
Enhancing State-of-the-art Classifiers with API Semantics to
Detect Evolved Android Malware

Xiaohan Zhang∗
Fudan University

xh_zhang@fudan.edu.cn

Yuan Zhang∗
Fudan University

yuanxzhang@fudan.edu.cn

Ming Zhong
Fudan University

19210240059@fudan.edu.cn

Daizong Ding
Fudan University

17110240010@fudan.edu.cn

Yinzhi Cao
Johns Hopkins University

yinzhi.cao@jhu.edu

Yukun Zhang
Fudan University

16307130205@fudan.edu.cn

Mi Zhang
Fudan University

mi_zhang@fudan.edu.cn

Min Yang
Fudan University

m_yang@fudan.edu.cn

ABSTRACT

Machine learning (ML) classifiers have been widely deployed to
detect Android malware, but at the same time the application of ML
classifiers also faces an emerging problem. The performance of such
classifiers degrades—or called ages—significantly over time given
the malware evolution. Prior works have proposed to use retraining
or active learning to reverse and improve aged models. However,
the underlying classifier itself is still blind, unaware of malware
evolution. Unsurprisingly, such evolution-insensitive retraining or
active learning comes at a price, i.e., the labeling of tens of thousands
of malware samples and the cost of significant human efforts.

In this paper, we propose the first framework, called API-
Graph, to enhance state-of-the-art malware classifiers with the
similarity information among evolved Android malware in terms
of semantically-equivalent or similar API usages, thus naturally
slowing down classifier aging. Our evaluation shows that because
of the slow-down of classifier aging, APIGraph saves significant
amounts of human efforts required by active learning in labeling
new malware samples.

CCS CONCEPTS

• Security and privacy→Malware and its mitigation;Mobile

platform security.

KEYWORDS

Evolved Malware Detection, API Semantics, Model Aging

ACM Reference Format:

Xiaohan Zhang, Yuan Zhang,Ming Zhong, DaizongDing, Yinzhi Cao, Yukun
Zhang,Mi Zhang, andMin Yang. 2020. Enhancing State-of-the-art Classifiers

∗co-first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417291

with API Semantics to Detect Evolved Android Malware. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3372297.3417291

1 INTRODUCTION

Machine learning (ML) classifiers are widely used in practice to
detect Android malware [1, 3, 12, 18, 19, 29, 32, 33, 37, 49, 50, 52]
and have achieved astonishing performance. Despite the success,
one emerging problem of applying ML in malware detection is
the evolution of malware to enhance functionalities and avoid
being detected, thus leading to significant performance degradation
of ML classification models over time. This problem is defined
as model aging or similar concepts like time decay [39], model
degradation [24], and deterioration [9] in the literature. Model
aging is severe: A white paper [23] from Kaspersky in 2019 shows
that the detection rate of a commercial, ML-based classifier drops
drastically from almost 100% to below 80%—or even 60% under
another configuration—in only three months.

Given the severeness of the aging problem, prior works have
proposed to detect model aging and improve malware classifier’s
performance. For example, DroidOL [37] and DroidEvolver [49]
keep introducing new malware samples via online learning. For
another example, Transcend [21] detects early signals of model
aging and retrains the model for improvement. Following Tran-
scend, Tesseract [39] introduces active learning to choose a small
set of representative evolved malware samples for improvement.
However, although prior works can reverse aging and improve
decayed models, the underlying model is still largely unaware
of malware evolution, especially the semantics among evolved
malware. Unsurprisingly, they need tens of thousands of new
malware samples with labels to let the underlying model pick up
the evolution, which involves a large amount of human work in
labeling.

In this paper, the research problem that we study is to understand
why malware evolution can degrade model performance and then
enhance existing classifiers with evolution semantics to slow down
aging. When aging is being slowed down, fewer new samples—and
thus less human efforts in labeling—are needed to improve the

https://doi.org/10.1145/3372297.3417291
https://doi.org/10.1145/3372297.3417291

classifier less frequently via either retraining, active learning, or
online learning. In the light of this problem, our key observation
is that malware samples, during evolution, often keep the same
semantics but switch to a different implementation so that the
evolved malware can avoid being detected by existing classifiers.
For example, the original malware may send one user identifier like
IMEI via HTTP requests, but the evolved one could send a different
identifier such as IMSI via sockets. Semantically, they are almost
the same, but the directly observed implementations are different.

Following our observation, we propose to capture the semantic
similarity during malware evolution and use the captured infor-
mation to slow down the aging of malware classifiers. Our insight
is that if two behaviors—e.g., the invocation of different Android
APIs—are semantically similar, such similarity will also be reflected
in the official Android document like API references for developers.
For example, the API documents of both an HTTP request and a
plain socket mention Internet access. Therefore, we can extract
such common, semantic knowledge among different Android APIs
and group them to be used in malware classifiers.

Specifically, we design a framework, called APIGraph, to con-
struct a so-called relation graph of Android APIs based on informa-
tion provided in and extracted from the official documents. Each
node in the graph represents a key entity, such as an API, an
exception or a permission; and each edge represents the relation
between two entities, such as one API throwing an exception or
requiring a permission. APIGraph then extracts API semantics
from the relation graph by converting each API entity into an
embedding and grouping similar APIs into clusters. The extracted
API semantics in the format of API clusters can be further used
in existing Android malware classifiers to detect evolved malware,
thus slowing down aging.

We applyAPIGraph upon four prior Androidmalware classifiers,
namely MamaDroid [32], DroidEvolver [49], Drebin [3], and
Drebin-DL [18], and evaluate them using a dataset created by
ourselves following existing guidelines [39], which contains more
than 322K Android apps ranging from 2012 to 2018. Our evaluation
shows that APIGraph can significantly reduce the labeling efforts
of the aforementioned four malware classifiers—i.e., ranging from
33.07% to 96.30% depending on the classifier—when combined with
the active learning in Tesseract [39]. We also measure the Area
Under Time (AUT), a newmetric proposed by Tesseract, and show
a significant slowdown of model aging with the help of APIGraph.

Contributions. This paper makes the following contributions.
• We show that although Android malware evolves over time,
many semantics are still the same or similar, leaving us an
opportunity to detect them after evolution.

• We propose to represent similarities of Android APIs in a
relation graph and design a system, called APIGraph, to build
API relation graphs and extract semantics from relation graphs.

• We build a large-scale evolved dataset spanning over seven
years—the dataset is almost three times of the one used in the
state-of-the-art work [39] in evaluating model aging.

• We apply the results of APIGraph, i.e., API clusters, to four
state-of-the-art Android malware detectors, and show that the
manual labeling efforts are significantly reduced and the aging
of these models is significantly slowed down.

 1 // collect personally identifiable information
 2 JSONObject data = new JSONObject();
 3 data.put(getDeviceId());
 4 ...
 5 // send collected data to server through HTTP
 6 URL url = new URL(SERVER_ADDR);
 7 HttpURLConnection conn = url.openConnection();
 8 conn.connect();
 9 out = new DataOutputStream(conn.getOutputStream());
10 out.writeBytes(data.toBytes());
11 ...

 1 // collect personally identifiable information
 2 JSONObject data = new JSONObjec();
 3 data.put(getDeviceId());
 4 data.put(getMacAddress());
 5 ...
 6 // send collected data to server through Socket
 7 Socket socket =

SocketFactory.createSocket(SERVER_ADDR);
 8 out = new DataOutputStream(socket.getOutputStream());
 9 out.writeBytes(data.toBytes());
10 ...

 1 // collect personally identifiable information
 2 JSONObject data = new JSONObject();
 3 data.put(getDeviceId());
 4 data.put(getMacAddress());
 5 data.put(getSubscriberId());
 6 data.put(getSimSerialNumber());
 7 ...
 8 // send collected data to server through SSLSocket
 9 SSLSocket socket =

SSLSocketFactory.createSocket(SERVER_ADDR);
10 out = new DataOutputStream(socket.getOutputStream());
11 out.writeBytes(data.toBytes());
12 ...

Listing 1: pseudo-code of XLoader V1

Listing 2: pseudo-code of XLoader V2

Listing 3: pseudo-code of XLoader V3

Figure 1: A motivating example to illustrate semantic simi-

larities of different malware variations during evolution.

2 OVERVIEW

In this section, we start from a motivating example and then
give an overview of the system architecture.

2.1 A Motivating Example

We illustrate a real-world, motivating example to explain how
APIGraph captures the semantics across various malware versions
during evolution. The malware example, called XLoader, is a
spyware and banking trojan that steals personally identifiable
information (PII) and financial data according to TrendMicro [34,
35]. Although XLoader has evolved into six different variations
with large implementation changes from April 2018 until late 2019,
many semantics across these variations still remain the same.

For the purpose of clear descriptions, we reverse engineered and
simplified the implementation of XLoader into three representative
code snippets (called V1, V2, and V3) as shown in Figure 1. We
listed two types of semantics that are preserved across these three
versions but with different implementations: (i) PII collection, and
(ii) sending PII to malware server. First, the PII collection evolves
from a single source in V1 to two in V2 and then multiple in V3.
Specifically, V1 only collects the device ID, i.e., the IMEI, V2 adds

javax.net.SocketFactory;
createSocket()

java.net.URL;
openConnection()

android.permission.INTERNET

java.io.IOExceptionjava.lang.SecurityException

javax.net.ssl.SSLSocketFactory;
createSocket()

java.net.URLConnection

java.net.Socket

java.lang.SecurityManager;
checkConnect()

throws

returns
refers_to

uses_permission

method

class

permission

Figure 2: An illustrative relation graph to demonstrate how

APIGraph captures the semantics across different versions

of XLoader in Figure 1.

the MAC address, and V3 IMSI and ICCID. Second, the malware
sends PII to the malware server via three different implementations,
which are an HTTP request (Lines 6–10 in V1), a plain socket
connection (Lines 7–9 in V2), and an SSL socket connection (Lines
9–11 in V3).

Next, we explain how APIGraph captures the semantic sim-
ilarity among three different versions of XLoader in terms of
sending PII and thus helps ML classifiers trained with V1 to
detect evolved V2 and V3. Figure 2 shows a small part of the
relation graph constructed by APIGraph, which captures the
interplays of Android APIs, permissions and exceptions. All three
APIs—i.e., openConnection, SocketFactory.createSocket, and
ssl.SSLSocketFactory.createSocket—throw IOException and
use INTERNET permission; and two of these three APIs share more
exceptions and permissions. That is, these three APIs are close
enough in terms of neighborhoods in the relation graph and can be
group together in a cluster. Therefore, an ML classifier, under the
help of the relation graph, can capture the similarity between V2/V3
and V1 and detect V2 and V3 as a malware after the evolution.

2.2 System Architecture

Figure 3 shows the overall architecture of APIGraph, which builds
on a central piece of a concept called API relation graph capturing
the semantic meaning and similarities of all the Android APIs. There
are two major phases of APIGraph: (i) building API relation graph,
and (ii) leveraging API relation graph. First, APIGraph builds an
API relation graph by collecting Android API documents related
to a certain API level and extracting entities—such as APIs and
permissions—and relations between those entities.

Second, APIGraph leverages the API relation graph to enhance
existing malware detectors. Specifically, APIGraph converts all the
entities in the relation graph into vectors using graph embedding
algorithms. The insight here is that the vector difference between
two entities in the embedding space reflects the semantic meaning
of the relation. Therefore, APIGraph generates all the entities
embeddings via solving an optimization problem so that the vector
of two entities with the same relation is similar. Then, APIGraph
clusters all the API entities in the embedding space to group
semantically similar APIs together. Those API clusters are further

used to enhance existing classifiers so that they can capture the
semantic-equivalent evolution of Android malware using certain
API levels during detection, thus slowing down aging.

3 DESIGN

In this section, we first define the key concept, i.e., our API
relation graph, and then describe how to build and leverage this
API relation graph.

3.1 Definition of API Relation Graph

An API relation graph 𝐺 = ⟨𝐸, 𝑅⟩ is defined as a directed graph,
where 𝐸 is the set of all nodes (called entities), and 𝑅 is the set of
all edges (called relations) between two nodes. API relation graph
is heterogeneous, i.e., there are different entity and relation types
as discussed below.
Entity Types. There are four types of entities in API relation graph,
which are basic concepts in Android: method, class, package and
permission. The former three entity types are key code elements
to organize Java programs and the last one depicts the resources
that an Android API needs during its execution. The four entities
together provide enough capability in capturing the internal
relationships among APIs.
Relation Types. We define ten relation types following a relation
taxonomy provided by prior works [25, 30], which covers diverse
information about an API profile. These ten types of relations, as
shown in Table 1, are also summarized into five categories and
described below.
• Organization category describes the code layout relationships
between different entities. Considering the four entity types,
we define class_of relation to connect a class entity with its
belonging package entity, function_of relation to connect a
method entity with its belonging class entity, and inheritance
relation to connect a class entity with its inherited class entity.

• Prototype category describes the prototype of a method entity,
including three types of relations: uses_parameter, returns,
throws relations, which reflect one method entity may use a
class entity as its parameter, return value, or thrown exception
respectively.

• Usage category specifies how to use an API. We focus on
two types of such relation: conditional relation specifies the
usage of one method entity is on conditional of another method
entity, e.g., one API should be used only after another API is
called; alternative relation depicts that one method entity can
be replaced by another method entity.

• Reference category has a refers_to relation that describes a
general relationship between two entities. For example, the API
document may refer another method entity when describing
one method entity using a sentence like “see also ...”.

• Permission category contains the uses_permission relation to
describe the permission entity that a method entity may require.
To build the API relation graph, we need to extract entities and

relations of the above types. In the rest of this section, we first
introduce the organization of Android API reference documents.
Then we describe how to extract entities and relations of different
types from these documents.

API Relation Graph Enhancing Classifiers

Build API Relation Graph Leverage API Relation Graph

API
Document
Collection

Entity
Extraction

Relation
Extraction

API
Embedding

API
Clustering

Figure 3: The overall architecture of APIGraph.

Table 1: Relation types defined in APIGraph.

Perspective Relations Entities Examples

Organization class_of class→ package java.net.Socket is class_of java.net
function_of method→ class BluetoothDevice.getAddress() is function_of android.bluetooth.BluetoothDevice
inheritance class → class javax.net.ssl.SSLSocketFactory inheritance javax.net.SocketFactory

Prototype
uses_parameter method→class javax.net.SocketFactory.createSocket() uses_parameter java.net.INetAddress
returns method→class java.net.Socket.getInputStream() returns java.io.InputStream
throws method→class LocationManager.requestLocationUpdates() throws java.lang.SecurityException

Usage conditional method→method “This method should be called after ...”, “... is called when ...”
alternative method→method “This method is deprecated, use ... instead”, “is replaced by ...”

Reference refers_to method→ method
method→class “Please refer to ...”, “see also ...”

Permission uses_permission method→permission “requires INTERNET permission”

3.2 API Document Collection

APIGraph downloads API reference documents for all platform
APIs and support libraries from the official website1. Each Android
version has a corresponding API level, e.g. Android 10 has API level
29. APIGraph crawls the documents for API level 14 to 29, which
correspond to Android 4.0 to Android 10 and they are the major
active Android versions at present.

Android API reference documents are organized hierarchically.
From the top level to the bottom level, there are packages, classes,
and methods. The API documentation is given at the level of
class. There is a single HTML file for each class to describe the
basic class hierarchy information and also detailed documentation
for all methods in this class. Figure 4 shows an example of the
documentation for android.telephony.TelephonyManager and
one method getDeviceId() of it. The documentation can be
separated into two parts: 1) structured information including the
class profile and the prototype, return value and thrown exceptions
of a method, and 2) unstructured descriptions in the format
of several paragraphs of text, which describe the functionality,
requirements and directives of the API.

3.3 Entity Extraction

There are four entity types in our API relation graph. We extract
these entity types from the documents in the following ways:
• First, since the API document is organized in classes,APIGraph
extracts a class entity from every per-class document file.
As shown in Figure 4, the name of a class is described with
structured texts.

• Second, APIGraph extracts package entities by splitting the
package names from the full class name.

1https://developer.android.com/reference

Added in API level 1
Deprecated in API level 26

getDeviceId

public String getDeviceId ()

This method was deprecated in API level 26.
Use getImei() which returns IMEI for GSM or getMeid() which returns MEID
for CDMA.

Returns the unique device ID, for example, the IMEI for GSM and the MEID or
ESN for CDMA phones. Return null if device ID is not available.

Requires Permission: READ_PRIVILEGED_PHONE_STATE, for the calling app to
be the device or profile owner and have the READ_PHONE_STATE permission,
or that the calling app has carrier privileges (see hasCarrierPrivileges()) on any
active subscription.
...

Returns

String

unstructured
description

structured
information

structured
information

android.telephony.TelephonyManager.html

TelephonyManager

public class TelephonyManager
extends Object

java.lang.Object
 android.telephony.TelephonyManager

Added in API level 1

Public methods

Figure 4: An example API document for

android.telephony.TelephonyManager.

• Third, APIGraph parses per-class document files into Docu-
ment Object Model (DOM) and then extracts method entities
belonging to a class.

• Fourth, APIGraph parses the manifest file2 that lists all the
permissions to extract permission entities.

2https://developer.android.com/reference/android/Manifest.permission

Table 2: Templates to extract 4 relation types, where “ENT” represents an entity.

Relation Type # of Templates Example Templates

conditional 186 “call ENT before ENT be call”, “before ENT return”, “if ENT fail”, “wait for ENT”
alternative 22 “replace by ENT”, “use ENT instead”, “be deprecate. use ENT”
refers_to 5 “see also ENT”, “see ENT”, “query ENT”, “refer to ENT”
uses_permission 4 “require permission ENT”, “require ENT permission”, “be grant ENT permission”

3.4 Relation Extraction

As stated, since some relations, like class_of relation, are organized
in well-structured HTML elements, and some, like refers_to relation,
are embedded in unstructured texts, we adopt two methods to
extract relations from API documents.

3.4.1 Relation Parsing from Structured Texts. According to the rela-
tion types defined in Table 1, six relations are depicted structurally
in the documents. APIGraph extracts these kinds of relations by
direct document parsing. Here are the details. First, APIGraph
extracts function_of and class_of relations during the extraction
of class, method and package entities. Second, APIGraph extracts
inheritance relations from the class profile part in the per-class
document file. Lastly, APIGraph extracts uses_parameter, returns,
and throws relations at the prototype part for each method.

3.4.2 Template-based Relation Matching from Unstructured Texts.
APIGraph extracts four types of relations, i.e., conditional, al-
ternative, refers_to and uses_permission, using a template-based
relation matching method with the help of NLP (Natural Lan-
guage Processing) techniques. Note that APIGraph also extracts
uses_permission relations from two API-permission mappings
generated by existing works [4, 5] to complement the relations
extracted from API documents, because such information in the
Android API documents may be incomplete. In general, there
are three steps in template-based relation extraction: (i) manual
formation ofmatching templates, (ii) iterative expansion of template
set, and (iii) NLP-enhanced template matching.
Manual Formulation of Matching Templates. In this step, we
manually examine 1% of API documents to investigate the patterns
that are used to describe the relations. Table 2 gives several example
templates in regular expression format for each kind of relation
that are manually formulated to match relations from unstructured
texts. For example, the template “see also ENT” matches a refers_to
relation between the current method entity and the ENT entity.
Iteratively Expansion of Template Set. In this step, APIGraph
adopts a semi-automated strategy to iteratively formulate templates
for relation matching. There are three sub-steps in this process, as
described below:
• First, we randomly select 1% of APIs and collect their docu-
ments.

• Second, we use the existing template set to extract relations
from these documents with the help of NLP techniques (ex-
plained in the following paragraph).

• Third, after the matching, we manually check whether there are
relations not captured by existing template set. If the answer is
yes, we manually formulate the templates for them and repeat
from the first step. Otherwise, APIGraph finishes formulating
templates to extract relations for all APIs.

Guided by the above process, the template set converges after
manually looking into 5% of all API documents. Finally, we
summarize 217 templates for conditional, alternative, refers_to and
uses_permission relations. Table 2 presents the template number for
each relation. The whole template construction process takes two
security experts around three days. Note that Android documenta-
tion is stable over time. For example, only 1.4% (834) APIs are added
and 1.6% (989) APIs change their descriptions from API_level 28
to 29, and none of the newly added or changed descriptions need
additional templates.
NLP-enhanced Template Matching. APIGraph matches tem-
plates against unstructured API documents via two steps. First,
APIGraph splits paragraphs into sentences and then preprocess
each sentence via the following methods:

• Stemming. APIGraph reduces each word to its base form, for
example, “requires” and “required” are stemmed to “require”.

• Co-reference Resolution. APIGraph adopts declaration-based
co-reference resolution [25] to resolve all the pronouns to the
underlying entity. For example, “This method” in a sentence
“This method requires permission INTERNET” is resolved to
the method the sentence belongs to.

• Entity Name Normalization. APIGraph replaces all polymor-
phic names with their exact values via following the hyper-
links to their original definition so that APIGraph normal-
izes the representation of entities. For example, the name
android.Manifest.permission.INTERNET and its constant value
“android.permission.INTERNET” are both used in documents:
APIGraph replaces the former with the latter.

Second, APIGraph matches all the templates against each
preprocessed sentence in the API descriptions. If a match against
a template is found, APIGraph then extracts relations from the
sentences as specified by the template. If a sentence can not be
matched with any template, APIGraph will drop the sentence.

3.5 Leveraging API Relation Graph

To leverage API relation graph, APIGraph will convert each API in
the relation graph into an embedding representation and then group
those embeddings into clusters. The concept of API embedding,
inspired by word embedding [36] and graph embedding, is to
convert each API in the relation graph to a vector, which represents
its semantic meanings. Our conversion algorithm (see Algorithm 1),
leveraging a prior algorithm called TransE [8] and fitting TransE
into our relation graph problem, is described below:

(1) APIGraph extracts permission entities and adds new relations
based on common permissions (Lines 3–5). The intuition here is
that permissions in Android preserve semantics and APIGraph
pays more attention to permissions.

Algorithm 1 API Embedding and Clustering

Input: Relation graph 𝐺 = ⟨𝐸, 𝑅⟩, learning rate 𝜆, embedding size
𝑘 , cluster size 𝐶 .

1: Set triples 𝑆 = ∅ ⊲ Form Training Set
2: Add existing relations to triples 𝑆
3: for each permission entity do

4: for each pair ℎ, 𝑡 ∈ 𝐸 that use this permission do

5: Add (ℎ, 𝑟use_the_same_permission, 𝑡) to triples 𝑆
6: for each entity 𝑒 ∈ 𝐸 do ⊲ Vector Initialization
7: Assign 𝑒 with a vector 𝑙𝑒 ∈ R𝑘

8: for each relation 𝑟 ∈ 𝑅 do

9: Assign 𝑟 with a vector 𝑙𝑟 ∈ R𝑘

10: while True do ⊲ Train Embeddings
11: for triple (ℎ, 𝑟, 𝑡) ∈ 𝑆 do

12: Minimize the following loss function:

ℓ = ∥𝑙ℎ + 𝑙𝑟 − 𝑙𝑡 ∥22
13: Update 𝑙ℎ by gradient descent:

𝑙ℎ = 𝑙ℎ + 𝜆 · 𝜕ℓ

𝜕𝑙ℎ

14: Update 𝑙𝑟 , 𝑙𝑡 , 𝑙𝑡 ′ with gradient descent similarly
15: if embeddings do not change then
16: break
17: Collect embeddings of method entities ⊲ Cluster APIs
18: Use k-Means algorithm to find 𝐶 clusters

(2) APIGraph embeds each API entity 𝑒 ∈ 𝐸 (Lines 6–7) and each
relation 𝑟 ∈ 𝑅 (Lines 8–9) with vector 𝑙𝑒 , 𝑙𝑟 ∈ R𝑘 respectively.

(3) APIGraph applies TransE algorithm (Lines 10–14) to minimize
∥𝑙ℎ + 𝑙𝑟 − 𝑙𝑡 ∥22 for each triple (ℎ, 𝑟, 𝑡) in triples set 𝑆 where ℎ and
𝑡 are entities and 𝑟 is a relation. The intuition here is that if two
head entities ℎ1, ℎ2 have the same relation with a common tail
entity, their embeddings 𝑙ℎ1 , 𝑙ℎ2 should be close.

(4) APIGraph clusters API embeddings into different groups using
k-Means and determines the cluster number via the Elbow
method [43].
After APIGraph successfully clusters APIs, APIGraph adopts

clusters, particularly the embedding of each cluster’s center, to
represent the semantics of independent APIs in the cluster.

4 API RELATION GRAPH RESULTS AND

EXPERIMENTAL SETUP

In this section, we describe some statistics of the generated API
relation graph, the dataset used in the evaluation and existing ML
classifiers used in our experiment.

4.1 Statistics of API Relation Graph

Implementation. Our prototype of APIGraph contains 1,627
lines of Python code, including Android API reference document
collection and parsing, relation graph building, and embedding
generation and clustering. Specifically, we use spaCy [42] (a Python
NLP toolkit) to perform sentence splitting, stemming and co-
reference resolution, and our API embedding and clustering is built

Table 3: Extracted entities for Android API level 29.

Entity Type Count

method 59,125
class 7,368
package 446
permission 270

Table 4: Extracted relations for Android API level 29.

Relation Type Count Relation Type Count

function_of 59,125 throws 8,310
class_of 7,368 alternative 1,264
inheritance 3,755 conditional 5,990
uses_parameter 14,528 refers_to 10,859
returns 5,113 uses_permission 5,033

with TensorFlow [44] and sklearn [41] respectively. Following the
Elbow method [43], we choose 2,000 as the total cluster number.

The results of API relation graph generated by APIGraph are
described in terms of entities and relations. Specifically, we use
API level 29 as an example. Table 4 shows the extracted entities:
There are 67,209 entities, including 59,125 methods, 7,368 classes,
446 packages, and 270 permissions. Note that different API levels
have different numbers of entities as API evolves over time. Table 4
lists the number of relations extracted for each type: There are
121,345 extracted relations among these entities.

4.2 Dataset

Our dataset, spanning over seven years, contains 322,594 Android
apps, i.e., 32,089 malicious and 290,505 benign as shown in Table 5.
The dataset—following criteria documented by Tesseract [39]—
has two important properties: temporal consistency and spatial
consistency. The former ensures that data samples are ordered based
on their appearance and almost evenly distributed over seven years;
the latter that the ratio of malware is close to the percentage of
malware in the real-world, which is 10% according to Tesseract
for Android. Note that our dataset is almost two times larger than
the one used in state-of-the-art like Tesseract. Here is how we
construct this dataset.
• Step-1: Initial malware selection and validation. Wedownloaded
all given Android malware from three open repositories,
including VirusShare [45], VirusTotal [46]3, and the AMD
dataset [27, 48]. These are three largest open-source dataset at
the time we write our paper and they together contain 109,897
unique malware. We then feed all samples to VirusTotal and
only keep 109,770 malware samples that are reported by at least
154 anti-virus (AV) engines.

• Step-2: Initial selection and validation of benign apps. We
downloaded 1,060,000 Google Play apps with the help of
AndroZoo [13]. Again, we feed all the apps to VirusTotal and
only keep 1,033,073 that are reported as benign by all the AVs
from VirusTotal.

3VirusTotal provides a set of malicious samples for academic usage at request.
4We follow a most recent work [49] to choose 15 as the threshold.

Table 5: Evaluation dataset. This dataset contains 322,594 apps from 2012 to 2018. For eachmonth, themalware percentage 10%.

When there are enough apps available, most months contain about 5K apps to be representative and effective for evaluation.

App

Year

2012 2013 2014 2015 2016 2017 2018 ALL

Malicious (M) 3,066 4,871 5,871 5,797 5,651 2,620 4,213 32,089
Benign (B) 27,613 43,873 52,843 52,173 50,859 24,930 38,214 290,505
M+B 30,679 48,744 58,714 57,970 56,510 32,300 38,025 322,594
M/(M+B) 10% 10% 10% 10% 10% 10% 10% 10%

Table 6: Android malware classifiers in the evaluation. Note

thatDroidEvolver uses amodel pool that contains 5 linear

online learning algorithms.

Classifier API feature format Algorithm

MamaDroid [32] Markov Chain of API Calls Random Forest
DroidEvolver [49] API Occurrence Model Pool
Drebin [3] Selected API Occurrence SVM
Drebin-DL [18] Selected API Occurrence DNN

• Step-3: Final dataset construction. We order all the samples
according to their appearance timestamps and select a subset
for each month over seven years. Specifically, we select at most
500 malware samples for a month: If the number in that month
is less than 500, we select all; if more than 500, we randomly
select 500. We also randomly select benign apps that are nine
times of malware in a month.

4.3 Candidate Classifiers and Enhancement

with APIGraph

We describe four state-of-the-art, representative malware classifiers
used in the evaluation and list them in Table 6. We choose all
three classifiers used in Tesseract [39] together with a recent,
state-of-the-art work, namely DroidEvolver [49], which delays
classifier aging via a model pool. These four classifiers span over
different machine learning algorithms and their usages of APIs also
differ, but they all face the aging problem. Particularly, the three
classifiers used in Tesseract do not update themselves; although
DroidEvolver updates itself via online learning based on the
majority voting of five models, the majority can age as well and
such errors may propagate to all the models.

Now let us describe these four classifiers in detail and how
APIGraph enhances these works by slowing down the aging
process. It is worth noting that our enhancement of classifiers
depends on the appearance year of the target apps—that is, if
the target apps of the classifiers are from the year 2012, our
enhancement will be using the API relation graph of API Level
18, because this is the latest API level in 2012.
• MamaDroid [32] extracts API call pairs (i.e. caller and callee)
and then abstracts them into package call pairs.5 Next, Ma-
maDroid builds a Markov chain to model the transition
between different packages, and the transition probabilities
between packages are used as the feature vector for the app
in a learning algorithm. We get the entire source code of

5MamaDroid also provides “family mode” where calls to APIs are abstracted to calls to
families, but its authors prove that “package mode” is much better, so in this paper we
only consider MamaDroid in package mode, as is done by previous works [9, 39].

MamaDroid and use the same configuration as its paper.
APIGraph replaces each API call pair used inMamaDroid’s
implementation with API cluster pair and then uses such pairs
in the Markov chain.

• DroidEvolver [49] finds all used APIs in an app via static
analysis and then builds a binary vector of API occurrence
as the feature vector for the app. After that, DroidEvolver
maintains a model pool of five linear online learning algorithms
to classify an app using a weighted voting algorithm. When
some model in the pool aged, it will be updated incrementally
based on the results of other un-aged models. We get the source
code of DroidEvolver and we contact the authors to make
sure our experiments are conducted consistently to their paper.
In our enhancement, APIGraph replaces the binary vector of
API occurrence with the one of API cluster occurrence.

• Drebin [3] gathers a wide range of features such as used
hardware, API calls, permissions, and network addresses for
an SVM-based classifier. In terms of the API feature, Drebin
considers a selected set of restricted and suspicious APIs that
can access to critical and sensitive data or resources. We
implementDrebin by strictly following the detailed description
and configuration in the paper. APIGraph also replaces the
binary vector of API occurrence in the aforementioned subset
with the one of API cluster occurrence for enhancement.

• Drebin-DL [18] uses the same feature set as Drebin but
adopts Deep Neural Networks (DNN) as the algorithm to do
classification. We also follow prior work [18] to implement
Drebin-DL. The enhancement of Drebin-DL with APIGraph
is the same as Drebin.

5 EVALUATION

In this section, we evaluate the effectiveness of APIGraph
in enhancing state-of-the-art classifiers as well as in capturing
the semantic similarity among Android APIs. Specifically, our
evaluation answers the following four research questions.

• RQ1: Model Maintainability Analysis. How many human
labeling efforts does APIGraph save in maintaining the high-
performance of a malware classifier? (see §5.1)

• RQ2: Model Sustainability Analysis. How effective is API-
Graph in slowing classifier aging? (see §5.2)

• RQ3: Feature Space Stability Analysis. How effective is
APIGraph in capturing similarity among evolvedmalware from
the same family? (see §5.3)

• RQ4: API Closeness Analysis.How close are APIs in clusters
grouped by APIGraph? (see §5.4)

5.1 RQ1: Model Maintainability Analysis

The purpose of this research question is to find out how many
human efforts APIGraph can save while maintaining a high
performance classifier. Specifically, we compare the amount of
human efforts needed for active learning in maintaining both the
original and the enhanced classifiers. Let us look at some details.
First, the comparison adopts two metrics, which are (i) the number
of malware to label, and (ii) the retraining frequency. Second, the
active learning is implemented with uncertain sampling [39] to
actively select the most uncertain predictions to label. We further
adopt two settings for the active learning, which are a minimum 𝐹1
score for introducing new samples and a fixed new sample ratio.

5.1.1 Active learning with fixed retrain thresholds. In the first
setting, when the 𝐹1 score of a classifier falls below a low threshold
𝑇𝑙 , active learning is used to select the most 1% uncertain samples
to retrain the classifier, and then gradually increase the percentage
by 1% until the 𝐹1 score reaches another higher threshold 𝑇ℎ . In
the experiment, the classifier to start is trained on all the apps in
2012. We then adopt the aforementioned criterion to apply active
learning from Jan 2013 to Dec 2018, and observe the number of
malware to label and the retraining frequency.
Results: Table 7 shows the number of malware to label and the
retraining frequency from 2013 to 2018 (𝑇𝑙 = 0.8,𝑇ℎ = 0.9).APIGraph
can save the amount of samples to label by 33.07%, 37.82%, 96.30%
and 67.29% respectively forMamaDroid, DroidEvolver, Drebin,
and Drebin-DL and the retrain frequency is reduced as well. There
are three things worth noting here. First, neither Drebin and
Drebin-DL are aware of model aging—thus, it is unsurprising
that APIGraph can save a lot of human efforts. Second, although
DroidEvolver is aware of model aging and tries to improve the
model via online learning, APIGraph can still save a significant
amount of human efforts. The reason is that the majority results
of DroidEvolver may also make mistakes, which leads to a
propagation of such mistakes to other unaged models. Lastly,
Drebin, after combined with APIGraph, requires the least number
of samples to label. This is interesting because although the
performance of Drebin-DL is better than Drebin, Drebin with a
simpler ML algorithm is easier to maintain.

We also expand the samples to label and retrain times into both
cumulative and monthly-distribution numbers and show them in
Figure 5. One interesting phenomenon is that the number of labeled
samples for DroidEvolver and Drebin-DL stays almost the same
for many months, but then suddenly increases a lot especially
without the help of APIGraph. The reason is that DroidEvolver
and Drebin-DL have some capabilities, to a limited degree, of
capturing malware evolution, but once they do not capture one
type of evolution, the consequence is catastrophic, especially for
DroidEvolver. It is because DroidEvolver will propagate false
evolution information to other models in the pool, leading to a false
synchronization.

5.1.2 Active learning with varied learning ratios. The second active
learning setting is to fix the ratio of newly introduced apps each
month as 1%, 2.5%, 5%, 10%, and 50% and test the AUT(𝐹1, 12m)
for each classifier. Similarly, we train a classifier with apps from
2012, and test the classifier month by month from Jan 2013 to Dec

Table 7: [RQ1] A summarization of Figure 5 on retrain times

and the number of labeled samples for active learning with

fixed retrain thresholds (𝑇𝑙 = 0.8, 𝑇ℎ = 0.9).

retrain times # labeled samples

w/o 1 w/ 2 Improves w/o w/ Improves

MamaDroid 45 35 22.22% 22,411 14,999 33.07%
DroidEvolver 19 15 21.05% 20,767 12,913 37.82%

Drebin 56 13 76.79% 167,005 6,173 96.30%
Drebin-DL 26 16 38.46% 28,408 9,292 67.29%

1 w/o denotes the classifier without APIGraph, i.e. the original classifier.
2 w/ denotes the classifier enhanced with APIGraph.

Table 8: [RQ1] AUT(𝐹1, 12m) of original (w/o) and enhanced

(w/) classifiers with different active learning ratios.

AL ratio MamaDroid DroidEvolver Drebin Drebin-DL

w/o 1 w/ 2 w/o w/ w/o w/ w/o w/

1% 0.527 0.637 0.616 0.777 0.692 0.858 0.718 0.749
2.5% 0.619 0.712 0.693 0.840 0.745 0.878 0.766 0.811
5% 0.739 0.838 0.703 0.851 0.767 0.887 0.813 0.841
10% 0.798 0.852 0.749 0.866 0.774 0.895 0.842 0.875
50% 0.809 0.865 0.773 0.888 0.799 0.908 0.887 0.922

1 w/o denotes the classifier without APIGraph, i.e. the original classifier.
2 w/ denotes the classifier enhanced with APIGraph.

2018. Note that AUT is a metric proposed by Tesseract [39], which
defines the area under the curve in each figure to represent the
model’s sustainability as shown in Equation 1.

𝐴𝑈𝑇 (𝑓 , 𝑁) = 1
𝑁 − 1

𝑁−1∑
𝑘=1

[𝑓 (𝑘 + 1) + 𝑓 (𝑘)]
2

(1)

where f is the performance metric (e.g. 𝐹1 score, Precision, Recall,
etc.), N is the number of test slots, and 𝑓 (𝑘) is performance metric
evaluated at the time k, and in our case the final metric is AUT(𝐹1,
12m). An AUT metric that is closer to 1 means better performance
over time.
Results: We show the results in Table 8 for the four evaluated
classifiers before and after applying APIGraph. There are two
things worth noting here. First, the AUT with APIGraph of
each classifier is higher than the one without APIGraph. This
demonstrates that APIGraph can indeed slow model aging across
four different classifiers no matter they are evolution-aware or not.
Second, the aging slowdown of a model enhanced withAPIGraph is
significant: For example, after enhancingDroidEvolver, retraining
with only 1% of apps can achieve even better performance than
retraining with 50% of apps for the original classifier without
enhancement.

Summary:APIGraph significantly reduces (i) the number
of manually-labeled samples and (ii) retrain frequency
when maintaining four different, high-performance mal-
ware classifiers.

5.2 RQ2: Model Sustainability Analysis

In this research question, we measure the performance of existing
Androidmalware classifiers with andwithout the help of APIGraph

(a) The efforts in sample labeling for MamaDroid (b) The efforts in sample labeling for DroidEvolver

(c) The efforts in sample labeling for Drebin (d) The efforts in sample labeling for Drebin-DL

Figure 5: [RQ1] The number of malware samples to label using active learning with fixed retrain thresholds (𝑇𝑙 = 0.8,𝑇ℎ = 0.9).

All the evaluated classifiers are trained using apps from 2012, and tested using apps from 2013–2018. The bar of amonth shows

the number of new samples to be labeled in that month to retrain the classifier.

0 1 2 3 4 5 6 7 8 9 101112
Testing period (month)

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

w/o APIGraph: 0.46

w/ APIGraph: 0.68

(a) MamaDroid

0 1 2 3 4 5 6 7 8 9 101112
Testing period (month)

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

w/o APIGraph: 0.72

w/ APIGraph: 0.83

(b) DroidEvolver

0 1 2 3 4 5 6 7 8 9 101112
Testing period (month)

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

w/o APIGraph: 0.78

w/ APIGraph: 0.88

(c) Drebin

0 1 2 3 4 5 6 7 8 9 101112
Testing period (month)

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

w/o APIGraph: 0.82

w/ APIGraph: 0.87

(d) Drebin-DL

Figure 6: [RQ2] AUT(𝐹1, 12m) of evaluated classifiers before and after leveraging API relation graph. Each classifier is trained

on 2012 and tested on 12 months of 2013. Note that month 0 indicates the time when the classifier is initially trained.

to understand the capability of APIGraph in slowing down model
aging. Our experiment setup is as follows. We train a classifier on
a particular year (say 2012), and test its performance on 12 months
of the next year (say 2013), and then also calculate the AUT. Note
that we only test the performance of a classifier over a year because
many classifiers have already become unusable after one year.
Results: Table 9 shows the AUT(𝐹1, 12m) value of four classifiers
tested from 2013 to 2018 as well as the average. One important
observation is that the average AUT values improve 19.2%, 19.6%,
15.6%, 8.7% respectively for the four classifiers, which indicates
that APIGraph is capable of slowing down model aging. The AUT
values across different years are very similar, showing that malware
keeps evolving back to 2013 until very recently in 2018.

In Figure 6, we also break down the results into months and
show the 𝐹1 score of four classifiers in 2013 when trained with

data in 2012. We observe that the performance of Drebin-DL and
Drebin are the best among all four classifiers in terms of aging:
Specifically, the 𝐹1 score only drops from close to 1 to above 0.8.
This is probably because Drebin adopts a selected subset of APIs,
which has some capability in capturing malware evolution.

Summary: APIGraph significantly enhances the sus-
tainability of existing Android malware classifiers under
evolved malware samples.

5.3 RQ3: Feature Space Stability Analysis

In this research question, we measure the feature space stability
of evolved Android malware from the same family to show that

Table 9: [RQ2] AUT(𝐹1, 12m) of evaluated classifiers before

and after leveraging API relation graph. For each testing

year, the classifiers are trained on the previous year.

Testing
Years

MamaDroid DroidEvolver Drebin Drebin-DL

w/o 1 w/ 2 w/o w/ w/o w/ w/o w/

2013 0.462 0.680 0.717 0.833 0.779 0.878 0.819 0.875
2014 0.456 0.637 0.712 0.791 0.734 0.859 0.816 0.866
2015 0.726 0.789 0.840 0.890 0.759 0.886 0.829 0.878
2016 0.718 0.814 0.718 0.875 0.666 0.869 0.706 0.916
2017 0.635 0.704 0.605 0.908 0.767 0.844 0.793 0.797
2018 0.765 0.861 0.811 0.969 0.794 0.865 0.828 0.874

Average 0.627 0.748 0.734 0.877 0.750 0.867 0.799 0.868
Improves 19.2% 19.6% 15.6% 8.7%
1 w/o denotes the classifier without APIGraph, i.e. the original classifier.
2 w/ denotes the classifier enhanced with APIGraph.

APIGraph can capture semantic similarities. Here is how we obtain
the family information for Android malware, which involves three
steps:
• Step-1: Labeling via Euphony [20]. In this step, we use a
malware labeling tool named Euphony to label the family
information of all the collected 109,770 malware samples (as
described in § 4.2). Euphony is capable of linking different
family label aliases from all AV engines on VirusTotal. For
example, Euphony can link a family label “boxersms” from one
AV with its alias “boxer” from another. The output of Euphony
is a list of (𝑙, 𝑠) pairs, where 𝑙 is a family label and 𝑠 is the
number of AVs that support this label.

• Step-2: Selection of malware with reliable labels. In this step,
we choose a subset ofmalwarewith reliable labels recognized by
most of the AVs. Specifically, we require that the most popular
family label of a malware sample is recognized by at least 50%
AVs and the second popular label is recognized by at most 10%
AVs. That is, we choose the malware with dominant family
labels in our study, which leads to 101,360 malware labeled
with family information, covering 1,120 families.

• Step-3: Selection of top 30 malware family. In this step, we
choose top 30 families that have the most number of labeled
samples so that each family has enough samples for evaluation.
As a result, we have 75,625 (74.61%) apps in this experiment
and every family has more than 500 apps (except the last one).
The top 30 families, as well as the number of their samples are
listed in Table 10 of Appendix A.

Here is our evaluation methodology. We first sort all the malware
samples in one family by their appearing time and then divide them
into 10 groups with 10% samples of this family. The appearing
time of all samples in one group is strictly ahead of the one of all
samples in the next. Next we adopt static analysis with the help of
apktool [2] to disassemble malware code and obtain API features.
Lastly, we calculate a feature stability score of every two adjacent
groups using Jaccard similarity (see Equation 2).

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | (2)

where 𝐴 and 𝐵 is the set of used features for two adjacent groups.
This score function is capable of reflecting how stable the features
evolve between groups.

Results: Figure 7 shows the distribution of feature stability scores
for each malware family with API and API clusters as features.
One important observation of the figure is that the feature stability
score of all families with API clusters as features is very close
to 1 and much higher than the one with API as feature directly.
This observation explains that APIGraph can capture malware
evolution as malware developers tend to use semantically similar
APIs to implement the same or similar functionalities.

We also show the breakdown of feature stability scores for four
specificmalware families in Figure 8. The feature stability scorewith
API clusters as features is almost flat without much decrease over
time; by contrast, the feature stability score with independent APIs
not only is low (near 0.75), but also decreases over time (sometimes
to a very low value like 0.3). This, from another angle, also shows
that APIGraph can capture malware evolution over time.

Summary: APIGraph successfully captures semantic
similarity among evolved malware samples in a family.

5.4 RQ4: API Closeness Analysis

In this research question, we measure the closeness of APIs in
the same cluster to demonstrate the effectiveness of APIGraph.
Particularly, we use t-SNE [31] to project all the API embeddings
into a two-dimensional space and visualize them. Figure 9 shows a
subgraph of the visualization, in which those APIs in our motivating
example (Figure 1) are clearly separated into different clusters. For
example, PII-related APIs, such as getDeviceId(), getSubscriberId()
are close to each other; and network-related APIs, such as those
from “java.net”, “javax.net”, “android.net.Network”, are also close.
It is worth noting that APIs in the package “java.lang” can be
clearly separated into two groups: one containing security-sensitive
APIs for process management and system command execution, and
the other one containing those Java built-in data structure APIs,
such as java.lang.Long.compare(). This fact demonstrates that a
simple package-level API clustering method, like that adopted by
MamaDroid, is inaccurate in capturing semantics information.

Summary: Semantically-close APIs are grouped in the
same or close cluster in the embedding space byAPIGraph.

6 DISCUSSION

API Semantics from Non-official Documents. API semantics
exist and can be extracted from many different places: official
Android API documents are the main source, but other resources,
such as the API tutorial and developer guides [25], can also provide
semantics. We choose the Android API documents as the target
because they are official and contain the most useful information.
Furthermore, it will be hard for an adversary, e.g., a malware
developer, to pollute official API documents and influence the
performance of APIGraph.
Relation/Entity Types. We defined four entity and ten relation
types in API relation graph as a start, which can be extended in
the future to include more types. We believe that current types of

Figure 7: [RQ3] The distribution of feature stability scores for every top 30malware family, when considering APIs as features

and API clusters as features.

(a) airpush (b) artemis (c) kuguo (d) smspay
Figure 8: [RQ3] Continuous feature stability scores across ten groups of four malware families.

java.net.URL.openConnection

javax.net.SocketFactory.
createSocket

javax.net.ssl.SSLSocketFactory.
createSocket

android.telephony.TelephonyManager.
getDeviceId

android.telephony.TelephonyManager.
getSubscriberId

android.telephony.TelephonyManager.
getSimSerialNumber

java.lang.ClassLoader.findClass

java.lang.Runtime.loadLibrary

java.lang.Thread.getAllStackTraces

java.lang.System.getProperties

java.lang.String.subSequence

java.lang.Short.intValue

java.lang.Long.compare

android.net.Network.bindSocket

Figure 9: [RQ4] Visualizing APIs used in the motivating

example (§2) and the “java.lang” package.

relations and entities have already demonstrated their capability in
grouping semantically-close APIs (see RQ4 in §5.3) and improving
existing malware classifiers (see RQ1 in §5.1 and RQ2 in §5.2).
Threshold inMajority Voting of AVs.We followDroidEvolver
in adopting 15 AVs as the threshold to label an app as a malware.
Other work [3, 39] may use different thresholds considering their
experimental settings. A recent paper [54] justifies that any number
between 2 and 39 is reasonable.
Relation Extraction fromCode Analysis. Some of the relations
extracted from API documents by APIGraph, e.g., “returns” and
“throws”, are also available in the Android framework code. We

choose to design APIGraph to extract relations from API docu-
ments, because we believe that it is also how malware developers
understand Android APIs and make corresponding changes for
evolutions. We leave it as a future work to extract and compare
relations from Android source code. Furthermore, documentation
mining is not the only way to extract such relations. Other solutions
such as API usage mining with large-scale market apps [14, 38]
may also generate similar relations.
Non-API-based Malware Classifiers. APIs are a popular type
of features widely adopted by many other existing malware
classifiers [1, 11, 12, 22], mainly because APIs are essential in
implementing malware functionalities. There indeed are two types
of classifiers that do not directly adopt APIs as a feature. First,
some classifiers, e.g., Mclaughlin et al. [33], adopt opcodes and
n-gram as features: Although APIs are not explicitly used as a
feature, they are implicitly embedded as part of the opcodes. We
believe thatAPIGraph can still help such classifiers by transforming
those opcodes to incorporate API cluster information. Second,
some classifiers, e.g., MassVet [10], mainly adopt UI structures for
malware detection. Such classifiers may age quickly given malware
evolution because those features like UI structures are unreliable
and easy to change.
Malware Obfuscation. Android apps may obfuscate themselves
via many techniques, such as Java reflection, packing [15], and
dynamic code loading [16] to bypass existing analysis. This is an
orthogonal problem to what has been studied in APIGraph and
one should refer to existing works [6, 26, 40, 53] for solutions.

Merits beyond Android. The idea of APIGraph can also benefit
malware detection onWindows and iOS, given their APIs’ semantic
similarity. In the future, we will consider expanding APIGraph to
these tasks.

7 RELATEDWORK

Android Malware Classifiers.Machine learning (ML) has been
widely used to detect Android malware in both academic and
industry environments. One popular, yet wildly adopted features
in ML-based Android classifiers is APIs provided by the Android
framework: For example, a majority of previous works [1, 3, 11,
12, 22, 32, 50–52] rely on APIs used by the apps as the features to
detect malice. Specifically, DroidAPIMiner[1] and DREBIN [3] use
the occurrence of APIs; DroidEye [11] and StormDroid [12] use API
usage frequency; MalDolzer [22] adopts API calling sequences; and
DroidMiner [50], DroidSift [52], and AppContext [51] adopt API
call graph.

It is worth noting that most of prior works treat each API
separately and ignore the semantic relations among these APIs.
MaMaDroid [32] is one of the few exceptions that abstract APIs
to corresponding packages, but such a coarse-grained grouping
cannot effectively capture API semantic relations either. APIGraph
is able to enhance those API-based Android malware classifiers to
capture malware evolution, thus slowing down aging.
Concept Drift and Model Aging. Concept drift is a common
phenomenon in machine learning, where the statistical properties
of the samples change over time. Concept drift causes that machine
learning trained models to fail to work on new testing samples,
which is known as model aging [49], or time decay [39], or
model degradation [24] and deterioration [9] in the literature.
Transcend [21] proposes to use statistic techniques to detect
concept drift before the model’s performance starts to fall sharply.
Tesseract [39] proposes a new metric named AUT (Area Under
Time) to effectively measure how a model performs over time in
the setting of concept drift. It also points out that when training
and testing models, spatial and temporal constraints must be
satisfied to faithfully reflect the model’s performance, and in this
paper we exactly follow these constraints to set up our large-
scale dataset. MaMaDroid [32] notices that the change in used
APIs can affect the performance of the trained models, so it
abstracts API calls to their packages and families. However, as
shown in this paper the relations between APIs are much broader
than the package relation, and capturing more relations between
APIs can help MaMaDroid perform better detect evolved malware.
EveDroid [24] and DroidSpan [9] try to find more sophisticated
and distinguishable features in behavioral patterns and information
flow and then build more sustainable models. Unlike these two
approaches that rely on their chosen features and underlying
algorithms, we propose to let models capture relations between
APIs, and our method is more general and can be used to enhance
existing malware classifiers.

As a general comparison,APIGraph is the first work that extracts
the underlying reasons for model aging: That is, Android malware
keeps evolving with similar functionalities but varied implementa-
tions. Therefore, APIGraph, being orthogonal to existing ML-based
approaches like retraining, active learning, and online learning, can

enhance existing ML classifiers to be aware of malware evolution,
thus slowing aging.
Semantics from API Documentation. Knowledge graphs [7,
17] have been successfully constructed and applied to in many
real-world tasks, such as extracting information and answering
questions. Inspired the concept of knowledge graph, we propose
API relation graph to represent the internal relations among diverse
Android programming entities. The major challenges here are that
we need to extract and represent Android specific entities and
relations. Several knowledge graph embedding algorithms have
been proposed, including TransE [8], TransH [47], and TransR [28].
Our API embedding algorithm uses the TransEwith some variations
to convert APIs in the relation graph to embeddings.

The Android API reference documents contain abundant infor-
mation about APIs. Maalej et al. [30] have developed a taxonomy
of knowledge types in API reference documents. Based on this
taxonomy, Li et al. [25] use NLP techniques and define templates to
extract API caveats (i.e. facts that developers should know to avoid
unintended use of APIs) from API documents. As a comparison,
the purpose of APIGraph is to extract semantic similarity among
APIs so that such similarities can capture the preserved semantics
during malware evolution.

8 CONCLUSION

Android malware keeps evolving over time to avoid being detected
by existing classifiers. This paper proposes APIGraph to capture
semantic similarity among APIs, called API semantics, and enhance
state-of-the-art classifiers with API semantics so that they can still
classify evolved malware samples. Specifically, APIGraph builds a
so-called API relation graph, coverts each API entity in the graph
to an embedding, called API embedding, and then groups APIs
in the embedding form into clusters. Those clusters are used to
replace each individual API used by state-of-the-art classifiers as
a feature. We applied APIGraph to enhance four state-of-the-art
classifiers and evaluated them using a dataset created by ourselves
which contains more than 322K Android apps ranging from 2012
to 2018. Our evaluation shows that APIGraph can significantly
reduce the number of samples to label in those four classifiers by
32%–96%. To facilitate any follow-up research, we have publicly
released our dataset and source code at https://github.com/seclab-
fudan/APIGraph.

ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for their helpful
comments. This work was supported in part by the National Natural
Science Foundation of China (U1636204, U1836210, U1836213,
U1736208, 61972099), Natural Science Foundation of Shanghai
(19ZR1404800), and National Program on Key Basic Research
(NO. 2015CB358800). The authors from Johns Hopkins University
were supported in part by National Science Foundation (NSF)
grants CNS-18-54000. Min Yang is the corresponding author, and a
faculty of Shanghai Institute of Intelligent Electronics & Systems,
Shanghai Institute for Advanced Communication and Data Science,
and Engineering Research Center of CyberSecurity Auditing and
Monitoring, Ministry of Education, China.

https://github.com/seclab-fudan/APIGraph
https://github.com/seclab-fudan/APIGraph

REFERENCES

[1] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. DroidAPIMiner: Mining API-
level Features for Robust Malware Detection in Android. In Proceedings of the
International Conference on Security and Privacy in Communication Systems
(SecureComm). Springer, 86–103.

[2] Apktool. 2019. A Tool for Reverse Engineering Android APK Files. https://ibot
peaches.github.io/Apktool/.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. DREBIN: Effective and Explainable Detection of
Android Malware in Your Pocket.. In Proceedings of the Network and Distributed
System Security Symposium (NDSS). 23–26.

[4] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS). ACM, 217–228.

[5] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau,
and Sebastian Weisgerber. 2016. On Demystifying the Android Application
Framework: Re-visitingAndroid Permission SpecificationAnalysis. In Proceedings
of the 25th USENIX Security Symposium (USENIX Security). 1101–1118.

[6] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Michael D
Ernst, et al. 2015. Static Analysis of Implicit Control Flow: Resolving Java
Reflection and Android Intents. In Proceeding of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 669–679.

[7] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD). 1247–1250.

[8] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Proceedings of the 26th Advances in Neural Information Processing Systems
(NIPS). 2787–2795.

[9] Haipeng Cai. 2020. Assessing and Improving Malware Detection Sustainability
through App Evolution Studies. ACM Transactions on Software Engineering and
Methodology (TOSEM) 29, 2 (2020), 28.

[10] Kai Chen, PengWang, Yeonjoon Lee, XiaoFengWang, Nan Zhang, Heqing Huang,
Wei Zou, and Peng Liu. 2015. Finding Unknown Malice in 10 seconds: Mass
Vetting for New Threats at the Google-play Scale. In Proceedings of 24th USENIX
Security Symposium (USENIX Security). 659–674.

[11] Lingwei Chen, Shifu Hou, Yanfang Ye, and Shouhuai Xu. 2018. DroidEye:
Fortifying Security of Learning-based Classifier against Adversarial Android
Malware Attacks. In Proceedings of 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 782–789.

[12] Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. 2016.
StormDroid: A Streaminglized Machine Learning-based System for Detecting
Android Malware. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security (AsiaCCS). ACM, 377–388.

[13] Universit d du Luxembourg. 2016. AndroZoo. https://androzoo.uni.lu/.
[14] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2Vec:

Boosting Static Representation Robustness for Binary Clone Search against Code
Obfuscation and Compiler Optimization. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P). IEEE, 472–489.

[15] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, XueqiangWang, and XiaoFengWang. 2018. Things You May Not Know About
Android (Un)Packers: A Systematic Study based on Whole-System Emulation. In
Proceedings of the Network and Distributed System Security Symposium (NDSS).

[16] Luca Falsina, Yanick Fratantonio, Stefano Zanero, Christopher Kruegel, Giovanni
Vigna, and Federico Maggi. 2015. Grab’n Run: Secure and Practical Dynamic Code
Loading for Android Applications. In Proceedings of the 31st Annual Computer
Security Applications Conference (ACSAC). 201–210.

[17] Google. 2020. Google - Introducing the Knowledge Graph: Things, Not
Strings. https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-
things-not.html.

[18] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. 2017. Adversarial Examples for Malware Detection. In
Proceedings of the European Symposium on Research in Computer Security
(ESORICS). Springer, 62–79.

[19] Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. 2016. Deep4MalDroid:
A Deep Learning Framework for Android Malware Detection based on Linux
Kernel System Call Graphs. In Proceedings of 2016 IEEE/WIC/ACM International
Conference on Web Intelligence Workshops (WIW). IEEE, 104–111.

[20] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F
Bissyandé, Yves Le Traon, Jacques Klein, and Lorenzo Cavallaro. 2017. Euphony:
Harmonious Unification of Cacophonous Anti-virus Vendor Labels for Android
Malware. In Proceedings of the 14th International Conference on Mining Software
Repositories (MSR). IEEE Press, 425–435.

[21] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept
Drift in Malware Classification Models. In Proceedings of 26th USENIX Security

Symposium (USENIX Security). 625–642.
[22] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga

Mouheb. 2018. MalDozer: Automatic Framework for Android Malware Detection
Using Deep Learning. Digital Investigation 24 (2018), S48–S59.

[23] Kaspersky. 2019. Machine Learning Methods for Malware Detection.
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-
Whitepaper-Machine-Learning.pdf.

[24] Tao Lei, Zhan Qin, Zhibo Wang, Qi Li, and Dengpan Ye. 2019. EveDroid: Event-
Aware Android Malware Detection Against Model Degrading for IoT Devices.
IEEE Internet of Things Journal (IOTJ) (2019).

[25] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving API Caveats Accessibility by Mining API Caveats
Knowledge Graph. In Proceedings of the IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 183–193.

[26] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:
Taming Reflection to Support Whole-program Analysis of Android Apps. In
Proceedings of the 25th International Symposium on Software Testing and Analysis
(ISSTA). 318–329.

[27] Hu X Li Y, Jang J. 2019. AMD Dataset. http://amd.arguslab.org/sharing.
[28] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI).

[29] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. 2015.
Marvin: Efficient and Comprehensive Mobile App Classification through Static
and Dynamic Analysis. In Proceedings of IEEE 39th Annual Computer Software
and Applications Conference (COMPSAC), Vol. 2. IEEE, 422–433.

[30] Walid Maalej and Martin P Robillard. 2013. Patterns of Knowledge in API
Reference Documentation. IEEE Transactions on Software Engineering (TSE)
39, 9 (2013), 1264–1282.

[31] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data Using
t-SNE. Journal of machine Learning Research 9, Nov (2008), 2579–2605.

[32] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting Android
Malware by Building Markov Chains of Behavioral Models. In Proceedings of the
Network and Distributed System Security Symposium (NDSS).

[33] Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang, Suleiman Yerima,
Paul Miller, Sakir Sezer, Yeganeh Safaei, Erik Trickel, Ziming Zhao, Adam Doupé,
et al. 2017. Deep Android Malware Detection. In Proceedings of the 7th ACM
on Conference on Data and Application Security and Privacy (CODASPY). ACM,
301–308.

[34] Trend Micro. 2018. The Evolution of XLoader and FakeSpy: Two Interconnected
Android Malware Families. https://documents.trendmicro.com/assets/pdf/wp-
evolution-of-xloader-and-fakespy-two-interconnected-android-malware-
families.pdf.

[35] Trend Micro. 2018. XLoader Android Spyware and Banking Trojan Distributed
via DNS Spoofing. https://blog.trendmicro.com/trendlabs-security-intelligence/x
loader-android-spyware-and-banking-trojan-distributed-via-dns-spoofing/.

[36] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS).
3111–3119.

[37] Annamalai Narayanan, Liu Yang, Lihui Chen, and Liu Jinliang. 2016. Adaptive
and Scalable Android Malware Detection through Online Learning. In 2016
International Joint Conference on Neural Networks (IJCNN). IEEE, 2484–2491.

[38] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API Embedding for API Usages and Applications. In Proceedings
of the 39th IEEE/ACM International Conference on Software Engineering (ICSE).
IEEE, 438–449.

[39] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Malware
Classification across Space and Time. In Proceedings of the 28th USENIX Security
Symposium (USENIX Security). USENIX Association, Santa Clara, CA, 729–746.

[40] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious
Dynamic Code Loading in Android Applications.. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), Vol. 14. 23–26.

[41] scikit-learn. 2020. scikit-learn, Machine Learning in Python. https://scikit-
learn.org.

[42] spaCy. 2020. spaCy - Industrial-Strength Natural Language Processing. https:
//spacy.io/.

[43] MA Syakur, BK Khotimah, EMS Rochman, and BD Satoto. 2018. Integration
K-means Clustering Method and Elbow Method for Identification of the
Best Customer Profile Cluster. In IOP Conference Series: Materials Science and
Engineering, Vol. 336. IOP Publishing, 012017.

[44] TensorFlow. 2020. TensorFlow - An End-to-end Open Source Machine Learning
Platform. https://www.tensorflow.org/.

[45] VirusShare. 2020. VirusShare. https://virusshare.com.
[46] VirusTotal. 2020. VirusTotal. https://virustotal.com.

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://androzoo.uni.lu/
 https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
 https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
http://amd.arguslab.org/sharing
https://documents.trendmicro.com/assets/pdf/wp-evolution-of-xloader-and-fakespy-two-interconnected-android-malware-families.pdf
https://documents.trendmicro.com/assets/pdf/wp-evolution-of-xloader-and-fakespy-two-interconnected-android-malware-families.pdf
https://documents.trendmicro.com/assets/pdf/wp-evolution-of-xloader-and-fakespy-two-interconnected-android-malware-families.pdf
https://blog.trendmicro.com/trendlabs-security-intelligence/xloader-android-spyware-and-banking-trojan-distributed-via-dns-spoofing/
https://blog.trendmicro.com/trendlabs-security-intelligence/xloader-android-spyware-and-banking-trojan-distributed-via-dns-spoofing/
https://scikit-learn.org
https://scikit-learn.org
 https://spacy.io/
 https://spacy.io/
 https://www.tensorflow.org/
https://virusshare.com
https://virustotal.com

[47] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI).

[48] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017.
Deep Ground Truth Analysis of Current Android Malware. In Proceedings of the
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). Springer, Bonn, Germany, 252–276.

[49] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. 2019. Droidevolver: Self-
evolving android malware detection system. In 2019 IEEE European Symposium
on Security and Privacy (Euro S&P). IEEE, 47–62.

[50] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras. 2014.
DroidMiner: Automated Mining and Characterization of Fine-grained Malicious
Behaviors in Android Applications. In Proceedings of the European Symposium on
Research in Computer Security (ESORICS). Springer, 163–182.

[51] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.
2015. AppContext: Differentiating Malicious and Benign Mobile App Behaviors
Using Context. In Proceedings of the 37th International Conference on Software
Engineering (ICSE). IEEE Press, 303–313.

[52] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware
Android Malware Classification Using Weighted Contextual API Dependency
Graphs. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 1105–1116.

[53] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. 2015. DexHunter: Toward
Extracting Hidden Code from Packed Android Applications. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS). Springer,
293–311.

[54] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and Modeling the Label Dynamics of Online Anti-
Malware Engines. In Proceedings of the29th USENIX Security Symposium (USENIX
Security).

A MALICIOUS FAMILY

Table 10 lists the top 30 malware families adopted in our
evaluation.

Table 10: Top 30 Malware Families with The Most Number

of Samples in Our Dataset.

Top Family # APKs Start End

1 smsreg 21,730 2012-02 2018-12
2 airpush 9,434 2012-01 2018-07
3 dowgin 5,614 2012-06 2018-11
4 smspay 4,074 2012-02 2018-12
5 boxer 3,021 2012-01 2018-06
6 triada 2,777 2015-01 2018-11
7 youmi 2,294 2012-02 2018-11
8 kuguo 2,227 2012-02 2018-11
9 fakeinst 1,751 2012-01 2018-07
10 adwo 1,742 2012-01 2018-11
11 mecor 1,638 2013-09 2016-03
12 skymobi 1,537 2013-05 2018-09
13 opfake 1,416 2012-01 2018-08
14 fusob 1,303 2015-04 2018-07
15 waps 1,122 2012-01 2018-12
16 dnotua 1,071 2012-09 2018-12
17 secapk 1,048 2013-09 2018-11
18 artemis 977 2012-01 2018-12
19 wapsx 963 2012-02 2018-08
20 hiddenads 723 2014-08 2018-07
21 hiddad 698 2015-11 2018-11
22 hiddenapp 625 2014-07 2018-07
23 plankton 584 2012-01 2018-07
24 admogo 580 2012-02 2018-07
25 smforw 555 2013-05 2018-11
26 utchi 553 2012-11 2018-07
27 smsspy 541 2012-03 2018-11
28 appquanta 536 2013-10 2018-06
29 lotoor 520 2012-01 2018-06
30 umpay 482 2012-09 2018-12

	Abstract
	1 Introduction
	2 Overview
	2.1 A Motivating Example
	2.2 System Architecture

	3 Design
	3.1 Definition of API Relation Graph
	3.2 API Document Collection
	3.3 Entity Extraction
	3.4 Relation Extraction
	3.5 Leveraging API Relation Graph

	4 API Relation Graph Results and Experimental Setup
	4.1 Statistics of API Relation Graph
	4.2 Dataset
	4.3 Candidate Classifiers and Enhancement with APIGraph

	5 Evaluation
	5.1 RQ1: Model Maintainability Analysis
	5.2 RQ2: Model Sustainability Analysis
	5.3 RQ3: Feature Space Stability Analysis
	5.4 RQ4: API Closeness Analysis

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Malicious Family

