual hash functions such as
Microsoft’s PhotoDNA or Facebook’s PDQ to produce a com-
pact digest of an image file that can be approximately com-
pared to a database of known illicit-content digests. Recently,
several proposals have suggested that hash-based matching
systems be incorporated into client-side and end-to-end en-
crypted (E2EE) systems: in these designs, files that register
as illicit content will be reported to the provider, while the
remaining content will be sent confidentially. By using per-
ceptual hashing to determine confidentiality guarantees, this
new setting significantly changes the function of existing per-
ceptual hashing – thus motivating the need to evaluate these
functions from an adversarial perspective, using their per-
ceptual capabilities against them. For example, an attacker
may attempt to trigger a match on innocuous, but politically-
charged, content in an attempt to stifle speech.

In this work we develop threat models for perceptual hash-
ing algorithms in an adversarial setting, and present attacks
against the two most widely deployed algorithms: PhotoDNA
and PDQ. Our results show that it is possible to efficiently
generate targeted second-preimage attacks in which an at-
tacker creates a variant of some source image that matches
some target digest. As a complement to this main result, we
also further investigate the production of images that facilitate
detection avoidance attacks, continuing a recent investigation
of Jain et al. Our work shows that existing perceptual hash
functions are likely insufficiently robust to survive attacks on
this new setting.

1 Introduction
Many online service providers perform real-time content scan-
ning to detect illicit content such as child sexual abuse ma-
terial (CSAM), non-consensual pornography, and terrorist
recruitment videos [17, 38]. The majority of these systems
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employ Perceptual Hash Matching (PHM) techniques. In this
type of scanning, the provider evaluates each uploaded file
using a perceptual hash function such as PhotoDNA [38]
or PDQ [16] to produce a compact digest, which can be effi-
ciently compared against a database of digests that correspond
to known illicit content. This matching process is inexact by
design. Nearly-identical media files can be detected either
by comparing digests exactly or by evaluating a similarity
metric between digest values. Whereas a traditional crypto-
graphic hash function is designed to produce a dissimilar
output when fed a transformed media file (e.g., one that has
been compressed or re-encoded in a different format), percep-
tual hashing algorithms are designed to produce identical or
similar digests when applied to files that appear similar to a
human viewer. This makes content scanning systems robust
to transformations such as resizing and re-encoding, and in
some cases cropping or rotation.

Perceptual media hashing algorithms have been widely
adopted for use in automated content scanning systems that
examine image and video files uploaded to a server. Not only
do they provide an efficient means for detecting illicit content,
but the use of hashing eliminates the need for providers to
store and exchange illicit content files. In typical deployments,
positive matches will trigger a variety of different responses,
including further human review, account closure, and reports
to law enforcement.1

While there has been a great deal of research into the proper-
ties of perceptual hashing algorithms, surprisingly little work
has considered these functions from a privacy or security
perspective [14]. This reflects a common understanding that
perceptual hash matching systems are not expected to resist
adversarial exploitation. Indeed, this warning is given explic-
itly within the specification of the few widely-used perceptual

1In the case of Child Sexual Abuse Media (CSAM), US providers are
legally required to manually examine suspected content, and then to submit
reports to a “Cyber Tip Line” operated by the National Center for Missing
and Exploited Children (NCMEC) [1]. Providers often ban the accounts of
reported users, even in cases where law enforcement determines the finding
to be a false-positive [29].



(a) PhotoDNA Collision at ∆d= 1720 (b) PDQ Collision at ∆d= 86

(c) PhotoDNA Collision at ∆d= 342 (d) PDQ Collision at ∆d= 38

Figure 1: Targeted-second-preimage collision pairs for PhotoDNA and PDQ at high (top) and low (bottom) matching thresholds.
The image on the left in a pair is our attack image, while the image on the right is the target. A lower matching threshold implies
a better collision, potentially at the cost of image quality. Each pair was generated as described in Section 4.1.

hash algorithms [16] whose design goals are stated explicitly.
This lack of adversarial robustness stems from the underly-
ing hash algorithms’ most useful feature, their robustness to
small modifications. This feature is challenging to achieve
while maintaining cryptographic security properties such as
collision and preimage resistance.

Server-side content scanning systems have historically been
deployed in ways that (implicitly and explicitly) minimize
the impact of attacks on the underlying hash function. For
example, providers maintain tight security around illicit con-
tent digest databases, which mitigates the risk of attacks that
could e.g., recover abusive content from digest data, or facili-
tate evasion of scanning systems.2 Moreover, most server-side
scanning systems have access to plaintext user content (from
which digests are computed), and so preimage attacks on
these digests do not further violate confidentiality. The ad-
versarial creation of collisions, including second-preimages,
poses more of a concern: such collisions might, for example,
allow an attacker to generate an apparently-benign file that
triggers a false match when uploaded by an unwitting victim.
However, server-side scanning deployments blunt the impact
of these attacks by requiring human verification of alleged
matches: such verification does not affect user confidentiality,
since the provider server already possesses the user’s plaintext
content. Despite these protections, it is notable that the design

2The confidentiality of hash databases is frequently enforced by legal
agreements required by content curators such as NCMEC. Moreover, cloud-
based scanning systems such as Microsoft’s PhotoDNA Cloud Service require
providers to agree to terms that strictly limit adversarial access to algorithms,
databases, and even scan results [39].

details of some widely-used hashing algorithms, most no-
tably Microsoft’s PhotoDNA, are kept tightly guarded and are
available only under strict confidentiality agreements [32, 39].

E2EE content scanning: a new setting. A number of
providers have recently begun to deploy large-scale implemen-
tations of End-To-End Encryption (E2EE) in both messaging
and device backup settings. This poses a technical challenge
for agencies that rely on leads generated from content scan-
ning: in these systems the server may not have access to
plaintext content, and hence traditional server-based content
scanning systems will not operate correctly. In 2019, senior
law enforcement officials in the US, UK, and Australia pub-
lished an open letter to Facebook, asking the company to delay
its plans to deploy further end-to-end encrypted communica-
tion systems until this concern could be addressed [3].3 This
spurred providers and researchers to investigate the problem
of deploying hash-based content scanning within E2EE proto-
cols. Several protocols were subsequently published [2,33,53].
Although differing in their precise details, all share a com-
mon goal: to selectively relax the confidentiality guarantees
of the encryption system through modifications to the client
software so that licit content remains fully confidential, while
files that match the illicit hash database can be detected by
the provider (and possibly decrypted for further analysis.)

While in principle this approach appears straightforward, in
practice it may have grave consequences for the confidential-
ity guarantees of end-to-end encryption, by effectively moving

3More recently, the EU Commission formally presented a proposal [15]
to mandate CSAM scanning capabilities in messaging applications, raising
questions about whether this would apply to E2EE applications [34].



hash-based matching into the encryption mechanism itself.
The security of the underlying E2EE communications system
now fundamentally depends on the properties of the under-
lying perceptual hash-matching algorithms. Put succinctly:
if confidentiality is determined by the output of a perceptual
hash algorithm, then the security provided for even licit con-
tent is contingent on the properties of those algorithms. This
change in setting motivates further evaluation.

Unfortunately, evaluating perceptual hash functions in this
new setting is not straightforward, since these functions were
not designed to resist adversarial attacks and have not been
extensively evaluated for this purpose. In traditional PHM
systems, accuracy is measured by counting false positives
when considering a natural image corpus. However as a com-
ponent of an encryption system, perceptual hash matching
systems must be evaluated against adversarial actors. Hash-
based matching systems could exhibit a dramatically elevated
false-positive rate in circumstances where matches can be
adversarially-induced (e.g., by malicious service providers).
For example, a useful attack might identify a pair of colliding
images where one contains illicit content while the other is
sensitive protected speech such as a political campaign image.
This attack might cause a PHM system to trigger improperly
on content that is clearly permitted, reducing the confiden-
tiality properties of an E2EE system and exposing users to
surveillance of licit speech. Attacks on a PHM system and
its underlying hash functions thus hold the potential to cre-
ate new surveillance vulnerabilities, as well as new forms of
information leakage that can harm users and abuse victims
alike.

Our contributions. In this work we conduct an investigation
into the properties of two perceptual hashing algorithms, con-
sidered from an adversarial perspective. Concretely, we con-
sider the adversarial robustness of two widely-used perceptual
image hash functions, including Microsoft’s PhotoDNA [38]
and Facebook’s PDQ [16]. Both functions represent the cur-
rent state-of-the-art in perceptual matching functions that have
been deployed into production, and are today used to scan
billions of user images each year.

In this work we focus primarily on the robustness of these
functions, considering two attacker objectives. First, we con-
sider targeted-second-preimage attacks, which generate a hash
collision by subtly modifying an image such that its hash col-
lides with a target hash. The attacker does not need to know
the target hash’s original preimage, and can thus be achieved
only using the database of flagged image hashes. Second, we
consider detection-evasion attacks, which create images that
are semantically identical to known illicit content but do not
trigger a positive match. We accomplish this by devising a
machine-learning optimization framework of hash inputs. Our
framework is general and agnostic of the hash function used.
One of our findings is that different function designs have
major impacts on the difficulty of crafting such attacks. Partic-
ularly, PhotoDNA and PDQ both pose a challenge compared

to purely-neural approaches such as NeuralHash, because
they are not end-to-end differentiable, rendering inapplicable
standard adversarial-learning methods, which are guided by
closed-form-computable gradients.

As mentioned above, our work is motivated by the recent
development of end-to-end perceptual hash matching systems
that have been devised for deployment [2] and in the research
literature [33,53]. To place our results in context, we also pro-
vide a taxonomy of attacks on these systems and demonstrate
how the practical results in this paper may affect the deployed
security of any systems that use them.

Concretely, our contributions are:

A formal taxonomy of attacks on E2EE-PHM systems. We
formally define end-to-end encrypted perceptual hash
matching (E2EE-PHM) systems and discuss a taxonomy
of attacks that can be conducted against these systems.
Notably, our taxonomy incorporates several potential de-
signs that are being considered by industry, including (1)
client-side matching systems, (2) encrypted private set
intersection systems, and (3) edge hashing systems. We
discuss how attacks on the underlying hash function can
be used to undermine user confidentiality in each design.

A hash-function-agnostic framework for gradient optimiza-
tion on perceptual-hash distances. We devise an image-
perturbation optimization procedure that uses the hash as
a black-box and finds a Monte-Carlo approximation of
its gradients [10] in a given point, to minimize loss terms
over hash distances and perturbation sizes. Specifically,
to approximate function gradients of an input point, we
sample small random perturbations around it and compute
a per-pixel average of the measured effect on the loss,
weighted by the amount the pixel was changed, across the
samples. We show that, for appropriate parameterization
which may be hash-function-dependent, this approxima-
tion can be used to minimize the loss terms over any
perceptual-hash function we experimented with, despite
its highly non-smooth surface.

Targeted-second-preimage and detection-avoidance attacks
on Microsoft’s PhotoDNA. We make use of a purported
(and recently leaked) binary copy of Microsoft’s Pho-
toDNA hash function [27,28,38] to evaluate the resilience
of this function under these attack scenarios. PhotoDNA
is a widely-used hash function that is currently used by
Microsoft and several other providers, including Cloud-
flare and Dropbox. PhotoDNA is typically used in PHM
systems to identify close matches using a similarity met-
ric. We use our gradient-optimization approach to con-
struct (1) semantically-different images that possess an
arbitrarily-close similarity metric, and (2) perceptually-
identical images whose hashes are above reasonable de-
tection thresholds4, demonstrating attack viability.

4We discuss “reasonable” thresholds in Section 5.2.



Targeted-second-preimage on Facebook’s PDQ. PDQ [16]
is a more recent hash function that was designed by Face-
book and is used for internal hash-matching and simi-
larity comparisons within that company’s systems. Un-
like PhotoDNA, the design of PDQ is public and a full
specification can be found online. While the design of
PDQ does not claim adversarial robustness, we show that
it is in fact somewhat more robust to targeted-second-
preimage attacks than PhotoDNA. Nonetheless, we are
able to use our technique to devise meaningful targeted-
second-preimages for PDQ-hashed images.

Concurrent work. During the course of our investigation,
some concurrent projects have also considered perceptual
hash functions. In August 2021, Apple released a novel neural-
network based function called NeuralHash; anonymous re-
searchers quickly showed that it was possible to develop tar-
geted collisions on images hashed in this system [2]. While
the threat model considered in this effort is analogous to our
targeted-second-preimage attacks, NeuralHash is essentially
a standard convolutional neural network, and therefore by
design amenable to gradient-based optimization over its input
space. It is therefore not surprising that it is exposed to strong
collision attacks that employ common adversarial-learning
techniques. Attacking state-of-the-art PHMs used in practice
like PhotoDNA and PDQ requires a more elaborate optimiza-
tion framework. Jain et al. [25] evaluated PHM robustness
against detection-avoidance attacks, but did not consider sec-
ond preimages nor did the authors examine PhotoDNA. Fi-
nally, in a September 2021 blog post, Krawetz published a
purported description of the PhotoDNA hash function [32]
and claimed (without providing complete details) the ability
to extract useful imagery from PhotoDNA hashes.

Ethical considerations. The analysis of perceptual hash func-
tions raises a number of challenging ethical questions. Al-
though these functions have many applications, they are a
critical ingredient in deployed (server-side) scanning systems
that are used today to detect content such as CSAM, terrorist
media, and image-based sexual abuse (colloquially known
as “revenge porn”.) Moreover, both the design and security
properties of the PhotoDNA function have for several years
been carefully shielded from public analysis: the owners of
the technology (NCMEC and Microsoft) require cooperating
organizations to sign a non-disclosure agreement as a condi-
tion for obtaining the function implementation [39,42]. While
neither organization explicitly discusses the motivation for
this NDA requirement, it is reasonable to assume that these or-
ganizations are concerned about the possible impact of public
analysis on the effectiveness of these systems.

On the opposing side, the research community has long
argued that public and adversarial examination is essential
to ensuring the correct operation of security systems, adher-
ing to the view that “security by obscurity” is a brittle and
ineffective approach to protecting high-value systems. The

present work is primarily motivated by recent interest in de-
ploying perceptual hash functions within E2EE messaging
systems [2–4, 15]. As discussed in previous sections, the se-
curity guarantees in these systems may be undermined by an
attacker that is able to manufacture false positives in percep-
tual hash functions. Since client-side scanning proposals are
being actively debated for near-term deployment and these
hash functions may be included in such proposals, it is our
view that examining the risk posed by these systems is now a
matter of public concern. Hence we believe that the benefit
from conducting this analysis is sufficient to compensate for
any near-term harm that might occur due to this publication.

Nonetheless, to minimize any potential harm from this
work, we employ the following precautions: (1) we do not
publish the design of previously-confidential algorithms: all of
the software analyzed in this work is either public (PDQ [16]),
or was previously extracted and published by other parties [27,
28, 32]. (2) We do not publish confidential algorithm details
or parameters in this work, except where necessary to support
our scientific results. (3) While we intend to provide our
source code on request to reviewers and researchers, we do not
intend to publish our attack code to the public. And finally, (4)
we have disclosed our results to both Facebook and Microsoft.

2 Background
2.1 PHF-Based Content Scanning

Perceptual hash functions and hash-matching. A percep-
tual hash function (PHF) is a function H : I→V that accepts
as input a media file x from a domain I and outputs a digest
value D from a digest space V . An input x such that H(x) = D
is known as a “preimage” of D.5

Perceptual hash functions are used to build perceptual hash
matching (PHM) systems, which make use of a second algo-
rithm comp : V ×V → Z+ that accepts as input two digest
values and outputs a measurement of their distance. This func-
tion implicitly defines the notion of semantic equivalence
for two images. Two media files A,B that contain the same
visual content (i.e., have the same semantic meaning), should
register a small distance when their digests are compared. To
compare digests, a perceptual hash matching (PHM) system
will typically be parameterized by a threshold constant ∆d :
any pair of files A,B that satisfy comp(H(A),H(B))≤ ∆d are
considered to be a match.

PHFs are typically not designed to provide cryptographic
security. These functions “summarize” media files into a
shorter digest, and will frequently strip away many non-
essential details while preserving features that represent se-
mantic meaning. This raises the possibility of finding colli-
sions (i.e., nonidentical inputs that produce the same digest),
as well as to extract useful information about the source file
from its digest. Many PHFs also make it relatively easy to find

5Note that x ∈V may be an “image” file (i.e., pixel data) but that term is
unrelated to “preimage” of the function H.



second preimages, i.e., given H(A) find a file B 6= A such that
H(A) = H(B). In inexact-match PHM systems, the condition
for a hash match (comp(H(x),H(x′))≤ ∆d) is even less strict,
and we can therefore expect attacks that find inexact-match
collisions to be even easier. Since we are primarily interested
in PHM systems, we will elide the difference, and refer to any
pair of inputs that satisfy the latter condition as a collision.

Since we seek to identify potential attacks against content
scanning systems, arbitrary collisions and second preimages
may not be meaningful (e.g., it is not problematic if flipping a
bit preserves the digest). Instead, we are interested in attacks
that produce meaningful collisions and second-preimages, as
well as attacks that allow users to bypass content scanning
systems. We discuss this in detail in Section 3.

E2EE content scanning. We seek to identify potential at-
tacks against E2EE systems that incorporate PHM-based scan-
ning: we refer to such schemes as E2EE-PHM. To understand
what sort of attacks might affect the security of these systems,
we will first discuss the proposals that have been put forward
for how to combine E2EE with PHM:

Client-local matching. The simplest approach to incorporat-
ing PHM into E2EE systems is to take advantage of the
fact that plaintext media files are exposed on both the send-
ing or receiving endpoints. In these systems, clients are
provisioned with a database of illicit content digests: when
an endpoint attempts to upload (or download) a media file,
these systems compute a digest and compare it to the local
database. A downside of this approach is that illicit content
digests are available on the client endpoint, making them
vulnerable to extraction by reverse-engineers. To date we
know of no media scanning platforms that employ this
paradigm, but this paradigm has been used to implement
keyword-based scanning in some Xiaomi phones [51].

Edge hashing. An alternative approach, exemplified by Mi-
crosoft’s “Edge Hash” [37], can also be used to hash user
content at the client endpoint. These systems implement an
API for computing either full or partial digests at the client,
and transmitting the results to a centralized provider for
processing and comparison. This approach avoids the need
to store illicit content digests at the endpoint, at the cost
of transmitting digests of all user content to the provider.

Cryptographic matching. To address the privacy deficiencies
of the above proposals, recent work has devised privacy-
preserving cryptographic protocols to implement hash
matching [4, 18, 33, 53]. A key goal in these systems is
to preserve the privacy of both the user’s content and the
illicit digest database itself. As in the above proposals, user
content digests are computed at the endpoint. However, the
resulting digest is compared with the provider’s database
using a 2-party computation (2PC) protocol, which can
be based on homomorphic encryption [53] or on private
set intersection [2, 33]. A variant of this approach was

recently prototyped by Apple [2] and is scheduled to be
deployed in Apple’s iCloud Photos system soon.

What happens in the event of a match? Each paradigm de-
scribed above dictates how a system will detect content
matches, but does not specify what the system will do when a
match is found. In essence, this is a deployment decision that
individual providers will make.

In the case of illicit content such as CSAM, current server-
side content scanning systems flag matching files to the
provider for manual examination and reporting. For obvious
reasons, these systems do not request the user’s permission
to perform this notification, and users are not alerted if their
content has been flagged for examination. A similar approach
has been realized in client-side PHM systems as well. For
example, Apple’s recent client-side CSAM scanning proposal
emulates this feature, and makes dataset privacy an explicit
security goal: even a malicious client must not learn any ad-
ditional information about the server’s dataset, including the
fact that their content has been matched [4, §4.4]. Once a suf-
ficient number of matches has been locally identified for the
same user, Apple’s system delivers a decrypted low-resolution
copy of the transmitted content to the provider for review.

Hypothetical E2EE-PHM systems may choose to operate
differently, e.g., by simply blocking illicit content rather than
alerting the provider. However, in this work we apply the
precautionary principle: we assume that some providers will
deploy E2EE-PHM systems that enable investigatory capabil-
ities that match current (non-E2EE) content scanning systems.
In the worst case this entails E2EE-PHM client automatically
uploading the plaintext contents of any matching file to the
provider immediately upon identifying a match.

2.2 Case Studies: PhotoDNA and PDQ

We now describe the PhotoDNA and PDQ PHM schemes.

Microsoft PhotoDNA. PhotoDNA [38] was invented in
2009 by Microsoft Research and Dartmouth College. The
precise design of the algorithm was never published, and IP
ownership was subsequently donated to NCMEC [38] who
have maintained the secrecy of the technology by licensing
it to technology providers under non-disclosure agreement.
While the precise operation of PhotoDNA is not published,
several sources have provided algorithm descriptions of vary-
ing completeness: these include partial descriptions published
by Microsoft [38], as well as more complete purported de-
scriptions derived from reverse-engineering and/or partial de-
scriptions published by researchers [31, 32]. In 2020 a binary
implementation of PhotoDNA was extracted from forensic
software [27,28], and we use this algorithm in its binary form
for our experiments in Section 5.

Although our attacks use the PhotoDNA binary in a black-
box manner, we now briefly summarize the description drawn
from public documents, as summarized by Krawetz [32]. The
algorithm works by first reducing the image size to 26 pixels



per side, and then converting it into grayscale. The resulting
is then split into a 6×6 grid of separate “bins”. These bins
are laid out in an overlapping pattern to ensure that minor
trimming does not severely affect the hash, resulting in 36
bins across the entire image. Each grid is then passed through
the Sobel operator [54], a type of 1-dimensional convolutional
filter based on the difference between pixel values. This has
the effect of intensifying (and therefore delineating) the edges
of an image. The hash for a grid is a 4-tuple of the sum of these
Sobel outputs leftwards, rightwards, upwards, and downwards
across the grid. The final hash consists of the 36 4-tuples for
each of the grids, for a total of 144 values.

The output digest of PhotoDNA is a vector of 144 numeric
values that can be compared to another digest using a simple
distance metric. The exact parameters of the PHM system
as deployed by online service providers, namely the distance
metric comp and the chosen distance bound ∆d (Section 2.1),
are not public. Our experiments utilize an L1 distance metric
(as used in [18]) 6; to evaluate the appropriate bound ∆d we
conduct experiments with false-positive rates in Section 5.2.

Facebook PDQ. The PDQ algorithm was published in 2019
by Facebook, in response to the company’s need for an up-
dated and more flexible perceptual hash algorithm. Unlike
PhotoDNA, the implementation and design goals of PDQ are
public [16].

PDQ begins with a normalization step, which processes
the luminance data from the input image, followed by a two-
pass Jarosz filter to downsample the image to 64×64. It then
computes a sum of absolute values of horizontal and vertical
gradients along with a two-dimensional discrete cosine trans-
form, resulting in a 16×16 DCT. For each of the 16x16 bits
of the output hash, it emits a 1 if the corresponding element
of transform is greater than the median, otherwise it emits a
0; the resulting 256 bits form the output digest.

Similar to PhotoDNA, we compare the hash output of PDQ
to another digest using an L1 distance metric [16]. The de-
signers of PDQ provide a metric of choice: since the output is
a 256-bit binary string, they recommend that the two hashes
should be compared utilizing the Hamming distance metric.
Our experiments use this to implement the function comp.

Discussion. PhotoDNA and PDQ both specify inexact
matching algorithms. Notably, both employ Sobel gradients
in their analysis of an image. This filter, applied horizontally
and vertically, prominently detects the edges of an image, as
these edges have high gradient disruption along them. This
is useful in perceptually identifying an image, as pixel-level
changes, such as compression or minor cropping, will not
fundamentally change an image’s edges, and therefore should
have a minimal effect on the digest.

In both algorithms, the hash value is calculated as a sum of
the value of gradients. This can be equivalently understood as

6Initial experimentation utilizing the L2 metric for comp suggested negli-
gible difference in performance and thus was not further evaluated.

a count function, and is therefore non-differentiable. While
this can be estimated using tanh, our attacks below do not
require differentiablity, as we treat the hash as a black box.

3 Taxonomy of Attacks on E2EE-PHM
The aforementioned proposals for E2EE-PHM content scan-
ning systems raise new confidentiality vulnerabilities that can
affect user security, the effectiveness of scanning, and perhaps
even impact the privacy of abuse victims. More critically, the
nature of these vulnerabilities cannot be evaluated without a
clear understanding of the properties in the underlying PHM.
We proceed to provide a taxonomy of attacks on E2EE-PHM
systems, their threat model, and the corresponding attacks on
the underlying PHM scheme.

3.1 Targeted-Collision Surveillance Attacks

Algorithmic weakness. E2EE-PHM systems are potentially
vulnerable to attacks in which a surveillance adversary con-
structs meaningful files that have semantically non-equivalent
content, and yet are identified as a match to the underlying
PHM system.

If the PHM’s digests are statistically concentrated around
a small space (which is a vulnerability), then such collisions
may be found by chance just by trying a large corpus. Finding
regular preimages is typically trivial for PHM, where tiny
local changes in an image may not perturb its digest; however,
a collision of perceptually-similar images is not useful for the
surveillance attacks below. A second-preimage attack may
not be useful either, if the generated preimages are “garbage”
images that would not pass muster with target users (in the first
attack variant) or the digests’ curators (in the second variant).
What is desired is finding a collision between images that
are perceptually different and also have the aforementioned
requisite semantics, which leads us to the following.
Targeted collisions. In this special form of second-preimage
attack, the attack algorithm takes as input a known target
digest D corresponding to the hash of an unknown target
image T , as well as a known starting image S. The goal is
to identify a new image T ′ that is perceptually similar to the
starting image S but whose digest is close to that of the target
image T : comp(H(T ′),D)< ∆d .

Given the ability to practically generate targeted collisions,
two forms of surveillance attacks are possible.
Surveillance threat model 1. The attacker is able to send
files via some communication medium which does not reveal
identity of recipients (e.g., a bulletin board or an anonymous
messaging system). The attacker wishes to deanonymize these
recipients. The attacker is assumed to be capable of crafting
and posting innocuous-looking files to that medium, such that
recipients are likely to forward these via the same medium
(with significant probability). The communication medium is
assumed to implement E2EE-PHM, and the attacker knows
the digest D of some image in the E2EE-PHM database. More-
over, the attacker is assumed to get notified of positive detec-



tion of that digest: for example, attacker may be a nefarious
E2EE-PHM service provider, may have acquired access to
the service provider’s system via an intrusion or an insider;
or may partially control an organization (such as NCMEC)
which receives notifications.7

Surveillance attack 1. Under these assumptions, the at-
tacker will first create a targeted collision where the starting
image S is some innocuous-looking image that is likely to
be circulated by the targeted users, and the target digest is
D (i.e., the digest of some illicit image). The attacker then
transmits the resulting image T ′ to the targeted users over the
communication medium. Any user who takes the bait, and
forwards T ′ via the E2EE-PHM system, will be (mis)detected
as having sent the illicit file. The attacker gets notified of these
false positives and can deduce who transmitted T ′ and when.

Surveillance threat model 2. The attacker wishes to detect
any transmission of some specific image T in a communica-
tion medium which implements E2EE-PHM. The attacker
is assumed to know the digest D of the image T (but not
necessarily T itself). The attacker is assumed to be able to
cause the addition of an illicit image of its choice to the E2EE-
PHM database (e.g., by presenting it to the service provider,
or to an organization such as NCMEC that is trusted to curate
the database), and to be notified of positive detection of that
image (as above).

Surveillance attack 2. Under these assumptions, the at-
tacker will first create a targeted collision where the starting
image S is some illicit image of their choice, and the target im-
age is the aforementioned image T being surveilled (specified
by its digest D). The resulting image T ′ is perceptually similar
to the illicit image S, and thus the attacker can cause it to be
added to the E2EE-PHM database. Subsequently, whenever a
user transmits file T through the private channel, the transmis-
sion is flagged by the PHM system (as a false-positive match
of T ′) and the attacker is notified.

The importance of targeted-collision surveillance attacks.
The debate around E2EE-PHM has been vigorous. Some have
argued that targeted collision attacks are not a concern, since
providers can manually review such false-positives before
they are reported to law enforcement. However, this argument
is inconsistent with the stated goal of end-to-end encryption
systems, which are explicitly designed to prevent the leakage
of plaintext data to the provider. A number of previous works
have proposed or addressed attacks on E2EE systems that are
operable only by attackers who compromise the provider’s
system [19, 35, 48], and many of the attacks have resulted
in protocol repairs by providers; hence this threat model is
not unusual. Moreover, even if match results never leave the
provider’s systems, they can still place users at risk: in multi-
ple instances, state-sponsored attackers have infiltrated major

7Notifications may be monitored by humans, as in Apple’s system, but
this is unlikely to be foolproof and moreover creates additional attack vectors.

US tech firms with the goal of conducting surveillance against
platform users [13, 43].8

3.2 User Framing and Censorship

A variant of the previous attack scenario considers an adver-
sary who wishes to use targeted collisions to harm a specific
user, or to harm anyone who distributes certain legitimate
context, by causing them to be flagged by the E2EE-PHM
system. We consider the same algorithmic weakness as above,
i.e., collisions between semantically non-equivalent images.

Framing threat model. The adversary aims to frame an un-
witting user for trafficking in illicit content, using seemingly-
innocuous images to do so. The adversary knows some target
image T the user will send using the E2EE-PHM system (e.g.,
the attacker may send an apt meme image to the user). The
adversary can cause an illicit-looking image of their choice
to be added to the database of illicit image digests (e.g., by
submitting it to the database’s curator, or planting somewhere
it would be found and sent to the curator).

Censorship threat model. The adversary desires to prevent
legitimate image T from being freely communicated. The
adversary knows the digest D of T . As above, the adversary
can cause illicit-looking images to be added to the PHM-based
content scanning database.

Framing or Censorship attack. In both cases of the above
threat models, the adversary can proceed as follows. It finds
a target collision, setting the source image S to some arbi-
trary illicit image, and the target digest to D. The resulting
image T ′ is perceptually similar to S and can thus be added
to the database; but its digest is close to the target image T .
Henceforth, anyone who sends the image T will be flagged
as a (false-positive) match of the illicit image T ′.

Censorship attack. The adversary can use a targeted col-
lision attack as above, setting the source image S to some
arbitrary illicit image. The resulting image T ′ is perceptually
similar to S and thus will be considered illicit when submitted
to the database; but its digest is close to the target image T ,
causing any distribution of T to be flagged as distribution of
T ′, and will be flagged by the system.

3.3 Illicit-Content Detection Avoidance

Algorithmic weakness. E2EE-PHM systems flag a commu-
nication if there is a match with some illicit content. In practi-
cal terms, illicit content digests are stored in some database.
This is essentially a “deny list”: a match with a hash in the
deny list is blocked. In client-local matching, these deny lists
are placed on device. Access to this deny list creates a risk that
dishonest users will abuse this knowledge to evade detection.

8Most notably, in 2019 several Twitter customer service employees were
prosecuted for allegedly spying on critics of the Kingdom of Saudi Ara-
bia [13]. Content moderation employees and their infrastructure, including
operations outsourced to third-party firms, represent an ideal access point for
sophisticated attackers.



Such access can cause even greater harm if the PHM
scheme allows for two files with semantically equivalent con-
tent to have different digests. This vulnerability would consti-
tute a total break in the entire E2EE-PHM system, allowing
an attacker to bypass the deny list with arbitrary content.

Avoidance threat model. The attacker aims to circumvent
DB, a perceptual hash database of illicit content, and distribute
illicit content under an E2EE-PHM system. The attacker has
access to DB, and can query a candidate image and determine
if it is present in DB. The attacker can query DB locally,
without generating an externally-visible trace.

Simple avoidance attack. The simplest, and inherent, at-
tack is where an attacker wishes to send an illicit image, but
is willing to abort if they would be flagged. Given DB, the
attacker can simply compute the digest of their illicit image
and check it against DB before sending it.

Perceptual detection avoidance attack. A more nefarious
attack is to create a different image that is perceptually similar
but avoids detection. In this attack on PHM, the attacker has a
starting image S. Their goal is to generate an avoidant image
S′ that is perceptually similar to S but whose digest is far from
any in DB: comp(H(S′),D)> ∆d for all D ∈ DB.

If this can be done at a practical cost, then the attacker can
effectively send arbitrary images without ever being flagged;
moreover, further dissemination of those images by others
will not be flagged either (until a different DB or detection
system is encountered).

3.4 User Data Leakage

Algorithmic weakness. In the edge hashing approach to
E2EE content scanning, the provider gets the PHM digest
of every transmitted user image. Even if the digest does not
match the provider’s database, it may reveal information about
the content. Depending on the properties of the hash function,
this approach could potentially leak a substantial amount of
information about a user’s communication pattern. We de-
velop two attacks on PHM schemes that would facilitate such
leakage from edge-hashing E2EE-PHM.

User data leakage threat model. In this attack model, the
attacker wishes to recover attributes of the unknown input
image, S, given its digest D = H(S).

Preimage reconstruction attack. The strongest user data
leakage attack is recovery of the original image S used to
compute the digest D = H(S). This setting is somewhat anal-
ogous to the notion of preimage attack resistance in cryp-
tographic hash functions, but with several differences. First,
even information-theoretically we cannot hope to perfectly
reproduce the original image S from a digest that is much
smaller; instead, we seek to generate an image S′ that is per-
ceptually and semantically similar to S, but expect it to be sub-
tly different at the fine-grained pixel level where most entropy
lies. Similarly, we would not be satisfied by just any image
S′ that has a digest D (as would be the case for cryptographic

hash function applications such as password hashing [5]);
rather, we wish to generate a meaningful “realistic” image.

Preimage attribute recovery attack. A weaker (but still
harmful) attack is when the attacker recovers meaningful
attributes of the image. We define this as an attribute function,
attr, which corresponds to some aspect of the image, such
as identifying objects, locations, or number of people. Given
attr and D = H(S), the attacker attempts to recover the value
of attr(S). For example, attr may be an image-contents label
implied by a classification dataset, and in the context of E2EE-
PHM, this could reveal the topic of an encrypted conversation
between users from the categories of images they exchange.

3.5 Illicit-Content Data Leaks

Algorithmic weakness. E2EE-PHM using client-local
matching exposes the database of illicit content digests at
each client endpoint, which increases the risk that these di-
gests will be extracted and made public. This poses a risk
that attackers might detect attributes of this highly-sensitive
content, or even reconstruct it. In a worst-case outcome, this
could identify abuse victims and expose them to further harm.

Illicit content leakage threat model. The attacker’s goal is
to deduce the attributes of, or fully reconstruct, illicit content
given only their digests. We consider an attacker who has
access to DB, a perceptual hash database of illicit content
digests as above. “Access” is defined loosely here, as the
attacker may have a local copy of a publicly-available dataset,
may extract such a dataset from a device or an app, or may
download it from a dataset via a cloud service. Indeed, client-
local matching necessitates such access to be given by the
service provider or software/hardware vendor.

Illicit content leakage attack. Attacks in this model are es-
sentially the mirror image of those in Section 3.4. The attacker
here is a user who gained possession of DB, and attempts to
recover information from DB to reveal illicit content: whether
by reconstructing an entire preimage of a digest in DB, or
by attempting to detect an attribute of an input image. Even
simple attributes could be devastating to the privacy of the
victims depicted, indirectly, through the digest values. The
PHM-level attacks are thus the same as in Section 3.4, applied
to digests in DB instead of user-supplied images.

4 Attacking Perceptual Hash Functions

In the remainder of this work, we focus on the attacks de-
scribed in Section 3.1 through Section 3.3. This includes
attacks that identify targeted collisions, as well as detection
avoidance attacks against perceptual hash functions. Our at-
tacks in this paper do not consider data leakage or pre-image
reconstruction attacks, though we include them in our taxon-
omy for completeness. We now discuss the methodology for
performing these attacks against PhotoDNA and PDQ.



Figure 2: Visualization of the attack and gradient estimation
from Section 4.1 in image and hash space. The blue arrow
at H(x′i) represents query image changes to the hash and the
red arrow represents the calculated gradient. Since H is non-
continuous, each red arrow is a local approximation of the
gradient and may not point directly at the target hash H(T ).

4.1 Targeted-Second-Preimage Attack

Given a digest, we adapt a gradient-based optimization tech-
nique to find second preimages. Our attack algorithm takes
as input a known digest D corresponding to the hash of an
unknown target image T , as well as a starting image S. There
is no need to know the original image T (and in a real-world
setup, an attacker likely does not, see Section 3.1). We will
generate a new image T ′ that is semantically similar to the
starting image S but such that comp(H(T ′),D)< ∆d . We do
this using indirect Monte-Carlo approximations of the hash-
function gradients to minimize loss terms over hash distances
and perturbation sizes. Figure 2 illustrates this.

Our attacker’s optimization objective is to find a minimal δ

such that: comp(H(S+δ),H(T ))< ∆d

Algorithm 1 Targeted-Second-Preimage Attack

Parameters: N : num iterations, P : num projections γ :
learning rate
Input h: target hash, x0 : starting image, Hash() : hash
function, Dist() : distance function
currentDistance =Dist(h,Hash(x0))
for i = 1,2, . . .N do

δi =calcGrad(xi−1,h,P)
xi← xi−1 + γδi
currentDistance = h−Hash(xi)
if currentDistance < ∆d then

Hash(xi) is a successful collision with h
end if

end for

Gradient-based optimization. Algorithm 1 describes our
optimization procedure. The attack begins by setting x′0← S,
and calculating its hash’s distance to the target hash ∆d

′
0←

comp(H(x′0),H(T )). Our goal now is to find a vector of small

changes to each pixel δ0 so as to minimize comp(H(x′0 +
δ0),H(T )). We then set x′1← x′0 +δ0 and repeat this process
for xi, i >= 1 until comp(H(x′i),H(T )) < ∆d , i.e. x′i and T
will be hash matches. For the final index m, our optimization
outputs δ← x′m−T .

A natural choice for δ0 is a vector proportionate to the neg-
ative gradient vector − ∂H

∂x′0
. Let ∇x (comp)≡− ∂H

∂x then gi =

γ∇x′i
(comp)/‖∇x′i

(comp)‖, i.e. gi is the gradient in point x′i,
normalized and multiplied by a learning rate γ that modulates
the change size. For δi, i > 0, we set δi as a weighted aver-
age between the current gradient and a momentum term [25]
given by the previous update, i.e., δi← ρ∗δi−1 +(1−ρ)∗gi.

Algorithm 2 calcGrad

Parameters: q: num projections, λ: perturbation param
Input: h: target hash, xi : image, Hash() : hash function,
Dist() : distance function
for j = 1,2, . . .q do

p j ∼N (0,1)
c j← Dist(Hash(xi +λp j),h)−Dist(Hash(xi),h)

end for
gi← 1

q ∑
q
1 c j · p j

δi← Norm(gi)

Monte Carlo gradient estimation. Algorithm 2 describes
our gradient-optimization procedure. Since hashes are not
necessarily differentiable, we use a gradient estimate via
Monte Carlo sampling on each candidate image x′i. At the
ith step we begin with a candidate image x′i and calculate
its hash H(x′i). We then calculate ∆′i, the distance to the tar-
get hash, H(x). We then generate q mutations p1, . . . , pq,
each with the same dimension of the input image, via ran-
dom element-wise sampling from a 0-mean distribution. For
each mutation j we calculate the change in our objective
c j← comp(H(x′i+λp j),H(T ))−comp(H(x′i),H(T )) where
λ controls the perturbation magnitude. These terms are then
used as the coefficients to calculate a weighted average of all
the mutations to serve as the gradient. gi← 1

q ∑
q
1 c j · p j

A higher number of samples q corresponds to increased
approximation accuracy.

Additional variants. We experiment with two additional
variants of the above optimization: first, the grayscale vari-
ant where perturbation pixels are constrained to have equal
values across color channels. Intuitively, this might (1) re-
duce human-perceptible chroma-noise during the attack, and
(2) reduce the optimization domain’s dimensionality without
impeding performance, as PhotoDNA casts images (and our
perturbations) to grayscale prior to computing the hash.

Second, the double-sample variant, also known as anti-
thetic sampling, tries to incorporate two samples instead of
one for each mutation. Here, we only sample q/2 random per-
turbations in each round p1, . . . , pq/2, and set the rest of the



q mutations to the negative values of the sampled ones, i.e.,
(pq/2+1, . . . , pq)← (−p1, . . . ,−pq/2). As shown to be empir-
ically effective in [23, 50], our Monte Carlo estimator will
build on a consistent correspondence between a perturbation
direction and the function’s value. If correspondence is con-
sistent, we expect that going in a certain direction in space,
by applying a certain mutation, will have the inverse effect of
going in the opposite direction. By sampling each mutation’s
positive-sign and negative-sign effects, we can mitigate the
inclusion of mutations whose direction presents inconsistent
behavior, for example when going in either the direction or
its inverse, both leads to a decrease in the objective. This will
lead to the mutation’s coefficient terms in gi’s computation to
partially cancel each other out, thus mitigating their effect.

Difference from black-box adversarial ML. Using
Monte Carlo to estimate gradients is a known black-box opti-
mization technique [61], recently used by HopSkipJumpAt-
tack [10] and others [23] for finding adversarial examples.
Our setting is somewhat different from the standard black-
box adversarial ML setting, where the adversary is trying
to fool a classifier to cause it to make a misprediction. At-
tacks like HopSkipJumpAttack use a binary value indicating
whether impersonation to a target class is successful as a ba-
sis for their Monte-Carlo estimation – assuming the attacker
can trivially find the decision boundary. In contrast, we try
to fool a hash-distance computation instead of a classifier,
and cannot make such an assumption. However, our attack
can gain comparatively finer-grained success measures by
utilizing hash distances. We thus adapt our gradient estima-
tor to use raw distances instead of a binary decision. We can
adapt other black-box optimization approaches in this fashion;
in Section 5.4, we do this and compare them to our chosen
method.

4.2 Detection-Avoidance Attack

In this attack we attempt to find the smallest perturba-
tion that will cause an image to no longer match the orig-
inal non-perturbed image. Given a target image T , this
amounts to finding a semantically equivalent image S where
comp(H(S),H(T )) > ∆d , meaning the two images do not
trigger a hash match at the given threshold. Here, we con-
servatively assume that the attacker does not have access to
the hash at all, but can check if any number of images are
considered a hash match with the original image for a given
∆d . This attack is thus black-box with respect to the details
of the hash distance comparison, instead relying on a deci-
sion between a match or not. To this end, we adopt the full
HopSkipJumpAttack adversarial framework to hash collision
avoidance. We hereby shortly describe this attack.

For a given target image, we begin with a random second
image S′0 which is not a hash collision as a starting point.
We then repeatedly update S′i to be as close as possible to T
while still not being a hash collision. For each step, we begin
with a non-colliding image S′i and the target image T . We

define the vector v between T and S′i, and move from T along
v until we move a distance the smallest distance l such that
b = T + l ∗ v is not a collision (the “decision boundary” in
machine learning classification). Since T is guaranteed to be
a hash collision with itself, and S′i is not by definition, there
is a point on v which we call l at which the hash distance
switches from colliding to a non collision. After the boundary
point b is found, the change vector δi is computed at b by
estimating the gradient as before, and a step of size γ from the
boundary is taken in the direction of the gradient. This new
point, S′i+1 = b+δi will serve as the starting point of the next
step. The gradient is calculated the same as the collision threat
model, except each coefficient is either -1 or 1, corresponding
to which side of the decision boundary the query point falls
on. This process is repeated for a set number of steps or until
convergence.

5 Evaluation
5.1 Experimental Setup

As discussed in Section 4, Microsoft has not publicly dis-
closed the PhotoDNA algorithm and has not provided any
open implementation. However, a putative implementation
of PhotoDNA was leaked on GitHub in 2021 [27, 28], and
we use it for our attacks. The implementation appears legiti-
mate; our analysis in Section 5.2 shows that it has behavior
characteristic of perceptual hashes, and others have shown
that it acts similarly [27, 32] to a high-level description of
PhotoDNA by one of the algorithm’s authors [18]. If Mi-
crosoft were to officially release PhotoDNA, we would be
easily able to modify our attack against their implementation.
For our implementation of PDQ, we use the official source
implementation published by Facebook [16].

All of the experiments in this section were compiled and
run using PyTorch 1.9 and Python 3.6 on two separate ma-
chines. PhotoDNA attacks were run using a 6-core AMD
Ryzen 5 5600X CPU and Nvidia RTX 3070 GPU, while
attacks on PDQ were run using a 72-core Intel Xeon CPU E5-
2695 v4 without a dedicated GPU. We use a GPU-accelerated
machine for PhotoDNA as we found that the bottleneck was
machine learning operations, not the dynamic-link library of
PhotoDNA used to compute hashing. On the other hand, we
found that PDQ was far more CPU intensive due to hash com-
putations being run in Python, instead of a compiled library.

5.2 Baseline Experiments

Our analysis consists of two stages. First, to establish a base-
line for hashing accuracy and distance thresholds in non-
adversarial settings, we evaluated the hash algorithms on
unmodified image files drawn from a standard dataset, and
then consider the same images with light (but non-adversarial)
transforms.

Each of PhotoDNA and PDQ uses inexact matching and
a distance metric to compare digest. The threshold ∆d is
adjustable, and can vary by deployment. The specific value
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Figure 3: Frequency of pairwise hash distances derived
from 157 perceptually distinct images’ pairs from CopyDays
dataset. PhotoDNA shown in bins of 100. Used to determine
threshold for a hash match.

Table 1: Precision and Recall values for matching tasks utiliz-
ing various transformed datasets. For JPEG compression we
create two datasets, one containing JPEG-compressed images
with 5% and 8% degradation, and a second containing JPEG-
compressed images 50% and 75% degradation. For crops, we
similarly create two datasets, one with crops missing 10% and
15% of the image, and another dataset removing 70% or 80%.
These four datasets are of size 471. Strong is adversarially
perturbed, size 314, as defined by [24].

PhotoDNA
Precision

PhotoDNA
Recall

PDQ
Precision

PDQ
Recall

Original 1 1 1 1
JPEG/5,8 1 0.43 1 0.54
JPEG/50,75 1 0.34 1 0.34
Crops/10,15 1 0.71 1 1
Crops/70,80 1 0.43 1 0.99
Strong 1 0.51 1 0.53

used in a system has a complex impact for our purposes:
higher thresholds are likely to make a PHM system more
sensitive to re-encoded content, with the possibility of a higher
natural false-positive rate. At the same time, lower thresholds
can potentially make collisions more difficult to find, while
improving the success of avoidance attacks.

Determining match thresholds. We conduct our attacks
at a variety of collision thresholds for each hash function. To
provide some context for these thresholds, we conducted a se-
ries of experiments as described by Facebook in its evaluation
of PDQ [16]. These involve computing the pairwise distances
of a set of the hashed CopyDays dataset, which consists of 157
perceptually-distinct images [24, 26]. The resulting 24,492
pairwise results are plotted in Fig. 3 for both PhotoDNA and
PDQ. We find that a matching distance of approximately 92
for PDQ, and 1,809 are an appropriate threshold to eliminate
false positives in this representative dataset. For simplicity, in
our later experiments we will use 90 as our baseline matching
threshold for PDQ and 1,800 for PhotoDNA.

Accuracy under simple transforms. To evaluate the
matching efficacy of these algorithms under simple image
transforms, we compared the unmauled CopyDays images

with transformed images from that dataset. These include a
first set of JPEG compressed images with 5% and 8% degra-
dation respectively, and a second set containing JPEG com-
pressed images 50% and 75% degradation. For crops, we
similarly compare two datasets, one with crops missing 10%
and 15% of the image, and another dataset removing 70%
and 80%. These four datasets are each of size 471 = 3×157.
Finally, we compared against a “Strong” that is adversarially
perturbed, size 314 = 2× 157. By computing the pairwise
distances of both the original and transformed versions of the
dataset, we can see how those transforms affect the resulting
hash distances under each algorithm. These results are shown
in Table 1.

Using the baseline thresholds, we observe that PDQ per-
forms slightly better at matching minor JPEG compression,
but much better than PhotoDNA when matching both minor
and major cropping. This behavior is likely due to the under-
lying primitives used to perform the perceptual hashing; PDQ
applies a modified version of the Discrete Cosine Transform
(DCT), the same as the transform in JPEG compression [60],
while PhotoDNA relies primarily on its binning algorithm. In-
terestingly, PhotoDNA performed relatively poorly on crops,
even though it takes specific steps to mitigate changes in
hashing due to crops [32].

5.3 Attack Results

We implement the following two attacks utilizing images
from the ImageNet Validation dataset [49]9.

5.3.1 Targeted-Second-Preimage Generation

Given a target image we attempt to generate an image which
collides in hash space, but remain perceptually distant (kayak
to toilet bowl in Fig. 1a, boy to shark in Fig. 1b, etc.) utilizing
the attack described in Section 4. This corresponds to being
able to cause false positive illicit content hash matches in a
deployed system using benign images and the database of
illicit-content hashes.

Results. We were able to find collisions at various levels
below the baseline ∆d discovered in Section 5.1 for complete
attacks on PhotoDNA and PDQ. We successfully created
targeted preimages on randomly-chosen ImageNet sample im-
age pairs, using our minimal threshold parameter ∆d = 1,800
for PhotoDNA and ∆d = 90 for PDQ. Figures 4 and 5 show
two such example images, with total hash distances 1,788
and 88 respectively10. We ran our attack on 30 randomly
selected image pairs from ImageNet [49], producing hash
collisions significantly below our baseline ∆d . Of these pairs,
we are able to reach the baseline ∆dfor 17/30 runs within
20k iterations under PhotoDNA along with a minimum col-
lision distance of 342 as shown in Fig. 6. For PDQ we are

9This is a common image dataset, and has been used in prior perceptual
hashing work [25, 42].

10All image pairs which reached the baseline ∆d will be available to view
at perceptualhashing.lol.

www.perceptualhashing.lol


(a) Starting Image
∆d : 6363, L2: 0

(b) Baseline Collision
∆d : 1788, L2 37.92

(c) Target
∆d : 0

Figure 4: Example targeted second preimage attack on Pho-
toDNA. The leftmost image shows a source image, while the
rightmost image shows the chosen target image. The center
image contains a near-collision with ∆d < 1800.

(a) Starting Image
∆d : 112, L2: 0

(b) Baseline Collision
∆d : 88, L2: 90.54

(c) Target
∆d : 0

Figure 5: Example targeted second preimage attack on PDQ.
The leftmost image shows a source image, while the right-
most image shows the chosen target image. The center image
contains a near-collision with ∆d < 90.

Table 2: Comparison of Targeted-Second-Preimage Gener-
ation attack variants as mentioned in Section 4.1. Success
rate is the percentage of runs for which the hash distance was
below ∆d . “Image distance” corresponds to the source images’
average perturbation size (L2 norm size).

(a) PhotoDNA Ablation Study.

PhotoDNA Success
Rate

Image
Distance

Baseline 0.833 47.66
Grayscale 0.866 59.33
ρ 0.5
Grayscale 0.900 42.81

ρ 0.5
Grayscale
Double-Sample

0.833 37.78

(b) PDQ Ablation Study.

PDQ Success
Rate

Image
Distance

Baseline 1 106.48
Grayscale 1 112.16
ρ 0.5 1 77.62
ρ 0.1
Grayscale 1 108.02

ρ 0.25
Grayscale 1 102.16

ρ 0.5
Grayscale 1 88.14

Grayscale
Double-Sample 1 124.98

able to reach the target ∆dfor all 30 image pairs within 7k
iterations. Allowing the attack to run for higher iterations is
able to produce a perfect hash collision for all tested images
but with significant visual noise as shown in Fig. 7, even at
comparatively fewer iterations. Attack progression is shown
in Fig. 8 along with an evaluation of visual noise added to the
starting image shown in Fig. 9.

Ablation study. We run a parameter sweep on the attack
and its variants discussed in Section 4.1. We evaluate the
effect of grayscale updates, momentum ρ at various levels,
and double-sample variant. Table 2 reports these results.
PhotoDNA succeeds most frequently utilizing ρ = 0.5 with
grayscale updates and produces the clearest collision utiliz-
ing ρ = 0.5 with grayscale updates and double-sample. Since
all runs are able to achieve perfect collisions within 20,000
iterations, we also measure perurbation sizes to evaluate their

quality. ρ = 0.5 with grayscale updates performs the best.
The reader can visually appreciate the small-perturbation-size
collisions in Figs. 10 and 11.

Attack Configuration. Due to the hash domain being sig-
nificantly smaller for PDQ, small changes to the attack image
do not affect the hash as much, requiring increased hyperpa-
rameters. This causes our attack to learn in coarse steps for
PDQ, never taking a step which increases the hash distance,
whereas PhotoDNA has more fine-grained direction, allowing
for smoother convergence shown in Fig. 8. Two hyperparam-
eters differed between our attacks - PDQ required a learning
rate of 5 and δ of 100 whereas PhotoDNA required 0.5 and
1 respectively to converge. Due to these changes, additional
learning on PDQ past the baseline ∆d led to noisy images,
thus runs were stopped early – although all baseline runs were
able to reach a perfect collision with enough iterations.

Attack Runtime. We aimed for a 4 hour completion time
for each of our targeted-second-preimage attacks. Our Pho-
toDNA attacks took approximately 4 hours to complete
20,000 iterations while our PDQ attacks achieved conver-
gence (i.e., ∆d < 90) for all 30 image pairs in approximately 3
hours, corresponding to 600–6,000 iterations. Neither attack
time is not optimal: the need to execute PhotoDNA as a binary
and calculate PDQ utilizing pure Python operations on CPU
no doubt increased the attack time significantly, and further
optimization and parallelization will likely improve runtime.

5.3.2 Detection Avoidance

Jain et al. [25] evaluated a detection evasion attack against
PDQ and other hashes but not PhotoDNA; we complement
their work by presenting results on PhotoDNA. Using the
methodology described in Section 4, we are able to generate



(a) Initial
∆d : 6162

(b) i = 8.2k
∆d : 1797

(c) i = 12k
∆d : 963

(d) i = 20k
∆d : 342

(e) Target

Figure 6: A set of intermediate collisions generated at step i
between the initial (left) and target (right) image pair shown
at varying ∆d thresholds using the PhotoDNA hash function.
Each image (top) is shown with visualizations of their respec-
tive PhotoDNA hashes (bottom). Image quality is only slightly
degraded even for very low hash distances.

(a) Initial
∆d : 120

(b) i = 300
∆d : 88

(c) i = 800
∆d : 38

(d) i = 1600
∆d : 0

(e) Target

Figure 7: A set of intermediate collisions generated at step i
between the initial (left) and target (right) image pair shown
at varying ∆d thresholds using the PDQ hash function. Each
image (top) is shown with visualizations of their respective
PDQ hashes (bottom). Image quality is greatly reduced as
hash distance decreases.
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Figure 8: Targeted Second-Preimage-Generation Attack progression for 30 image pairs selected at random from ImageNet
validation set [49] using PhotoDNA (left) and PDQ (right) – baseline ∆d shown with dashed blue line.

images with hashes that satisfy the matching thresholds we
chose in the previous section. We attempt to generate an
image whose distance from the original is above the matching
threshold ∆d while remaining perceptually similar to it.11

We ran the attack against PhotoDNA for 300 iterations and
presented the image with the lowest L2 distance to the target
image. Our attack against PhotoDNA took less than 1 hour.

Results. Figure 12 shows an image of a boat, perturbed
such that the PhotoDNA hash distances from the original
image are above 1800 and 4000, respectively. Both of the per-
turbed images remain perceptually equivalent to the original,
whereas the distance in hash space increases beyond the base-
line ∆d = 1800 to even remain relatively clear at ∆d = 4000.

11This likely results in an image that does not collide with any image in
the flagged-images database: see [25, §7].

5.4 Comparison to Prior Work on Adversarial ML

Prior black-box adversarial-ML work includes a plethora of
variants that optimize a black-box function by perturbing
its input. We identify 3 prominent groups of such methods,
implement a strong candidate variant for each, and compare
our method against it. We note that our choice of baselines
is not meant as a comparison against an exhaustive set of
attack families, as this is a huge space (e.g. we do not evaluate
finite-difference gradients [11], “hybrid” approaches that use
models to guide querying [12, 58], rejection sampling [6],
and many others). We aimed to choose a set of representative
baselines that show that not all methods even work, and that
our approach defeats natural baselines.

Particle Swarm Optimization (PSO). These evolutionary
algorithms maintain a “swarm” of perturbations and itera-
tively move them in randomized directions, guided by the
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Figure 9: Targeted Second-Preimage-Generation Attack for the same 30 image pairs as above showing the relationship between
L1 hash distance and L2 attack image distance for PhotoDNA (left) and PDQ (right).

quality (“fitness”) of previously-observed perturbations. This
is a classic technique in evolutionary algorithms [30] that has
been popular for black-box adversarial ML [41, 52]. We use
the PySwarms package [40] to implement this method in our
setting. As in Section 4.1, we adapt this method to minimize
hash distances by setting the fitness method as the distance,
i.e., −comp(H(·),H(T )).

Natural Evolution Strategies (NES). These methods use
mutations to attain estimated gradients and then apply stan-
dard gradient-based optimization [10, 23]. Again, the general
approach was developed regardless of adversarial ML, due to
Wierstra et al. [61]. Our own method (Sec. 4.1) belongs in this
category. As a comparison candidate, we considered [61]’s
multinomial-distribution search algorithm, but this is com-
putationally infeasible as the covariate matrix would be of
size (400×400×3)2. Instead, we used a second algorithm
from [61], based on estimating the inverse Fisher informa-
tion matrix at each step and applying it as a coefficient to the
gradient update.

Surrogate-based approaches. It is interesting to examine
if attacking a proxy model trained by the adversary to imitate
the behavior of the black-box one, which can be done in
a white-box fashion, would produce second-preimages that
transfer to the black-box model. This is also a well known
technique [46, 47, 59]. To train our own surrogate model, we
chose a neural architecture designed to compute perceptual
hashes, namely NeuralHash [56]. We modify it to produce
hashes of the same shape as our target hash algorithm (144
and 256 for PhotoDNA & PDQ respectively). We then train
fit this network to minimize the Mean Squared Error between
its output and outputs of our target algorithm’s hashes on
ImageNet images [49]. Once the model has been trained, we
construct a fully-differentiable version of the hash-distance
computation, and run a white-box attack on this model.

Table 3: Comparing our approach with prior work. Success
rate is the percentage of runs for which the hash distance
was below ∆d . “Image distance” corresponds to the source
image’s perturbation size (L2 norm size).

(a) PhotoDNA Prior Work Study.

PhotoDNA Success
Rate

Image
Distance

Our Method 0.900 42.81
NES 0.633 38.59
PSO 0.033 281.71
Surrogate 0 N/A

(b) PDQ Prior Work Study.

PDQ Success
Rate

Image
Distance

Our Method 1 77.62
NES 1 123.23
PSO 0.366 351.21
Surrogate 0 N/A

Evaluation and results. We run a preimage attack against
the same 30 images as mentioned above Section 5.3.1. Table 3
reports our results and compares against our own method. The
surrogate-based attack fails completely, due to the surrogate
model poorly fitting to the hash function. This is somewhat
expected, since learning complex functions with ample non-
linear behavior and open output domains is highly nontriv-
ial. PSO sometimes succeeds in evasion, but rarely so. NES
succeeds at a rate more comparable to our attack, and even
defeating some of our variants (compare to figures in Table 2).
The reader can also find a visual comparison in Figs.10 & 11.

6 Related Work
Adversarial inputs. Adversarial inputs (“adversarial exam-
ples”) are human-imperceptible perturbations to inputs of
machine learning (typically deep neural networks) that cause
dramatic, unexpected changes to outputs [9, 20, 57]. Most
attacks compute the gradients directly which is impossible
for most PHMs as they are non-differentiable. Black-box
attacks either use surrogate models [46, 47, 59] or run an evo-
lutionary search algorithm [10, 21, 44] which often includes
estimating the gradients. We explain how black-box attacks
against ML classifiers can be adapted to be applied against
PHMs (see Section 4.1), but prior to this work it was not



(a) Baseline
∆d : 1788 L2: 20.59

(b) ρ= 0.5, Grayscale
∆d : 1792 L2: 16.74

(c) ρ = 0.5, Gray, DS
∆d : 1766 L2: 14.98

(d) NES
∆d : 1774 L2: 18.05

(e) PSO
∆d : 2575 L2: 203.44

(f) Target Image

Figure 10: Comparison between the best PhotoDNA Targeted-
Second-Preimage collisions generated using various attack
variants. Results shown in Table 2.

(a) Baseline
∆d : 84 L2: 50.06

(b) ρ = 0.5
∆d : 88 L2: 31.96

(c) ρ = 0.5 Grayscale
∆d : 88 L2: 33.77

(d) NES
∆d : 80 L2: 61.34

(e) PSO
∆d : 78 L2: 299.56

(f) Target Image

Figure 11: Comparison between the best PDQ Targeted-
Second-Preimage collisions generated using various attack
variants. Results shown in Table 2

(a) Starting Image
L2 Dist: 0

(b) ∆d = 1800 (BL)
L2 Dist: 15.2

(c) ∆d = 4000
L2 Dist: 40.2

Figure 12: Detection avoidance attack on PhotoDNA. The
starting image is on the left. The center image is the baseline
avoidant image with a hash distance of 1800 from the starting
image, and the rightmost image is an avoidant image with a
hash distance of 4000. The images also show the L2 similarity
metric between the starting image and each avoidant image.

clear that they will actually work, because PHMs are very
different from ML classifiers. Specifically, ML adversarial
attacks often assume you can randomly query to find an input
for a target class. PHMs have highly non-smooth surfaces
and input-obfuscating transformations inspired by those of
cryptographic hashes, so it not easy to find a preimage input
for a target output. This causes most black-box ML attacks to
fail. Our comparison with prior work suggests that some ap-
proaches indeed fail completely, but that others like gradient
estimation work well, and that our own approach significantly
outperforms baselines. See Section 5.4.

Private representations (and extraction attacks). There
are several other recent examples where obscure, poorly-

understood representations were used with the assumption
that they provide some guarantee, usually privacy, but with-
out any rigorous analysis supporting this, and attracted
widespread criticism. This includes for example the local
updates sent in “private” federated learning that leak sensi-
tive attributes [36], “deep representations” that were misper-
ceived as private but found to contain a surprising amount
of extractable information [45, 55], or “private-learning in-
stance encodings” [22, 62, 63] that were completely broken
by instance-recovery attacks [7, 8]. These recovery attacks
do not work on PHMs, and they recover information on en-
crypted instances, not compute second preimages nor images
that avoid detection.

7 Conclusion
Perceptual hash functions have become an increasingly impor-
tant component of the modern communications infrastructure,
generally with only limited consideration of their properties.
In the past this has been an acceptable tradeoff, because hash
matching was performed online and confidentiality was not
guaranteed by encrypted communications systems. In the next
era of increasingly E2EE communications systems, the use
of hash-based matching in E2EE protocols may carry signifi-
cantly higher risks. Our results demonstrate that these func-
tions are vulnerable to machine-learning based attacks that
produce both collisions and avoidant images, and that these
attacks have the potential to violate the guarantees of E2EE
communication participants. Going forward this observation
should help guide the designers of future PHF/PHM systems,
and inform the debate around the viability of deploying these
systems within encrypted communication mechanisms.



Our results leave several open problems. While we focused
on PhotoDNA and PDQ, there are several other hash func-
tions that, while less widely-deployed in PHM systems, could
also be analyzed using our techniques. Additionally, in this
work we did not evaluate whether it was possible to extract
information from PhotoDNA and PDQ hashes. Finally, there
are many questions facing practitioners and policymakers
surrounding the design of future scanning systems, if these
systems are to be built.
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