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Abstract—Learning-based malware detectors are widely used in practice to safeguard real-world computers. One major challenge is
known as model aging, where the effectiveness of these models drops drastically as malware variants keep evolving. To tackle model
aging, most existing works choose to label new samples to retrain the aged models. However, such data-perspective methods often
require excessive costs in labeling and retraining. In this paper, we observe that during evolution, malware samples often preserve
similar malicious semantics while switching to new implementations with semantically equivalent APIs. Such observation enables us to
look into the problem from a different perspective: feature space. More specifically, if the models can capture the intrinsic semantics of
malware variants from feature space, it will help slow down the aging of learning-based detectors. Based on this insight, we design
APIGRAPH to automatically extract API knowledge from API documentation and incorporate these knowledge into the training of
malware detection models. We use APIGRAPH to enhance 5 state-of-the-art malware detectors, covering both Android and Windows
platforms and various learning algorithms. Experiments on large-scale, evolutionary datasets with nearly 340K samples show that
APIGRAPH can help slow down the aging of these models by 5.9% to 19.6%, as well as reduce labeling efforts from 33.07% to 96.30%
on top of data-perspective methods.

Index Terms—Malware Detection, Model Aging, API Knowledge, Learning-based Detection.
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1 INTRODUCTION

L EARNING-based malware detectors [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15] are be-

coming more and more popular in both academia and
industry, because they do not rely on explicitly defined
signatures nor rules, thus being more scalable and flexi-
ble than signature-based or rule-based malware detectors.
However, as malware samples keep evolving (e.g., adding
more functionalities or deliberately evading detection [16]),
the effectiveness of learning-based malware detectors drops
significantly, which is known as model aging, or time de-
cay [16], [17], model degradation [18], and deterioration [19]
in the literature. In 2019, Kaspersky points out in a white
paper [20] that the detection rate of one of its commercial
learning-based detectors drops from almost 100% to below
60% in only three months. Model aging has become one ma-
jor obstacle to the practicalness of learning-based malware
detectors.

To tackle the aging of learning-based malware detec-
tors, existing solutions adopt data-perspective approaches,
which retrain and update aged models [10], [12], [21] with
newly labeled samples. However, data-perspective methods
have two shortcomings: 1) Labeling samples and retraining
models come at huge costs, as they heavily require expert
knowledge and computing resources. Although optimizing
strategies such as incremental/online learning [10] and ac-
tive learning [16] have been proposed, they still require large
amounts of newly-labeled samples (as verified in our exper-
iments in §6.2). 2) The retrained models are still unaware of
malware evolution, thus they need frequent retraining and
updating [22], [23]. As a result, new methods are needed
to help mitigate the problem of model aging in malware
detection.

In this paper, we look into the model aging problem from
a new feature space perspective. Our key observation is that

malware samples, during evolution, often keep the same or
similar semantics but switch to a different implementation
using semantically equivalent APIs. For example, the orig-
inal malware may send one user identifier like IMEI via
HTTP requests, but its evolved variant could send a differ-
ent identifier such as IMSI via sockets. Semantically, they are
almost the same, but the directly observed implementations
are different. Therefore, if such semantic similarity can be
captured and incorporated into machine learning models, it
can help slow down the aging of these detectors.

Based on the above idea, we propose APIGRAPH, a
system that can extract semantic knowledge from API
documents, called API knowledge, and incorporate these
knowledge into existing malware detectors to slow down
their aging. First, APIGRAPH leverages natural language
processing (NLP) techniques and predefined templates to
extract API entities and relations from official documents,
and builds an API relation graph. The API relation graph
can faithfully reflect the semantic relations among different
APIs. After that, APIGRAPH extracts API knowledge from
the relation graph by converting each API entity into an
embedding representation and grouping semantically-close
APIs into the same clusters. The extracted API knowledge
in the format of API clusters can be used in exiting mal-
ware detectors to help them capture the intrinsic semantics
during malware evolution.

To evaluate its effectiveness, we use APIGRAPH to en-
hance 4 state-of-the-art Android malware detectors [3],
[9], [11], [12] and 1 Windows malware detector [24]. For
each platform, we build a large-scale, evolutionary dataset
satisfying both temporal and spatial consistency, as pointed
out by a recent best practice [16], to fairly evaluate model
aging. Specifically, the Android dataset contains more than
322K Android apps ranging from 2012 to 2018, which is
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almost three times the one used in the SOTA work [16], and
the Windows dataset contains about 17K samples which
is the first evolutionary dataset following the guidelines
in [16].

We conduct extensive experiments to evaluate the ef-
fectiveness of APIGRAPH in enhancing these baselines,
including: 1) prolonging model lifetime, 2) reducing main-
taining efforts, 3) stabilizing feature space, 4) capturing API
closeness, and 5) robustness against adversarial attacks. The
results show that APIGRAPH can effectively slow down the
aging of these malware detectors. First, APIGRAPH can pro-
long models’ lifetime by 19.2%, 19.6%, 15.6%, 8.7% respec-
tively for the 4 Android malware detectors respectively, and
5.9% for the Windows malware detector. Also, APIGRAPH
can reduce maintaining efforts even on top of the most opti-
mized data-perspective method [16]: the number of samples
needed to be labeled can be reduced by 33.07%∼96.30%,
and the retrain frequency is also significantly decreased.
The visualized results can vividly reflect how APIGRAPH
can help stabilize feature space and capture API closeness.
Finally, APIGRAPH can help improve the robustness of
existing malware detectors against adversarial attacks.
Contributions. This paper makes the following contribu-
tions.

• We study how to slow down model aging of ML-
based malware detectors from a new perspective
other than existing data-driven methods — API
feature space. Our observation is that during evo-
lution, malware samples tend to preserve similar
malicious functionalities but use different API im-
plementations. Therefore, we propose to incorporate
API knowledge into ML models to help them capture
the intrinsic semantics among malware variants.

• Based on the above idea, we design and implement
APIGRAPH that can help extract API knowledge
from the API documentation. It builds an API re-
lation graph using NLP techniques and pre-defined
templates, and then uses API embedding and API
clustering to group semantically-close APIs into clus-
ters to enhance existing malware detectors.

• We evaluate APIGRAPH on 4 Android malware de-
tectors and 1 Windows malware detector, covering
both traditional ML and deep learning models. Ex-
periments on large-scale, evolutionary datasets with
nearly 340K samples (the largest of its kind, as far as
we know) show that APIGRAPH can help slow down
the aging of existing malware detectors by 5.9% to
19.6%. Compared to existing data-perspective meth-
ods, it can also significantly save maintaining efforts.
Finally, we release the source code and datasets at
https://github.com/seclab-fudan/APIGraph to fa-
cilitate subsequent studies.

Organization. § 2 uses a motivating example to explain how
APIGRAPH slows down the aging of malware detectors
from the feature space and gives an overview of the system
architecture. § 3 describes the design of APIGRAPH in
building and leveraging API relation graphs. § 4 reports the
API relations graphs built by APIGRAPH for both Android
and Windows platforms. § 5 introduces our experimental
setup and § 6 reports the evaluation results of APIGRAPH

in enhancing five baselines. § 7 discusses some limitations
of APIGRAPH and § 8 discusses the most related work. At
last, § 9 concludes the paper.

2 OVERVIEW

In this section, we start from a motivating example and then
give an overview of the system architecture.

2.1 A Motivating Example

According to previous studies [25], removing, replacing,
and adding API calls to the code while not affecting their
original malicious functionalities, are common tricks used
during malware evolution. In this paper, we first use a
real-world malware, called XLoader, to illustrate how API-
GRAPH captures the semantics across various malware ver-
sions during evolution. According to the reports by Trend-
Micro [26], XLoader is a spyware and banking trojan that
steals personally identifiable information (PII) and finan-
cial data. We observe that although XLoader has evolved
into six different variations with significant implementation
changes from April 2018 until late 2019, many semantics
across these variations remain the same.

To ease the illustration of this observation, we reverse
three XLoader variations and simplify their implementa-
tions in Figure 1. From this figure, we can find two types
of semantics that are preserved across the three versions
but with different implementations: (i) PII collection, and
(ii) sending PII to malware server. First, the PII collection
evolves from a single source in V1 to two sources in V2 and
then to multiple sources in V3. Specifically, V1 only collects
the device ID, i.e., the IMEI; V2 adds the MAC address; and
V3 adds IMSI and ICCID. Second, the malware sends PII
to the malware server via three different channels, which
are an HTTP request (Lines 6–10 in V1), a plain socket
connection (Lines 7–9 in V2), and an SSL socket connection
(Lines 9–11 in V3).

We then explain how APIGRAPH captures the semantic
similarity among the three versions of XLoader in
terms of sending PII and thus helps ML detectors
trained with V1 samples to detect evolved V2 and V3
samples. Figure 2 shows a small part of the relation graph
constructed by APIGRAPH (§ 3.1 & 3.2), which captures
the relations among some Android APIs, permissions,
and exceptions. All the mentioned APIs in Figure 1 (i.e.,
openConnection, SocketFactory.createSocket,
and ssl.SSLSocketFactory.createSocket) throw
IOException and use INTERNET permission. Besides,
some of them have more similar behaviors in throwing
exceptions and using permissions. That is, the three APIs
are close enough in terms of their neighborhoods in the
graph, and can be grouped together in a cluster. Therefore,
an ML detector, with the help of the relation graph, can
capture the similarity between V2/V3 and V1 and detect
V2 and V3 as malware after the evolution. For example,
several Android malware detectors [3], [9], [12] use an API
occurrence vector to represent each app. Therefore, the
feature vectors generated by these detectors from V2/V3
will be significantly different from those for V1. With

https://github.com/seclab-fudan/APIGraph
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 1    // collect personally identifiable information
 2    JSONObject data = new JSONObject(); 
 3    data.put(getDeviceId());
 4    ...
 5    // send collected data to server through HTTP
 6    URL url = new URL(SERVER_ADDR); 
 7    HttpURLConnection conn = url.openConnection();
 8    conn.connect();
 9    out = new 

DataOutputStream(conn.getOutputStream());
10   out.writeBytes(data.toBytes()); 
11   ...

 1    // collect personally identifiable information
 2    JSONObject data = new JSONObjec(); 
 3    data.put(getDeviceId());
 4    data.put(getMacAddress());
 5    ...
 6    // send collected data to server through Socket
 7    Socket socket = 

SocketFactory.createSocket(SERVER_ADDR);
 8    out = new 

DataOutputStream(socket.getOutputStream());
 9    out.writeBytes(data.toBytes());
10    ...

 1    // collect personally identifiable information
 2    JSONObject data = new JSONObject(); 
 3    data.put(getDeviceId());
 4    data.put(getMacAddress());
 5    data.put(getSubscriberId());
 6    data.put(getSimSerialNumber());
 7    ...
 8    // send collected data to server through SSLSocket
 9    SSLSocket socket =   

SSLSocketFactory.createSocket(SERVER_ADDR);
10    out = new 

DataOutputStream(socket.getOutputStream());
11    out.writeBytes(data.toBytes());
12    ...

Listing 1: pseudo-code of XLoader V1 Listing 2: pseudo-code of XLoader V2 Listing 3: pseudo-code of XLoader V3

Fig. 1. A motivating example to illustrate semantic similarities of different malware variations during evolution.

javax.net.SocketFactory;
createSocket()

java.net.URL;
openConnection()

android.permission.INTERNET

java.io.IOExceptionjava.lang.SecurityException

javax.net.ssl.SSLSocketFactory;
createSocket()

java.net.URLConnection

java.net.Socket

java.lang.SecurityManager;
checkConnect()

throws

returns
refers_to

uses_permission

method

class

permission

Fig. 2. Part of the API relation graph generated by APIGRAPH, showing
the semantic closeness of different APIs used by XLoader variations in
Figure 1.

APIGRAPH, existing detectors can be enhanced to use the
clusters to represent APIs. In this way, cluster occurrence
vectors generated from V1 and V3 samples will be quite
similar; therefore the detectors can detect the evolved
V2/V3 samples even when trained with only V1 samples.

2.2 System Architecture
Figure 3 shows the overall architecture of APIGRAPH. A key
concept introduced by APIGRAPH is the API relation graph,
which is used to capture the semantic relations among
different APIs. There are two major phases in APIGRAPH:
building API relation graph and leveraging API relation
graph. First, APIGRAPH builds an API relation graph by
collecting API documents and extracting entities–such as
APIs and permissions–and relations between those entities,
with the help of NLP techniques. Second, APIGRAPH lever-
ages the API relation graph to enhance existing malware
detectors. Specifically, APIGRAPH converts all the entities
in the relation graph into vectors using graph embedding
algorithms. The insight here is that the vectors of two enti-
ties in the embedding space reflect the semantic closeness of
the relation between them. Therefore, APIGRAPH generates
the entity embedding as solving an optimization problem to
make the vectors of two entities with the same relation as
close as possible. Based on the embedding vectors of APIs,
APIGRAPH groups similar APIs into clusters. These API
clusters are further used to enhance existing detectors so

that they can capture the semantically equivalent evolution
among malware samples.

3 APIGRAPH DESIGN

In this section, we first define the concept of the API
relation graph and then describe how to build and leverage
the API relation graph to slow down model aging.

3.1 Definition of API Relation Graph

An API relation graph G = ⟨E,R⟩ is defined as a
directed graph, where E is the set of all nodes (called
entities), and R is the set of all edges (called relations)
between two nodes. API relation graph is heterogeneous,
which means that entities and relations have different types.
Previous work [27] has developed a taxonomy of entities
and relations in API documents. In this paper, beyond this
taxonomy, we also consider other entities and relations
under the context of malware detection. For example, the
permissions in Android are considered because they are
essential to malware analysis. To generalize the entities
and relations in an API relation graph for Android and
Windows, we group different entities and relations into
different categories.
Entity Types. Entities are basic elements in an API relation
graph. We mainly consider three categories of entities:

• Functional Unit is marked as u, which is the fun-
damental unit defined in the API documents for
developers to use. For the Android platform, the
fundamental unit is a method, while for Windows it
can be a function (including macros and methods), or
a struct.

• Container is marked as c, which is used by the
platform to organize the functional units. Besides,
containers are hierarchical, which means a high-level
container may be composed of multiple low-level
containers. For Android, a container may be a class
and a package, and a package may have multiple
classes; For Windows, a container may be a class
(including interfaces), or a header file.

• Permission is marked as p, and is used to specify
the capability that a functional unit or a container
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Fig. 3. The overall architecture of APIGRAPH.

requires. For Android, some methods can be called
only when the program has the corresponding per-
missions.

Relation Types. Relations capture how entities are related to
one another. We consider three categories of relations among
the above entities:

• Structure category describes the organization rela-
tions between two functional units, a functional unit,
and a container, and two containers. For example, in
Android, a function of relation connects a method to
its belonging class, while inheritance relation connects
a class entity with its inherited class entity. Also,
uses parameter, returns, throws relations reflect one
method entity may use a class entity as its parameter,
return value, or thrown exception respectively.

• Reference category describes the relations between
two functional units, and a functional unit and its
container. There are three relation types in this cat-
egory, including conditional, alternative, and refers to
relations for both Android and Windows. For exam-
ple, a conditional relation specifies that one method en-
tity conditionally depends on another method entity,
e.g., one API should be used only after another API
has been called. An alternative relation depicts that
one method entity can be replaced by another method
entity. In addition, a refers to relation describes a gen-
eral relationship between two entities. For example,
the API document may refer to another method entity
when describing one method entity using a sentence
like “see also ...”.

• Permission category contains the uses permission re-
lation to describe that a method entity may require a
permission entity.

The full list of the relations and the entities they connect
are listed in Table 1.

3.2 Building API Relation Graph

To build API relation graphs, APIGRAPH first collects
API documents and then parses these documents to extract
entities and their relations, with the help of NLP techniques.
After that, entities are linked with their relations to form a
heterogeneous directed graph. Next, we use the Android
platform to illustrate the processes of building API relations

graphs from API documents and highlight our special han-
dling to Windows when needed.
API Documents Collection. APIGRAPH downloads the
Android API reference documents for all platform APIs
and support libraries from the official website [28]. In the
Android platform, different Android versions have corre-
sponding API levels, e.g. the API level for Android 10 is
29. Since the major active Android versions at present are
Android 4.0-10 [29], APIGRAPH collects the API documents
for their corresponding Android levels, i.e., API level 14-29.
For the Windows platform, APIGRAPH downloads the API
documents for Windows 10 from the official website [30].
These documents are collected as HTML files and are further
parsed into JSON files to ease subsequent processing.
Entity Extraction. API documents are organized in hierar-
chies. For example, the packages, classes, and methods for
the Android API documents can be accessed from the top
level to the bottom level. By parsing the organization tree,
APIGRAPH can extract all the entities from the functional
unit and container categories. Furthermore, all the permission
entities are extracted from the manifest file [31]. The entity
extraction process on the Windows platform is similar to
this step.
Relation Extraction. Relations under different categories are
extracted in different ways. For relations under the structure
category, function of, class of, and inheritance relations are
extracted from the hierarchical organization of function units
and containers; inheritance relations are extracted from the
class definitions; uses parameter, returns, and throws relations
are extracted directly from the method prototypes.

For relations that belong to reference and permis-
sion categories, they can only be extracted from the
text descriptions of each functional unit. We use Fig-
ure 4 as an example to illustrate this process. In Fig-
ure 4, three paragraphs are describing the functional
unit entity getDeviceId. The first paragraph, P1, states
that this method is deprecated in higher API lev-
els (26 and above), and two methods getImei and
getMeid are recommended for replacement. In this
case, APIGRAPH extracts two alternative relations between
getDeviceId and getImei, and between getDeviceId
and getMeid. From the last paragraph, P3, APIGRAPH ex-
tracts two uses permission relations between getDeviceId
and READ_PRIVILEGED_PHONE_STATE, getDeviceId
and READ_PHONE_STATE, and one refers to relation be-
tween getDeviceId and hasCarrierPrivileges.
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TABLE 1
Relation types defined in APIGRAPH, where ”u”, ”c”, ”p” represents the functional unit, container, and permission respectively.

Category Relations Connected Entities
Android Windows

Structure
(u → c, c → c,
u → u)

function of method → class function → class, function → header
class of class → package class → header
inheritance class → class class → class
uses parameter method → class function → function, function → struct, function → class
throws method → class \
returns method → class function → struct

Reference
(u → u, u → c)

conditional method → method function → function
alternative method → method function → function

refers to method → method,
method → class function → function, function → struct, function → class

Permission
(u → p) uses permission method → permission \

  Added in API level 1

  Deprecated in API level 26
     getDeviceId

public String getDeviceId ()

This method was deprecated in API level 26.

Use getImei() which returns IMEI for GSM or getMeid() which returns MEID 

for CDMA.

Returns the unique device ID, for example, the IMEI for GSM and the MEID or 

ESN for CDMA phones. Return null if device ID is not available.

described

entity

P1

P2

P3

descriptions

Requires Permission: READ_PRIVILEGED_PHONE_STATE, for the calling 

app to be the device or profile owner and have the READ_PHONE_STATE 

permission, or that the calling app has carrier privileges (see 

hasCarrierPrivileges()) on any active subscription. 

...

Fig. 4. The description for android.telephony.TelephonyManager. getDe-
viceId().

However, it is impractical to manually extract these rela-
tions from unstructured texts one by one, as there are a large
number of APIs (e.g., Android API level 29 has about 50K
APIs and the latest Win32 API list has about 40K APIs). Our
key observation is that there are some common patterns in
describing the relations between entities. Therefore, we can
summarize these patterns with templates and use these tem-
plates to extract relations. Specifically, APIGRAPH leverages
NLP techniques and designs a template-based matching
method to extract reference and permission relations from the
unstructured text descriptions. In our previous work [32],
we use an iterative workflow to manually summarize tem-
plates from unstructured descriptions, which requires huge
manual efforts. In this paper, we improve such practice by
introducing a clustering-based template generation method,
which first groups similar short sentences into a cluster, and
then summarizes templates from these clusters. As a result,
we can not only save manual efforts but also accelerate the
template generation process.

3.2.1 Clustering-based Template Generation

To ease the illustration, we first define the following terms:

• Described entity is the target entity of each descrip-
tion.

• Describing entity is the entities mentioned in the
description that may have some relations with the
described entity.

s2: applications should call getDevices() before registering the callback ...

s1: applications should call isZoomSupported() before useing this method.

context

context

registerDeviceCallback()

getMaxZoom()

Fig. 5. s1 and s2 are descriptive sentences for two described entities:
getMaxZoom and registerDeviceCallback respectively. The describing
entities (isZoomSupported and getDevices) are marked in green while
their contexts are in red (w = 6). Note that “using” and “registering” are
reduced to their base forms and “the” is removed during normalization.

For example, in Figure 4, getDeviceId is the described
entity, while getImei, getMeid, READ_PHONE_STATE,
READ_PRIVILEGED_PHONE_STATE are all describing en-
tities. Note that there may be no or multiple describing
entitie(s) in the description for each described entity.

Our template generation process is context-sensitive,
which consists of three steps: first, APIGRAPH uses NLP
tools to split every description into sentences and normalize
each sentence; second, it extracts a short context for each
describing entity and clusters these describing contexts into
different groups based on context similarity; at last, relation
templates are summarized from these context groups, and
then used to extract relations automatically.

1) Sentence splitting and normalization. APIGRAPH splits
the descriptions into sentences and uses lemmatization to
transform each word to its base form (e.g., both “requires”
and “required” are transformed to “require”). Besides,
meaningless words such as definite and indefinite articles
are removed from the sentence. Further, the names of de-
scribing entities are unified to ensure that each entity has
only one unique name when polymorphic names exist. For
example, the name android.Manifest.permission.INTERNET
and its constant value “android.permission.INTERNET” are
both used in documents, but they refer to the same entity. To
unify this entity, APIGRAPH replaces the former one with
the latter one.

2) Context extraction and clustering. From the normalized
sentence, we use the words around the describing entity as
its describing context. As shown in Figure 5, a window w
is used to control the number of words in the describing
context. These contexts are then clustered into different
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Algorithm 1 API Embedding and Clustering
Input: Relation graph G = ⟨E,R⟩, learning rate λ, embed-

ding size k, cluster size C .
1: Set triples S = ∅ ▷ Form Training Set
2: Add existing relations to triples S
3: for each entity e ∈ E do ▷ Vector Initialization
4: Assign e with a vector le ∈ Rk

5: for each relation r ∈ R do
6: Assign r with a vector lr ∈ Rk

7: while True do ▷ Train Embeddings
8: for triple (h, r, t) ∈ S do
9: Minimize the following loss function:

ℓ = ∥lh + lr − lt∥22
10: Update lh by gradient descent:

lh = lh + λ · ∂ℓ

∂lh

11: Update lr, lt, lt′ with gradient descent similarly
12: if embeddings do not change then
13: break
14: Collect embeddings of method entities ▷ Cluster APIs
15: Use k-Means algorithm to find C clusters

groups according to their similarity. The similarity between
two contexts is calculated using Jaccard similarity. For ex-
ample, in Figure 5, the two describing contexts in s1 and
s2 have 8 unique words in all (words in red color), and
share 4 words (i.e. ”application”, ”should”, ”call”, ”before”).
Therefore, their context similarity is 0.5 (4/8). When the
similarity score of two contexts is not less than a threshold,
they are clustered into the same group. According to our
experience, this threshold is set to 0.5.

3) Template generation. Based on the clustered describing
contexts, we manually summarize relation templates from
them. To ease template matching, regular expressions are
used to represent the relation templates. For example, a
template, “should call ENT before” is summarized from Fig-
ure 5 which describes a conditional relation. More examples
of the summarized relation templates are given in Table 2.

3.3 Leveraging API Relation Graph

Considering that different ML algorithms may require dif-
ferent input formats (as shown in Table 6), we need a general
and easy-to-use way to incorporate API knowledge into
these models. Our idea is to group semantically close APIs
into a cluster and use the clusters to represent those APIs.
By abstracting APIs to clusters, the underlying models can
better capture the malicious behaviors inside the evolved
malware samples, even these samples and variants have
different implementations and use different APIs.

To get the API clusters from the API relation graph,
we propose a two-step method: 1) API embedding, which
encodes each API in the API relation graph into a vector;
and 2) API clustering, which groups semantically close APIs
into different clusters based on their embedding vectors. The
pseudo-code is illustrated in Algorithm 1, and we introduce
the most important details below.

API Embedding. The idea of API embedding is inspired
by word embedding [33] and graph embedding [34], [35],
[36]. It aims to convert each API in the graph into a vector
so that the APIs that are semantically closer have a higher
similarity between their vectors. To this end, we leverage
a prior algorithm called TransE [34] and fit TransE into
our API knowledge problem, as described in Algorithm 1.
Specifically, suppose we have a relation r that links an
entity h to an entity t and three vectors lh, lr, lt are used
to represent them, the core idea of TransE is to continuously
adjust the three vectors so that the sum of lh and lr is as
close as to lt. In this way, semantically close APIs will have
similar vector representations.
API Clustering. After APIs are represented using vectors,
we can then group semantically close APIs into the same
cluster. Our idea is to use the k-Means algorithm, which
partitions the APIs into k clusters and minimizes the within-
cluster sum of squares. We rely on Elbow [37] method to
determine the final cluster number.

4 STATISTICS OF API RELATION GRAPH

We implement a prototype of APIGRAPH, which con-
tains 3,344 lines of Python code, including API documents
collecting and parsing, entity and relation extracting, rela-
tion graph building, and API embedding and clustering.
Some modules are built on existing libraries. For example,
we use spaCy [38] (a Python NLP toolkit) for text process-
ing, TensorFlow [39] for API embedding, and sklearn [40]
for API clustering.
Extracted Entities and Relations. We report the generated
API relation graphs from their entities and relations. Table 3
shows the number of extracted entities for Android API
level 29 and Windows 10. Note both Android and Windows
have several versions and we use their latest stable versions
(at the time of evaluation) as examples. In total, 67,209
and 52,554 entities are extracted for Android and Windows
respectively. Table 4 lists the numbers of extracted relations.
Note that since uses permission relations in the Android
API documents may be incomplete, we also use two API-
permission mappings generated by existing works [41], [42]
to complement the relations extracted from API documents.
In total, 121,345 relations are extracted for Android and
144,594 relations are extracted for the Windows platform.

With these entities and relations, we build API relation
graphs and group APIs into different clusters. Following
the Elbow method, we choose 2,000 and 1,000 as the cluster
number for Android and Windows respectively.
Clustering-based Template Generation. The clustering-
based template generation method used in this paper is
more efficient than the iterative workflow in our previous
work [32]. For example, in our previous work, we need to
look into about 150K sentences to summarize the templates
for Android 10, which cost three days for two security
experts. In contrast, in this work, we only need to investigate
about 7K clusters for Android 10, which greatly reduces the
manual efforts and speeds up the template generation pro-
cess. As shown in Table 2, our method generates 217 and 40
templates for Android and Windows platforms respectively.
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TABLE 2
Templates that have been summarized from both Android and Windows platforms (‘ENT” represents an entity).

Relation Type Example Templates # of Templates
Android Windows

conditional “call ENT before ENT be call”, “before ENT return”, “if ENT
fail”, “wait for ENT”

186 29

alternative ”replace by ENT”, ”use ENT instead” 22 10
refers to “see also ENT”, “query ENT”, “refer to ENT” 5 1
uses permission “require permission ENT”, “be grant ENT permission” 4 \

TABLE 3
Extracted entities for Android API level 29 and Windows.

Category Android Windows
Entity Type Count Entity Type Count

Functional Unit method 59,125 function 40,358
struct 6,897

Container class 7,368 class 4,363
package 446 header 936

Permission permission 270 \ \

TABLE 4
Extracted relations for Android API level 29 and Windows platform.

Category Relation Type Count
Android Windows

Structure

function of 59,125 40,531
class of 7,368 4,464
inheritance 3,755 3,482
uses parameter 14,528 16,290
throws 8,310 \
returns 5,113 454

Reference
conditional 5,990 3,065
alternative 1,264 80
refers to 10,859 76,228

Permission uses permission 5,033 \

5 EXPERIMENTAL SETUP

In this section, we describe the datasets and existing mal-
ware detectors used in our experiments.

5.1 Dataset

Dataset Properties. To evaluate how APIGRAPH can help
to slow down the aging of existing Android/Windows mal-
ware detectors, we need first to set up a dataset that is evolu-
tionary and large-scale for both platforms. Moreover, to make
the evaluation fair and reliable, the built dataset should
satisfy temporal consistency and spatial consistency according
to the guidelines set by previous works [16]. Specifically,
temporal consistency ensures that training samples should
be strictly temporally precedent to testing ones, and all
testing samples must come from the same period during
each testing to eliminate time bias; while spatial consistency
ensures that the ratio of malware is close to the percentage
of malware in the real-world.

Following the above guidelines, we set up a large-scale
dataset that contains 322,594 Android samples and 16,953
Windows samples, as shown in Table 5. The number of
Android samples is almost two times larger than the one
used in previous state-of-the-art work [16]. These samples
are from the year 2012 to 2018, which meets the evolutionary

TABLE 5
Evaluation datasets that contain 322,594 Android samples and 16,953

Windows samples across 7 years.

Year Android Windows
Malicious Benign Malicious Benign

2012 3,066 27,613 239 213
2013 4,871 43,873 2,744 1,871
2014 5,871 52,843 3,330 435
2015 5,797 52,173 2,515 856
2016 5,651 50,859 311 2,880
2017 2,620 24,930 1,019 247
2018 4,213 38,214 192 101
Sum 32,089 290,505 10,350 6,603

requirement. Also, we leverage VirusTotal [43] to get the
exact appearing time for each sample and make sure that
temporal consistency is satisfied at the month level during
the testing. Referring to previous work [16], we also make
sure that malware percentage is close to 10% in each month
to meet spatial consistency. For Windows, we make sure
each test in the evaluation should satisfy this constraint
by down-sampling and averaging multiple tests. To get
reliable labels for these samples, we rely on VirusTotal to
determine whether a sample is benign or malicious. Specifi-
cally, following a previous work [12], samples are labeled as
malware when at least 15 anti-viruses (AV) engines report
them as malicious, while samples are labeled as benign
when no AV reports them as malicious. Note that according
to a recent study [44] on measuring the labeling effectiveness
of malware samples, this strategy is reasonable and stable.

To ensure the reproducibility of the dataset, all the
samples are collected from publicly available repositories.
In particular, the Android samples are randomly selected
from AndroZoo [45], VirusShare [46], VirusTotal [43], and
the AMD dataset [47], [48]; the Windows samples are se-
lected from Ceschin et al. [24]. All these samples have been
released to facilitate subsequent researches.

5.2 Evaluated Malware Detectors

As shown in Table 6, we evaluate five state-of-the-art,
representative malware detectors that cover both Android
and Windows platforms. Specifically, different API feature
formats such as occurrence, frequency, or API calls, and dif-
ferent algorithms such as linear algorithms, random forest,
and deep neural networks are used in these models. This
setting helps to verify the generalization of APIGRAPH in
enhancing state-of-the-art malware detectors.
Reproduction Details. The source code of MA-
MADROID [49] and DROIDEVOLVER [50] are publicly
available, and we directly use their source code. For the
other three detectors whose source code are not available,
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TABLE 6
5 Evaluated malware detectors. Note that DROIDEVOLVER uses a

model pool that contains 5 linear online learning algorithms.

Malware Detector API feature format Algorithm

MAMADROID [11] Markov Chain of API Calls Random Forest
DROIDEVOLVER [12] API Occurrence Model Pool
DREBIN [3] Selected API Occurrence SVM
DREBIN-DL [9] Selected API Occurrence DNN
Ceschin et al. [24] API Frequency Random Forest

we re-implement them following the descriptions in
their papers. Note that some of these works may have
several configurations. In this situation, we select the
best-performing one. For example, for MAMADROID
we use its “package mode” and the random forest
algorithm, following previous works [16], [19]. We also test
MAMADROID in “family mode” and the results are listed
in Appendix B. For other configurations, we strictly follow
the original papers and make sure our reproductions can
achieve the results as stated in their papers.
Enhancement with APIGRAPH. We enhance these base-
lines by transforming their usage of APIs in the feature
space to leverage the API knowledge and do not change
other parts of the original detectors. For example, DROIDE-
VOLVER uses the occurrence of APIs to represent the feature
vector of a sample while the enhanced DROIDEVOLVER
(w/ APIGRAPH) uses the occurrence of API clusters as its
feature vector. Following this way, a malware detector can
be enhanced with most of its parts untouched and therefore
can be directly deployed to replace the original one. For
example, DREBIN claims that it is lightweight and thus can
work on mobile devices, our enhanced version also has this
capability.

6 EVALUATION

In this section, we evaluate how APIGRAPH helps to
slow down the aging of state-of-the-art malware detectors.
Specifically, the experiments are designed from the follow-
ing aspects: ❶ prolonging model lifetime (§6.1), ❷ reducing
maintaining efforts (§6.2), ❸ stabilizing feature space (§6.3),
❹ capturing API closeness (§6.4), and ❺ robustness against
adversarial attacks (§6.5).

6.1 Prolonging Model Lifetime
Metrics: To evaluate how APIGRAPH can help prolong the
lifetime of existing models, we use the AUT metric proposed
by TESSERACT [16], which is the Area Under the curve
during a certain Time, as shown in Equation 1.

AUT (f,N) =
1

N − 1

N−1∑
k=1

[f(k + 1) + f(k)]

2
(1)

where f is the performance metric (e.g. F1 score, Precision,
Recall, etc.), N is the number of test slots, and f(k) is
the performance metric evaluated at the time k. In our
experiments, the final metrics for Android and Windows
platforms are AUT(F1, 12m) and AUT(F1, 6y) respectively,
which are the F1 score across 12 months and F1 score across
6 years. An AUT metric that is closer to 1 means better
performance over time.

TABLE 7
AUT(F1, 12m) of evaluated Android malware detectors before and after
leveraging API relation graph. For each testing year, the detectors are

trained on the previous year.

Testing
Years

MAMADROID DROIDEVOLVER DREBIN DREBIN-DL

w/o 1 w/ 2 w/o w/ w/o w/ w/o w/

2013 0.462 0.680 0.717 0.833 0.779 0.878 0.819 0.875
2014 0.456 0.637 0.712 0.791 0.734 0.859 0.816 0.866
2015 0.726 0.789 0.840 0.890 0.759 0.886 0.829 0.878
2016 0.718 0.814 0.718 0.875 0.666 0.869 0.706 0.916
2017 0.635 0.704 0.605 0.908 0.767 0.844 0.793 0.797
2018 0.765 0.861 0.811 0.969 0.794 0.865 0.828 0.874

Average 0.627 0.748 0.734 0.877 0.750 0.867 0.799 0.868
Improves 19.2% 19.6% 15.6% 8.7%
1 w/o denotes the detector without APIGraph, i.e. the original detector.
2 w/ denotes the detector enhanced with APIGraph.
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Fig. 6. AUT(F1, 12m) of evaluated Android malware detectors before
and after leveraging API relation graph. Each detector is trained in 2012
and tested in 12 months of 2013. Note that month 0 indicates the time
when the detector is initially trained.

Experimental Settings: Considering the dataset scales, we
test Android detectors monthly and Windows yearly. For
Android detectors, we train a model on a particular year
(say 2012), and sequentially test its performance on 12
months of the next year (i.e. 2013), and then calculate
AUT(F1, 12m), before sliding to the next train-testing year
pair (i.e. training on 2013 and test on 2014). Note we only
test the performance of a model over a year because many
models age significantly so that they become unusable after
one year. For Windows detectors, we train a model on
samples of 2012, and test the model on each year from
2013 to 2018, and calculate AUT(F1, 6y). Because Windows
samples in each year do not naturally satisfy the spatial
constraint, we randomly down-sample malware to 10% and
test 50 times and average the results. For each malware
detector on each platform, we evaluate its performance with
and without enhancing by APIGRAPH.
Results: Table 7 shows the AUT(F1, 12m) values of four
Android detectors tested from 2013 to 2018 as well as the
average. One important observation is that the average
AUT values improve 19.2%, 19.6%, 15.6%, 8.7% respectively
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TABLE 8

F1 and AUT of evaluated Windows malware detector before and after
leveraging APIGRAPH.

2013 2014 2015 2016 2017 2018 AUT
w/o APIGraph 0.868 0.915 0.794 0.679 0.906 0.791 0.825
w/ APIGraph 0.895 0.941 0.867 0.804 0.911 0.800 0.874

for the four detectors, which indicates that APIGRAPH
is capable of slowing down model aging, i.e. prolonging
the lifetime of malware detectors. We also breakdown the
results into months and show the F1 score of four malware
detectors which are tested in 2013 and trained with samples
of 2012 in Figure 6. As shown in this figure, APIGRAPH
successfully slows down the performance degrading of all
enhanced malware detectors.

Tabel 8 shows the F1 score of every test year and
AUT(F1, 6y) of the Windows detector. Compared to An-
droid detectors, the Windows detector ages relatively
slowly, indicating that Android malware may evolve more
actively than Windows ones. Nevertheless, APIGRAPH still
helps improve the performance of the original detector.
Specifically, the AUT has been increased from 0.825 to 0.874,
a 5.9% improvement. We also note that in the year 2016,
the F1 of the original detector drops drastically, while with
the help of APIGRAPH it can still achieve a relatively good
result.
Findings: APIGRAPH enhances the sustainability of tested
models by 5.9% to 19.6%, indicating that it can significantly
prolong the lifetime of existing malware detectors under
evolved malware samples.

6.2 Reducing Maintaining Efforts

Metrics: The purpose of this experiment is to find out how
many human efforts APIGRAPH can save while maintain-
ing a high-performance malware detector. Specifically, the
comparison adopts two metrics: (i) the retraining frequency,
and (ii) the number of malware to label.
Experimental Settings: First, we train a model and test it
month by month (or year by year for the Windows detector).
Then, when the F1 score of a detector falls below a low
threshold Tl, we retrain the model so that it can reach a
higher threshold Th. We calculate how many human efforts
(i.e. the above two metrics) are needed in the retraining step.
To retrain an aged model, we adopt the active learning [16]
method, which is an optimization to normal retraining
methods. Specifically, we use the uncertain sampling [16]
algorithm to actively select the most uncertain predictions.
In detail, first we select the most 1% uncertain samples
to retrain the detector, and then gradually increase the
percentage by 1% until the F1 score reaches Th. Through
this way, we can figure out the minimum efforts to maintain
a high-performance model.

In this experiment, the detectors are initially trained on
all the apps in 2012. We then adopt the above approach to
maintain the performance of the detectors from Jan 2013 to
Dec 2018, and observe the retrain frequency and the number
of malware to label.
Results: Table 9 shows the retrain frequency and the number
of malware to label from 2013 to 2018 with (Tl = 0.8, Th

= 0.9) for Android and (Tl = 0.85, Th = 0.9) for Windows.

TABLE 9
Retrain efforts for tested models, in terms of retraining frequency

(months between two retrains) and the number of labeled samples,
when using active learning with thresholds (Tl = 0.8, Th = 0.9) for

Android and (Tl = 0.85, Th = 0.9) for Windows detectors.

retrain frequency # labeled samples

w/o 1 w/ 2 Improves w/o w/ Improves

MAMADROID 1.6 2.1 31.25% 22,411 14,999 33.07%
DROIDEVOLVER 3.8 4.8 26.32% 20,767 12,913 37.82%

DREBIN 1.3 5.5 323.08% 167,005 6,173 96.30%
DREBIN-DL 2.8 4.5 60.71% 28,408 9,292 67.29%
Windows 3 3 6 100% 471 252 46.50%

1 w/o denotes the detector without APIGraph, i.e. the original detector.
2 w/ denotes the detector enhanced with APIGraph.
3 The retrain frequency for Windows is in years.

The experiments for Windows are conducted year by year
and use 0.85 as the low threshold, as the Windows detector
ages relatively slowly. APIGRAPH can improve the retrain
frequency by 31.25%, 26.32%, 323.08%, 60.71%, and 100%,
while save the number of samples to label by 33.07%,
37.82%, 96.30%, 67.29%, and 46.50% respectively. Especially
for DREBIN, it used to retrain the model every 1.3 months,
but after enhanced with APIGRAPH, it only needs to retrain
the model every 5.5 months, and the labeling efforts drop
from 167K to about only 6K. We also count the samples to be
labeled in both cumulative and monthly/yearly distribution
numbers, to visually show how APIGRAPH can help reduce
maintaining cost, as in Figure 7.
Findings: APIGRAPH can reduce retrain frequency by
26.32% to 323.08%, and reduce the numbers of manually-
labeled samples by 33.07% to 96.30%, indicating that it
can significantly reduce human efforts when maintaining
various malware detectors.

6.3 Stabilizing Feature Space

Metrics: We observe that one drawback of using individual
APIs is that malware evolution can disturb the stability of
the feature space using different API implementations. In
this experiment, we want to evaluate how API clustering
helps stabilize the feature space of different malware varia-
tions. To do this, we first sort all the malware samples in one
family by their appearing time and then divide them into 10
groups so that each group contains 10% samples of this fam-
ily. The appearing time of all samples in one group is strictly
ahead of samples from the next group. Then we calculate
a feature stability score of every two adjacent groups using
the Jaccard similarity coefficient: J(A,B) = |A∩B|/|A∪B|,
where A and B is the set of used features for two adjacent
groups. This score function is capable of reflecting how
stable the features evolve between malware groups.
Experimental Settings: We first download 109,770 malware
samples from different malware repositories as described in
§5.1, and use a malware labeling tool named Euphony [51]
to get their family labels. We only keep those malware
that Euphony can get reliable labels, which leaves 101,360
malware from 1,120 families. Then we select the top 30
families that have the most number of labeled samples so
that each family has enough samples for evaluation. As a
result, we have 75,625 (74.61%) apps in this experiment and
every family has more than 500 apps (except the last one).
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(a) The efforts in sample labeling for MAMADROID

(b) The efforts in sample labeling for DROIDEVOLVER

(c) The efforts in sample labeling for DREBIN

(d) The efforts in sample labeling for DREBIN-DL
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(e) The efforts in sample labeling for the Windows detector
Fig. 7. The number of malware samples to label using active learning
with fixed retrain thresholds (Tl = 0.8, Th = 0.9) for Android and (Tl =
0.85, Th = 0.9) for Windows. Each bar shows the number of samples
labeled in that month, while each curve shows the cumulative number.

The top 30 families, as well as the number of their samples,
are listed in Table 10 of Appendix A.

We then use static analysis with the help of apktool [52]
to disassemble malware code and obtain API features. For
each malware family, we calculate the feature stability score
from two perspectives: using individual APIs as the features
and using API clusters as the features.
Results: Figure 8 shows the distribution of feature stability
scores for each malware family with API and API clusters
as features. We can see that the feature stability score of
all families with API clusters as features is very close to
1 and much higher than the one with API as features
directly. This explains why APIGRAPH can help models
capture malware evolution, as malware developers tend to
use semantically similar APIs to implement the same or
similar functionalities.
Findings: APIGRAPH successfully captures semantic simi-
larity among evolved malware samples in a family.

6.4 Capturing API Closeness
Metrics: In this experiment the t-SNE [53] method is used
to project and visualize all the APIs into a two-dimensional
space.
Experimental Settings: We get the API embeddings from
the API relation graphs for both Android and Windows plat-
forms, and feed these embeddings into the t-SNE algorithm
from sklearn [40].
Results: Figure 9 demonstrates parts of the visualization
graph for both Android and Windows APIs. More specifi-
cally, figure 9(a) shows the results on Android APIs, where
APIs from the motivating example (Figure 1) are clearly sep-
arated into different clusters. For example, PII-related APIs,
such as getDeviceId(), getSubscriberId() are close to each other;
and network-related APIs, such as those from “java.net”,
“javax.net”, “android.net.Network”, are also close. It is
worth noting that APIs in the package “java.lang” can be
clearly separated into two groups: one containing security-
sensitive APIs for process management and system com-
mand execution, and the other one containing those Java
built-in data structure APIs, such as java.lang.Long.compare().
This fact demonstrates that a simple package-level API
abstraction method, like that adopted by MAMADROID, is
inaccurate in capturing semantics information. Similarly, the
Windows APIs are well separated into different clusters, as
shown in figure 9(b). For example, file-related APIs which
are from different header files, such as winbash.h->MoveFile,
fileapi.h->LockFile, are close to each other.
Findings: Semantically close APIs are grouped in the same
or close cluster in the embedding space by APIGRAPH.

6.5 Robustness against Adversarial Attacks

Metrics: This paper focuses on currently the most common
and practical way of malware evolution, i.e. using alter-
native APIs to implement similar malicious functionalities.
Considering that adversarial attacks are becoming one im-
portant way of evolution and evasion, we also test how
APIGRAPH can improve the robustness of existing malware
detectors against adversarial attacks. We use evasion rate
and number of changed features as the robustness metrics,
as in [54]. Specifically, the evasion rate ER is calculated by
ER = FN/P .
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Fig. 8. The distribution of feature stability scores for every top 30 malware family, when considering APIs as features and API clusters as features.
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Fig. 9. Projecting API embeddings into a two-dimensional space through
t-SNE and visualizing them.

Experimental Settings: We use the white-box adversarial
attack proposed by the DREBIN-DL paper [9]. DREBIN-
DL uses multilayer perceptron (MLP) as the classification
algorithm, and in [9] they choose the perturbation with
the maximal positive gradient to generate feature-space
adversarial examples. The attack is conducted on both the
original and enhanced DREBIN-DL, with 32,089 malware in
Table 5. Specifically, a model is trained on each year (say
2012) and attacked using malware from the next year (i.e.
2013), until all malware are tested. During the adversarial
attacks, we record how many features are needed to change
for one malware to successfully evade the detectors.
Results: We draw the CDF of all number of changed
features in Figure 10, where the y-axis represents the evasion
rate. We can see that DREBIN-DL with the help of API-
GRAPH has a lower evasion rate than the original one under
the same circumstances. Also, it needs to change 12 features
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Fig. 10. White-box adversarial attacks against original and enhanced
DREBIN-DL.

to evade original DREBIN-DL for 99.9% malware samples,
while 30 features for the enhanced model. Note that more
features changed means that the attacker needs more cost
and the defender has a better chance to detect the attack.
Findings: APIGRAPH can help improve the robustness of
existing malware detectors against adversarial attacks.

7 DISCUSSION AND LIMITATION

Data-perspective Methods VS. Feature space-perspective
Methods. To tackle the model aging of machine learning
models in malware detection, methods from two different
perspectives are proposed. Data-perspective methods, in-
cluding retraining [21], online learning [10], [12] and active
learning [16] try to learn more statistical properties from
new data samples, thus to better detect emerging malware;
While feature space-perspective methods focus on leverag-
ing the domain-specific knowledge to guide the machine
learning models to capture the intrinsic properties of the
underlying tasks. Most of the previous works focus on data-
perspective methods, while this paper makes the first step
to incorporate API knowledge to help models from the
feature space perspective. By applying the idea to different
platforms and models, this paper proves the effectiveness
of feature space-perspective methods themselves, as well as
combining with data-perspective methods. We believe the
combination of the two methodologies is necessary to build
better malware detectors, and also other security applica-
tions such as malware classification, anomaly detection, etc.
API Documentation VS. Other Knowledge Sources. In
this paper, we focus on the API reference documentation
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to extract API knowledge because they are official and
contain the most useful information. Furthermore, it will be
hard for an adversary, e.g., a malware developer to pollute
official API documents and influence the performance of
APIGRAPH. Nevertheless, other sources, such as the source
code, developing tutorial, and developer guides may also
contain intrinsic knowledge that are unlikely obtained from
data samples but are useful to machine learning models. In
our future study, we will consider knowledge from these
sources and use them to help existing models.
Non-API-based Malware Detectors. APIs are a popular
type of features widely adopted by many other existing
malware detectors [1], [6], [55], [56], mainly because APIs
are essential in implementing malware functionalities. There
indeed are two types of detectors that do not directly adopt
APIs as a feature. First, some detectors, e.g., Mclaughlin et
al. [8], adopt opcodes and n-gram as features. Although
APIs are not explicitly used as a feature, they are implic-
itly embedded as part of the opcodes. We believe that
APIGRAPH can still help such detectors by transforming
those opcodes to incorporate API cluster information. Sec-
ond, some detectors, e.g., MassVet [57], mainly adopt UI
structures for malware detection. Such detectors may age
quickly given malware evolution because those features like
UI structures are unreliable and easy to change.
Malware Obfuscation. Obfuscation techniques, such as re-
flection, packing [58], and dynamic code loading [59] may
be used to bypass existing analysis, especially feature extrac-
tion. We believe this is an orthogonal problem to what has
been studied in APIGRAPH. In future works, solutions [60],
[61], [62], [63] focusing on malware obfuscation can be used
to help extract features from software.

8 RELATED WORK

8.1 Malware Detection
Malware detection has been an active research area over the
past years. Recently, learning-based methods are becoming
increasingly popular. In these works [1], [2], [3], [4], [6], [11],
[55], [56], [64], [65], [66], APIs are commonly used as the
features to detect malice. Specifically, DroidAPIMiner [1]
and DREBIN [3] use the occurrence of APIs; DroidEye [55]
and StormDroid [6] use API frequency; MalDolzer [56], Ki
et al. [65], and Amer et al. [66] adopt API calling sequences;
and DroidMiner [2], DroidSift [4], and AppContext [64]
adopt API call graph.

Most of the above works treat each API separately
and ignore the inherent relations among these APIs. MA-
MADROID [11] is one of the few exceptions that group APIs
according to their packages or families. However, packages
and families only reflect the hierarchy relations between
APIs. In contrast, the semantic groups used in APIGRAPH
can better capture the semantic relations between APIs,
which can be more accurate in describing malware evolu-
tion, as shown in § 6.4.

8.2 Concept Drift and Model Aging
Concept drift is a common phenomenon in machine learn-
ing, where the statistical properties of the samples change
over time. Concept drift causes that machine learning-
trained models to fail to work on new testing samples,

which is known as model aging [12], or time decay [16],
[17], or model degradation [18] and deterioration [19] in the
literature. Transcend [21] proposes to use statistic techniques
to detect concept drift before the model’s performance starts
to fall sharply. Tesseract [16] proposes a new metric named
AUT to effectively measure how a model performs over
time in the setting of concept drift. EveDroid [18] and
DroidSpan [19] try to find more sophisticated and distin-
guishable features in behavioral patterns and information
flow and then build more sustainable models. Unlike these
two approaches that rely on their chosen features and
underlying algorithms, we propose to let models capture
relations between APIs, and our method is more general
and can be used to enhance existing malware detectors.

Previous works in the field of malware analysis also
notice model aging. Gianni et al. [25] point out that malware
may remove, replace, or add useless API calls to evade anal-
ysis. Thus they propose an association rule-based approach
that extracts nonadjacent and representative subsequences
to tolerate useless API modification. Apart from useless
API calls, APIGRAPH can also tolerate critical API call
modification, as long as these APIs share close semantics.
Ficco et al. [23] propose combining diverse and stochas-
tic detectors, which can effectively improve the resiliency
against determined adversaries. This strategy can be used
to work together with APIGRAPH, where API knowledge
are used to enhance each combined detector. APIGRAPH
is orthogonal to existing learning-based approaches, such as
retraining, active learning and ensemble learning, etc. When
combined with these methods, APIGRAPH can help develop
better detectors that are more resilient to concept drift.

8.3 Knowledge Graph and API Knowledge

Knowledge graphs [67], [68] have been successfully con-
structed and applied to many real-world tasks, such as
extracting information and answering questions. Inspired
by the concept of the knowledge graph, we propose an
API relation graph to represent the internal relations among
diverse programming entities. The major challenges here
are that we need to extract and represent platform-specific
entities and relations. Several knowledge graph embed-
ding algorithms have been proposed, including TransE [34],
TransH [35], and TransR [36]. Our API embedding algorithm
uses the TransE with some variations to convert APIs in the
relation graph to embeddings.

API reference documents contain abundant information
about APIs. Maalej et al. [27] have developed a taxonomy
of knowledge types in API reference documents. Based on
this taxonomy, Li et al. [69] use NLP techniques and define
templates to extract API caveats (i.e. facts that developers
should know to avoid unintended use of APIs) from API
documents. As a comparison, the purpose of APIGRAPH is
to extract semantic similarity among APIs so that such simi-
larities can capture the preserved semantics during malware
evolution.

9 CONCLUSION

Malicious software keep evolving over time to avoid being
detected, leading to model aging of ML-based malware
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detectors. Most existing works try to mitigate model ag-
ing from the data perspective, i.e. labeling new samples
and retraining the aged models. However, data-perspective
methods often need huge efforts and the updated models
are still blind of the root cause of malware evolution. In this
paper, we observe that one common way of malware evo-
lution is to change the implementation while preserving the
same maliciousness logic, for example, using interchange-
able APIs. Therefore, we propose to let ML models capture
the semantic similarity among APIs, called API knowledge,
to better detect evolved malware. We propose a general
framework, named APIGRAPH, that can help extract API
knowledge from documents and leverage these knowledge
to enhance existing malware detectors for both Android and
Windows platforms.

We applied APIGRAPH on 5 SOTA malware detectors
and evaluate them on large-scale, evolutionary datasets.
Extensive experiments show that APIGRAPH can signifi-
cantly slow down the aging and reduce maintaining ef-
forts for these detectors. We have publicly released our
datasets and source code at https://github.com/seclab-
fudan/APIGraph to facilitate researches in this area.
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