
SSL/TLS

Presenter: Yinzhi Cao

CSE343/443 Lehigh University Fall 2015

Acknowledgement

http://theory.stanford.edu/~jcm/slides/
tecs-05/02-SSL.ppt
http://www.hit.bme.hu/~buttyan/courses/
BMEVIHI9367/SSL_TLS.ppt
https://lyle.smu.edu/~nair/courses/7349/
ssl.ppt
http://www.cs.utexas.edu/~shmat/courses/
cs6431/ssl.ppt

3

What are SSL and TLS?

SSL – Secure Socket Layer
TLS – Transport Layer Security
both provide a secure transport connection between
applications (e.g., a web server and a browser)
SSL was developed by Netscape
SSL version 3.0 has been implemented in many web
browsers (e.g., Netscape Navigator and MS Internet
Explorer) and web servers and widely used on the
Internet
SSL v3.0 was specified in an Internet Draft (1996)
it evolved into TLS specified in RFC 2246
TLS can be viewed as SSL v3.1

4

SSL architecture

SSL Record Protocol

SSL
Handshake
 Protocol

SSL Change
Cipher Spec
Protocol

SSL
Alert
 Protocol

applications
(e.g., HTTP)

TCP

IP

Handshake

Negotiate Cipher-Suite Algorithms
n  Symmetric cipher to use
n  Key exchange method
n  Message digest function

Establish and share master secret
Optionally authenticate server and/or client

SMU CSE 5349/7349

 Handshake Phases

Hello messages
Certificate and Key Exchange messages
Change CipherSpec and Finished messages

SMU CSE 5349/7349

SSL Messages

OFFER CIPHER SUITE
MENU TO SERVER

SELECT A CIPHER SUITE

SEND CERTIFICATE AND
CHAIN TO CA ROOT

CLIENT SIDE SERVER SIDE

SEND PUBLIC KEY TO
ENCRYPT SYMM KEY

SERVER NEGOTIATION
FINISHED

SEND ENCRYPTED
SYMMETRIC KEY

SOURCE: THOMAS, SSL AND TLS ESSENTIALS

ACTIVATE
ENCRYPTION

CLIENT PORTION
DONE

(SERVER CHECKS OPTIONS)

ACTIVATESERVER
ENCRYPTION

SERVER PORTION
DONE

(CLIENT CHECKS OPTIONS)

NOW THE PARTIES CAN USE SYMMETRIC ENCRYPTION

Client Hello

n  Protocol version
w  SSLv3(major=3, minor=0)
w  TLS (major=3, minor=1)

n  Random Number
w  32 bytes
w  First 4 bytes, time of the day in seconds, other 28 bytes

random
w  Prevents replay attack

n  Session ID
w  32 bytes – indicates the use of previous cryptographic material

n  Compression algorithm

Client Hello - Cipher Suites

INITIAL (NULL) CIPHER SUITE

PUBLIC-KEY
ALGORITHM

SYMMETRIC
ALGORITHM

HASH
ALGORITHM

CIPHER SUITE CODES USED
IN SSL MESSAGES

SSL_NULL_WITH_NULL_NULL = { 0, 0 }

SSL_RSA_WITH_NULL_MD5 = { 0, 1 }

SSL_RSA_WITH_NULL_SHA = { 0, 2 }

SSL_RSA_EXPORT_WITH_RC4_40_MD5 = { 0, 3 }

SSL_RSA_WITH_RC4_128_MD5 = { 0, 4 }

SSL_RSA_WITH_RC4_128_SHA = { 0, 5 }

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = { 0, 6 }

SSL_RSA_WITH_IDEA_CBC_SHA = { 0, 7 }

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0, 8 }

SSL_RSA_WITH_DES_CBC_SHA = { 0, 9 }

SSL_RSA_WITH_3DES_EDE_CBC_SHA = { 0, 10 }

Server Hello

Version
Random Number
n  Protects against handshake replay

Session ID
n  Provided to the client for later resumption of the session

Cipher suite
n  Usually picks client’s best preference – No obligation

Compression method

Certificates

Sequence of X.509 certificates
n  Server’s, CA’s, …

X.509 Certificate associates public key with identity
Certification Authority (CA) creates certificate
n  Adheres to policies and verifies identity
n  Signs certificate

User of Certificate must ensure it is valid

Validating a Certificate

Must recognize accepted CA in certificate
chain
n  One CA may issue certificate for another CA

Must verify that certificate has not been
revoked
n  CA publishes Certificate Revocation List (CRL)

Client Key Exchange

Premaster secret
n  Created by client; used to “seed” calculation of

encryption parameters
n  2 bytes of SSL version + 46 random bytes
n  Sent encrypted to server using server’s public key

This is where the attack
happened in SSLv2

Change Cipher Spec &
Finished Messages

Change Cipher Spec
n  Switch to newly negotiated algorithms and key material

Finished
n  First message encrypted with new crypto parameters
n  Digest of negotiated master secret, the ensemble of

handshake messages, sender constant
n  HMAC approach of nested hashing

SSL Encryption

Master secret
n  Generated by both parties from premaster secret

and random values generated by both client and
server

Key material
n  Generated from the master secret and shared

random values
Encryption keys
n  Extracted from the key material

Generating the Master Secret

SOURCE: THOMAS, SSL AND TLS ESSENTIALS

SERVER’S PUBLIC KEY
IS SENT BY SERVER IN
ServerKeyExchange

CLIENT GENERATES THE
PREMASTER SECRET

ENCRYPTS WITH PUBLIC
KEY OF SERVER

CLIENT SENDS PREMASTER
SECRET IN ClientKeyExchange

SENT BY CLIENT
IN ClientHello

SENT BY SERVER
IN ServerHello

MASTER SECRET IS 3 MD5
HASHES CONCATENATED
TOGETHER = 384 BITS

Generation of Key Material

SOURCE: THOMAS, SSL AND TLS ESSENTIALS

JUST LIKE FORMING
THE MASTER SECRET

EXCEPT THE MASTER
SECRET IS USED HERE
INSTEAD OF THE
PREMASTER SECRET

. . .

Obtaining Keys from the Key Material

SOURCE: THOMAS, SSL AND TLS ESSENTIALS

SECRET VALUES
INCLUDED IN MESSAGE

AUTHENTICATION CODES

INITIALIZATION VECTORS
FOR DES CBC ENCRYPTION

SYMMETRIC KEYS

slide 19

SSL 2.0 Weaknesses (Fixed in 3.0)

Cipher suite preferences are not authenticated
n  “Cipher suite rollback” attack is possible

Weak MAC construction, MAC hash uses only 40
bits in export mode
SSL 2.0 uses padding when computing MAC in
block cipher modes, but padding length field is
not authenticated
n  Attacker can delete bytes from the end of messages

No support for certificate chains or non-RSA
algorithms

slide 20

Version Rollback Attack

C

versions=2.0, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc=2.0, suitesc, Nc

{Secretc}PKs

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that
does not include “Finished” messages)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 2.0

slide 21

Version Check in SSL 3.0

C

versions=3.0, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc=3.0, suitesc, Nc

{versionc, secretc}PKs

C and S share
secret key material secretc at this point

“Embed” version
number into secret

Check that received version is
equal to the version in ClientHello

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

slide 22

TLS Version Rollback

C

versions=3.0, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc=3.0, suitesc, Nc

C and S end up communicating using SSL 3.0
(deprecated but supported by everyone for
backward compatibility)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 3.0

POODLE attack
(October 2014)

Attack exploits “padding oracle” in
CBC encryption mode as used by SSL
3.0 to infer the value of encrypted
cookies

Many “padding oracle” attacks over the years: BEAST, CRIME, …

slide 23

“Chosen-Protocol” Attacks

Why do people release new versions of security
protocols? Because the old version got broken!
New version must be backward-compatible
n  Not everybody upgrades right away

Attacker can fool someone into using the old,
broken version and exploit known vulnerabilities
n  Similar: fool victim into using weak crypto algorithms

Defense is hard: must authenticate version early
Many protocols had “version rollback” attacks
n  SSL, SSH, GSM (cell phones)

24

SSL Record Protocol – processing
overview

MAC

application data

padding type

fragmentation

compression

msg authentication and
encryption (with padding if necessary)

version length

type version length

type version length

SSLPlaintext

SSLCompressed

SSLCiphertext

25

Header
type
n  the higher level protocol used to process the

enclosed fragment
n  possible types:

w  change_cipher_spec
w  alert
w  handshake
w  application_data

version
n  SSL version, currently 3.0

length
n  length (in bytes) of the enclosed fragment or

compressed fragment
n  max value is 214 + 2048

26

MAC
MAC = hash(MAC_write_secret | pad_2 |

 hash(MAC_write_secret | pad_1 | seq_num | type | length |
fragment))

similar to HMAC but the pads are concatenated
supported hash functions:
n  MD5
n  SHA-1

pad_1 is 0x36 repeated 48 times (MD5) or 40
times (SHA-1)
pad_2 is 0x5C repeated 48 times (MD5) or 40
times (SHA-1)

27

Encryption

supported algorithms
n  block ciphers (in CBC mode)

w  RC2_40
w  DES_40
w  DES_56
w  3DES_168
w  IDEA_128
w  Fortezza_80

n  stream ciphers
w  RC4_40
w  RC4_128

if a block cipher is used, than padding is applied
n  last byte of the padding is the padding length

slide 28

TLS Heartbeat

C

If you are alive, send me
this 5-letter word: “xyzzy”

“xyzzy”

S

A way to keep TLS connection alive
without constantly transferring data

Per RFC 6520:
struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[HeartbeatMessage.payload_length];
opaque padding[padding_length];
} HeartbeatMessage;

OpenSSL omitted to
check that this value
matches the actual length
of the heartbeat message

Attacker can obtain chunks of server memory
n  Passwords, contents of other users’ communications,

even the server’s private RSA key
n  Why is the RSA key still in memory? Long story:

https://www.lightbluetouchpaper.org/2014/04/25/heartbleed-
and-rsa-private-keys/

Assisted by a custom allocator that does not zero
out malloc’d memory (for “performance,”
natch!)

Heartbleed Consequences

slide 29

SSL Alert Protocol
each alert message consists of 2 fields (bytes)
first field (byte): “warning” or “fatal”
second field (byte):
n  fatal

w  unexpected_message
w  bad_record_MAC
w  decompression_failure
w  handshake_failure
w  illegal_parameter

n  warning
w  close_notify
w  no_certificate
w  bad_certificate
w  unsupported_certificate
w  certificate_revoked
w  certificate_expired
w  certificate_unknown

in case of a fatal alert
n  connection is terminated
n  session ID is invalidated à no new connection can be established within this session

slide 31

Most Common Use of SSL/TLS

HTTPS and Its Adversary Model

HTTPS: end-to-end secure protocol for Web
Designed to be secure against network attackers,
including man-in-the-middle (MITM) attacks

HTTPS provides encryption, authentication
(usually for server only), and integrity checking

slide 32

browser	 HTTPS	 server	
Internet	 proxy	

HTTPS	 tunnel	

The Lock Icon

Goal: identify secure connection
n  SSL/TLS is being used between client and server to

protect against active network attacker

Lock icon should only be shown when the page
is secure against network attacker
n  Semantics subtle and not widely understood by users
n  Problem in user interface design

slide 33

HTTPS Security Guarantees

slide 34

The origin of the page is what it says in the
address bar
n  User must interpret what he sees

Contents of the page have not been viewed or
modified by a network attacker

Evolution of the Lock in Firefox

slide 35

[Schultze]

Combining HTTPS and HTTP

slide 36

Page served over HTTPS but contains HTTP
n  IE 7: no lock, “mixed content” warning
n  Firefox: “!” over lock, no warning by default
n  Safari: does not detect mixed content

n  Flash does not trigger warning in IE7 and FF

Network attacker can now inject scripts,
hijack session

Lock icon

Flash file served
over HTTP

Can script
embedding page!

Mixed Content: UI Challenges

slide 37

Banks: after login, all content served over HTTPS
Developer error: somewhere on bank site write
<script src=http://www.site.com/script.js> </script>
n  Active network attacker can now hijack any session

(how?)

Better way to include content:
<script src=//www.site.com/script.js> </script>
n  Served over the same protocol as embedding page

Mixed Content and Network Attacks

slide 38

slide 39

HTTP → HTTPS and Back

Typical pattern: HTTPS upgrade
n  Come to site over HTTP, redirect to HTTPS for login
n  Browse site over HTTP, redirect to HTTPS for checkout

sslstrip: network attacker downgrades connection

n  Rewrite to
n  Redirect Location: https://... to Location: http://...
n  Rewrite <form action=https://… >
 to <form action=http://…>

attacker

SSL HTTP

Can the server detect
this attack?

slide 40

Will You Notice?
[Moxie Marlinspike]

⇒

Clever favicon inserted
by network attacker

slide 41

Motivation https://

Whose public key is used to
establish the secure session?

slide 42

Distribution of Public Keys

Public announcement or public directory
n  Risks: forgery and tampering

 Public-key certificate
n  Signed statement specifying the key and identity

w  sigAlice(“Bob”, PKB)

Common approach: certificate authority (CA)
n  An agency responsible for certifying public keys
n  Browsers are pre-configured with 100+ of trusted CAs
n  A public key for any website in the world will be

accepted by the browser if certified by one of these CAs

slide 43

Trusted Certificate Authorities

slide 44

CA Hierarchy

Browsers, operating systems, etc. have trusted
root certificate authorities
n  Firefox 3 includes certificates of 135 trusted root CAs

A Root CA signs certificates for intermediate CAs,
they sign certificates for lower-level CAs, etc.
n  Certificate “chain of trust”

w  sigVerisign(“UT Austin”, PKUT), sigUT(“Vitaly S.”, PKVitaly)

CA is responsible for verifying the identities of
certificate requestors, domain ownership

slide 45

Certificate Hierarchy

What power do they have?

Who trusts their certificates?

slide 46

Example of a Certificate

Important fields

slide 47

Common Name

Explicit name: www.foo.com
Wildcard: *.foo.com or www*.foo.com
Matching rules
n  Firefox 3: * matches anything
n  Internet Explorer 7: * must occur in the leftmost

component, does not match ‘.’
w  *.foo.com matches a.foo.com, but not a.b.foo.com

slide 48

International Domain Names

Rendered using international character set
Chinese character set contains characters that look
like / ? = .
n  What could go wrong?

Can buy a certificate for *.foo.cn, create any
number of domain names that look like

 www.bank.com/accounts/login.php?q=me.foo.cn
n  What does the user see?
n  *.foo.cn certificate works for all of them!

slide 49

Example
[Moxie Marlinspike]

Meaning of Color

slide 50

[Schultze]

What is the difference?

Domain Validation (DV)
certificate
vs.
Extended Validation (EV)
certificate

Means what?

slide 51

X.509 Authentication Service

Internet standard (1988-2000)
Specifies certificate format
n  X.509 certificates are used in IPsec and SSL/TLS

Specifies certificate directory service
n  For retrieving other users’ CA-certified public keys

Specifies a set of authentication protocols
n  For proving identity using public-key signatures

Can use with any digital signature scheme and
hash function, but must hash before signing

slide 52

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Back in 2008

Many CAs still used MD5
n  RapidSSL, FreeSSL, TrustCenter, RSA Data Security,

Thawte, verisign.co.jp

Sotirov et al. collected 30,000 website certificates
9,000 of them were signed using MD5 hash
97% of those were issued by RapidSSL

slide 53

[Sotirov et al. “MD5 Considered Harmful Today:
Creating a Rogue CA Certificate”]

serial number

validity period

real cert
domain name

real cert
RSA key

X.509 extensions

signature

identical bytes
(copied from real cert)

collision bits
(computed)

chosen prefix
(difference)

serial number

validity period

rogue cert
domain name

???

X.509 extensions

signature

set by
the CA

slide 54

Colliding Certificates
[Sotirov et al.]

Hash to the same
MD5 value!

Valid for both certificates!

slide 55

Generating Collisions

1-2 days on a cluster of
200 PlayStation 3’s

Equivalent to 8000
desktop CPU cores or
$20,000 on Amazon EC2

[Sotirov et al.]

slide 56

Generating Colliding Certificates

RapidSSL uses a fully automated system
n  $69 for a certificate, issued in 6 seconds
n  Sequential serial numbers

Technique for generating colliding certificates
n  Get a certificate with serial number S
n  Predict time T when RapidSSL’s counter goes to S+1000
n  Generate the collision part of the certificate
n  Shortly before time T buy enough (non-colliding)

certificates to increment the counter to S+999
n  Send colliding request at time T and get serial number S

+1000

[Sotirov et al.]

slide 57

Creating a Fake Intermediate CA

serial number

validity period

real cert domain
name

real cert
RSA key

X.509 extensions

signature

rogue CA cert

rogue CA RSA key

rogue CA X.509
extensions

Netscape Comment
Extension

(contents ignored by
browsers)

signature

identical bytes
(copied from real cert)

collision bits
(computed)

chosen prefix
(difference)

CA bit!

We are now an
intermediate CA.
W00T!

[Sotirov et al.]

Result: Perfect Man-in-the-Middle

This is a “skeleton key” certificate: it can issue
fully trusted certificates for any site (why?)

To take advantage, need a network attack
n  Insecure wireless, DNS poisoning, proxy auto-

discovery, hacked routers, etc.

slide 58

slide 59

A Rogue Certificate

SSLint

• Certificate chain validation
• Server domain name / hostname
validation

• Our findings:
ü We detected 27 previous unknown vulnerable apps

 out of 485 Ubuntu apps.
ü All vulnerabilities fall into the two categories mentioned

above.

OpenSSL API	
const SSL_METHOD *method;
SSL_CTX *ctx;
SSL *ssl;
…
//select protocol
method = TLSv1_client_method();
...
//Create CTX
ctx = SSL_CTX_new(method);
...
//Create SSL
ssl = SSL_new(ctx);
...
/*set SSL_VERIFY_PEER flag to
Enforce certificate chain
validation during handshake*/
SSL_CTX_set_verify(ctx,
SSL_VERIFY_PEER,...);
...
//Start SSL handshake
SSL_connect(ssl);
...	

const SSL_METHOD *method;
SSL_CTX *ctx;
SSL *ssl;
X509 *cert = NULL;
...
//select protocol
method = TLSv1_client_method();
...
//Create CTX
ctx = SSL_CTX_new(method);
...
//Create SSL
ssl = SSL_new(ctx);
...
//Start handshake
SSL_connect(ssl);
...
cert = SSL_get_peer_certificate(ssl);
if (cert != NULL){
 if(SSL_get_verify_result(ssl)
 ==X509_V_OK){
 //Validation succeeds.
 }else{
 //Validation fails and terminate connection
 }
}
else{
 //Validation fails and terminate connection
}
	

Solution

Static	 Analyzer

SSL/TLS	 Client
Software

Matcher

Code	
Representations

Vulnerability
Report

Signatures

• Check whether
validation APIs are
called correctly

• Encode “correct”
usage in a signature
and match this
signature

Pass if match
succeeds

Code Representations & Signatures

• Simple pattern matching (e.g., regular
expressions) not sufficient

• APIs are connected by parameters and
return values
Need to track data flow

• Need to check API call sequences
Need to track control flow

Code Representations & Signatures

•  Program dependence graphs (PDGs)
- Nodes are program statements
- Edges are control and data dependencies
- A is control dependent on B
if B can directly affect A’s
execution
- A is data dependent on B if
value assigned in B can be
referenced from A

• A signature matches nodes
and edges of a PDG

Signature for OpenSSL

SSL_get_peer_certificate()
<function	 call>

(y4)

<condition-‐point>
(==NULL)?

(y6)

SSL_get_verify_result()
<function	 call>

(y5)

<condition-‐point>
(==X509_V_OK)?

(y7)

SSL_VERIFY_PEER
<Const>
(x5)

SSL_CTX_set_verify()
<function	 call>

(x4)

SSL_CTX_new()
<function	 call>

(x1)(y1)

SSL_new()
<function	 call>

(x2)(y2)

SSL_connect()
<function	 call>

(x3)(y3)

OR

Control	 dependence

Data	 dependence
SSL_read()/SSL_write()

<function	 call>
(y8)

SSL_read()/SSL_write()
<function	 call>

(x6)

SSLint Implementation

• Certificate Validation Vulnerability Scanner

• CodeSurfer provides static analysis

• Generated PDGs matched with signatures
– Signature Expressions motivated from Cypher,
a graph query language
– Custom algorithm to perform the matches

Evaluation

• Signatures implemented for OpenSSL and
GnuTLS

 – the most popular two SSL/TLS libraries

• Scanned the entire Ubuntu distribution
 – 485 applications using OpenSSL and
GnuTLS

• Detected 27 vulnerabilities
 – All reported
 – Many fixed or acknowledged

349

138

SSL/TLS apps in
Ubuntu 12.04

OpenSSL app GnuTLS app

38
1

10
4

Analysis Coverage

App sucessfully analyzed

App failed to analyze

Evaluation

Results

l  Vulnerable E-mail Software:
 – Xfce4-Mailwatch-Plugin, Mailfilter, Exim,
 DragonFly Mail Agent, spamc	

l  Vulnerable IRC Software:
 – Enhanced Programmable ircII client (EPIC),
 Scrollz	

l  Other Vulnerable Software:
 Web(https): Prayer front end, xxxterm
 Database: FreeTDS
 Admin tool: nagircbot, nagios-nrpe-plugin,
 syslog-ng

 Performance testing tool: siege, httperf, httping

Results
App Name	 LoC	 Vulnerability

Type	
SSL

library	
Dynamic
Auditing	

Developer
Feedback	

dma	 12,504	 Certificate Validation	 OpenSSL	 Proved	 Confirmed	

exim4	 94,874	 Hostname Validation	 OpenSSL
GnuTLS	 Proved	 Fixed	

xfce4-mailwatch-
plugin	 9,830	 Certificate Validation	

Hostname Validation	 GnuTLS	 Proved	

spamc	 5,472	 Certificate Validation	 OpenSSL	 Confirmed	

prayer	 45,555	 Certificate Validation	 OpenSSL	 Confirmed	

epic4	 56,168	 Certificate Validation	 OpenSSL	 Proved	 Fixed	

epic5	 65,155	 Certificate Validation	 OpenSSL	 Proved	 Fixed	

scrollz	 78,390	 Certificate Validation	
Hostname Validation	

OpenSSL
GnuTLS	 Proved	 Confirmed	

xxxterm	 23,126	 Hostname Validation	 GnuTLS	 Proved	 Confirmed	

httping	 1,400	 Certificate Validation	 OpenSSL	 Proved	 Confirmed	

pavuk	 51,781	 Certificate Validation	 OpenSSL	 Confirmed	

crtmpserver5	 57,377	 Certificate Validation	 OpenSSL	 Confirmed	

freetds-bin	 80,203	 Certificate Validation	
Hostname Validation	 GnuTLS	 Proved	 Confirmed	

App Name	 LoC	 Vulnerability
Type	 SSL library	 Dynamic

Auditing	
Developer
Feedback	

nagircbot	 3,307	 Certificate Validation	 OpenSSL	 Proved	

picolisp	 14,250	 Certificate Validation	 OpenSSL	 Fixed	

nagios-nrpe-
plugin	 3,145	 Certificate Validation	 OpenSSL	 Confirmed	

citadel-client	 56,866	 Certificate Validation	 OpenSSL	 Proved	

mailfilter	 4,773	 Certificate Validation	 OpenSSL	 Proved	

suck	 12,083	 Certificate Validation	 OpenSSL	 Proved	

proxytunnel	 2,043	 Certificate Validation	
Hostname Validation	 GnuTLS	 Proved	

siege	 8,581	 Certificate Validation	 OpenSSL	 Proved	

httperf	 6,692	 Certificate Validation	 OpenSSL	 Proved	

syslog-ng	 115,513	 Certificate Validation	 OpenSSL	 Proved	

medusa	 18,811	 Certificate Validation	 OpenSSL	 Proved	

hydra	 23,839	 Certificate Validation	 OpenSSL	 Proved	

ratproxy	 4,069	 Certificate Validation	 OpenSSL	 Proved	

dsniff	 24,625	 Certificate Validation	 OpenSSL	 Proved	

Results

Backup
Slides

Flame

Cyber-espionage virus (2010-2012)
Signed with a fake intermediate CA certificate
that appears to be issued by Microsoft and thus
accepted by any Windows Update service
n  Fake intermediate CA certificate was created using an

MD5 chosen-prefix collision against an obscure
Microsoft Terminal Server Licensing Service certificate
that was enabled for code signing and still used MD5

MD5 collision technique possibly pre-dates
Sotirov et al.’s work
n  Evidence of state-level cryptanalysis?

slide 73

slide 74

SSL/TLS Handshake

C

Hello

Here is my certificate

S
Validate
the certificate

slide 75

SSL/TLS Handshake

Android
app

Hello

Here is my certificate
I am Chase.com

Issued by GoDaddy to
AllYourSSLAreBelongTo.us

Ok!

Failing to Check Hostname
 “Researchers at the University of Texas at Austin and
Stanford University have discovered that poorly
designed APIs used in SSL implementations are to
blame for vulnerabilities in many critical non-browser
software packages. Serious security vulnerabilities
were found in programs such as Amazon’s EC2 Java
library, Amazon’s and PayPal’s merchant SDKs,
Trillian and AIM instant messaging software, popular
integrated shopping cart software packages, Chase
mobile banking software, and several Android
applications and libraries. SSL connections from
these programs and many others are vulnerable to a
man in the middle attack…”
 - Threatpost (Oct 2012)

slide 76

Major payment processing gateways,
client software for cloud computing,
integrated e-commerce software, etc.

Test certificate
generation

Test result
interpretation

Testing Certificate Validation Code

slide 77

[Brubaker et al. “Using Frankencerts for Automated
Adversarial Testing of Certificate Validation in SSL/
TLS Implementations”. Oakland 2014]

Generating Test Certificates

Requirements
n  Must generate “semantically bad” certificates
n  Should be syntactically correct, otherwise will fail

during parsing and won’t exercise most of the
certificate validation code

n  Must scale to millions of certificates

Idea
n  X.509 certificates contain structured data, can we

exploit this?

slide 78

X.509 Certificate Structure

Multilayered structured data
Syntactic constraints for each
piece
n  Ex: Version must be an integer

Semantic constraints for
individual piece or across
multiple pieces
n  Ex: Version must be 0, 1, or 2
n  Ex: if version!=2, extensions must

be NULL

Version

Serial Number

Signature
Algorithm
Identifier

Issuer Name

Validity Period

Subject Name

Public Key
Information

Issuer Unique ID

Subject Unique ID

Extensions slide 79

X.509 Standards… Ugh!

slide 80

Create X.509 certs using randomly picked
syntactically valid pieces

Likely to violate some semantic
constraints and will thus generate
“bad” test certs just as we wanted

Wait, how can we generate a large
set of such syntactically valid pieces
without reading X.509 specs?

Idea: Random Re-assembly

slide 81

Collect 243,246 X.509 server certificates

1. Scan the Internet

slide 82

version from
cert 1

keyUsage extension
from cert3

keyUsage extension
from cert2

ExtendedkeyUsage
extension from cert4

slide 83

2. Extract Syntactically Valid Pieces

Generate 8 million frankencerts from
random combinations of certificate pieces

3. Frankencerts

slide 84

Multiple implementations of SSL/TLS should
implement the same certificate validation
logic

If a certificate is accepted by some and
rejected by others, what does this mean?

slide 85

Differential Testing

No false positives, although some discrepancies
might be due to different interpretations of X.509

Find the Rotten One

slide 86

14 different SSL/TLS implementations
208 discrepancies due to 15 root causes
Multiple bugs
n  Accepting fake and unauthorized intermediate

certificate authorities

n  Accepting certificates not authorized for use in SSL
or not valid for server authentication

n  Several other issues

attacker can impersonate
any website!

slide 87

Results of Differential Testing

slide 88

Results Summary

Version 1 CA certificates

If an SSL/TLS implementation encounters a
version 1 (v1) CA certificate that cannot be
validated out of band, it must reject it

 RFC 5280 Section 6.1.4(k)

v1 CA certificates do not support the CA bit:
anybody with a valid v1 certificate can
pretend to be a CA

slide 89

Exhibit 1: GnuTLS
/* Disable V1 CA flag to prevent version 1 certificates in a supplied
chain. */
 flags &= ˜(GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT);
 ret = _gnutls_verify_certificate2 (flags,..))

int _gnutls_verify_certificate2(flags, ..)
{
 if (!(flags & GNUTLS_VERIFY_DISABLE_CA_SIGN) &&
 ((flags & GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT)
 || issuer_version != 1))
 {
 /*check the CA bit */
 }
}

slide 90

Exhibit 2: Google Chrome

OK to click through?

slide 91

Exhibit 2: Google Chrome

untrusted CA

slide 92

Exhibit 2: Root Cause

Chrome on Linux uses a modified version of NSS
If a certificate is issued by an untrusted CA and is
expired, the NSS certificate validation code
returns only the “expired” error
Firefox uses a glue layer called Personal Security
Manager (PSM) over NSS and thus is not affected

slide 93

slide 94

Another Bad Warning
http://news.netcraft.com/archives/2013/10/16/us-government-aiding-spying-against-itself.html

slide 95

What Happens After Validation?

Hello

Here is PayPal’s certificate for
 its RSA signing key
And here is my signed Diffie-Hellman value

I am PayPal.com
(or whoever you want me to be)

… then verify the signature on the DH value using
the public key from the certificate

Validate the certificate

slide 96

Goto Fail
Here is PayPal’s certificate
And here is my signed Diffie-Hellman value

… verify the signature on the DH value using
the public key from the certificate

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail; …
err = sslRawVerify(...);
…
fail: … return err … Signature is verified here

???

slide 97

Complete Fail Against MITM

Discovered in February 2014
All OS X and iOS software
vulnerable to man-in-the-middle
attacks
n  Broken TLS implementation provides

no protection against the very attack
it was supposed to prevent

What does this tell you about
quality control for security-critical
software?

slide 98

Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate
n  Private key corresponding to the certified public key

has been compromised
n  User stopped paying his certification fee to the CA and

the CA no longer wishes to certify him
n  CA has been compromised

Expiration is a form of revocation, too
n  Many deployed systems don’t bother with revocation
n  Re-issuance of certificates is a big revenue source for

certificate authorities

slide 99

Certificate Revocation Mechanisms

Online revocation service
n  When a certificate is presented, recipient goes to a

special online service to verify whether it is still valid

Certificate revocation list (CRL)
n  CA periodically issues a signed list of revoked certificates
n  Can issue a “delta CRL” containing only updates

Q: Does revocation protect against forged
 certificates?

slide 100

Comodo

Comodo is one of the trusted root CAs
n  Its certificates for any website in the world are accepted

by every browser

Comodo accepts certificate orders submitted
through resellers
n  Reseller uses a program to authenticate to Comodo and

submit an order with a domain name and public key,
Comodo automatically issues a certificate for this site

slide 101

Comodo Break-In

An Iranian hacker broke into instantSSL.it and
globalTrust.it resellers, decompiled their certificate
issuance program, learned the credentials of their
reseller account and how to use Comodo API
n  username: gtadmin, password: globaltrust

Wrote his own program for submitting orders and
obtaining Comodo certificates
On March 15, 2011, got Comodo to issue 9 rogue
certificates for popular sites
n  mail.google.com, login.live.com, login.yahoo.com,

login.skype.com, addons.mozilla.org, “global trustee"

slide 102

Consequences

Attacker needs to first divert users to an attacker-
controlled site instead of Google, Yahoo, Skype,
but then…
n  For example, use DNS to poison the mapping of

mail.yahoo.com to an IP address

… “authenticate” as the real site
… decrypt all data sent by users
n  Email, phone conversations, Web browsing

Q: Does HTTPS help? How about EV certificates?

slide 103

Message from the Attacker

I'm single hacker with experience of 1000 hacker, I'm single programmer
with experience of 1000 programmer, I'm single planner/project
manager with experience of 1000 project managers …

When USA and Isarel could read my emails in Yahoo, Hotmail, Skype,
Gmail, etc. without any simple little problem, when they can spy using
Echelon, I can do anything I can. It's a simple rule. You do, I do, that's
all. You stop, I stop. It's rule #1 …

Rule#2: So why all the world got worried, internet shocked and all writers
write about it, but nobody writes about Stuxnet anymore?... So nobody
should write about SSL certificates.

Rule#3: I won't let anyone inside Iran, harm people of Iran, harm my
country's Nuclear Scientists, harm my Leader (which nobody can), harm
my President, as I live, you won't be able to do so. as I live, you don't
have privacy in internet, you don't have security in digital world, just
wait and see...

http://pastebin.com/74KXCaEZ

slide 104

DigiNotar Break-In

In June 2011, the same “ComodoHacker” broke
into a Dutch certificate authority, DigiNotar
n  Message found in scripts used to generate fake certificates:
 “THERE IS NO ANY HARDWARE OR SOFTWARE IN THIS WORLD

EXISTS WHICH COULD STOP MY HEAVY ATTACKS MY BRAIN OR
MY SKILLS OR MY WILL OR MY EXPERTISE"

Security of DigiNotar servers
n  All core certificate servers in a single Windows domain,

controlled by a single admin password (Pr0d@dm1n)
n  Software on public-facing servers out of date, unpatched
n  Tools used in the attack would have been easily

detected by an antivirus… if it had been present

slide 105

Consequences of DigiNotar Hack

Break-in not detected for a month
Rogue certificates issued for *.google.com, Skype,
Facebook, www.cia.gov, and 527 other domains
99% of revocation lookups for these certificates
originated from Iran
n  Evidence that rogue certificates were being used, most

likely by Iranian government or Iranian ISPs to intercept
encrypted communications
w  Textbook man-in-the-middle attack

n  300,000 users were served rogue certificates

slide 106

Another Message from the Attacker

Most sophisticated hack of all time … I’m really sharp, powerful,
dangerous and smart!

My country should have control over Google, Skype, Yahoo, etc. […] I’m
breaking all encryption algorithms and giving power to my country to
control all of them.

You only heards Comodo (successfully issued 9 certs for me -thanks by the
way-), DigiNotar (successfully generated 500+ code signing and SSL
certs for me -thanks again-), StartCOM (got connection to HSM, was
generating for twitter, google, etc. CEO was lucky enough, but I have
ALL emails, database backups, customer data which I'll publish all via
cryptome in near future), GlobalSign (I have access to their entire
server, got DB backups, their linux / tar gzipped and downloaded, I
even have private key of their OWN globalsign.com domain,
hahahaa).... BUT YOU HAVE TO HEAR SO MUCH MORE! SO MUCH
MORE! At least 3 more, AT LEAST!

http://pastebin.com/u/ComodoHacker

slide 107

TrustWave

In Feb 2012, admitted issuing an intermediate CA
certificate to a corporate customer
n  Purpose: “re-sign” certificates for “data loss prevention”
n  Translation: forge certificates of third-party sites in order

to spy on employees’ encrypted communications with
the outside world

Customer can now forge certificates for any site in
world… and they will be accepted by any browser!
n  What if a “re-signed” certificate leaks out?

Do other CAs do this?

TurkTrust

In Jan 2013, a rogue *.google.com
 certificate was issued by an intermediate
 CA that gained its authority from the Turkish

 root CA TurkTrust
n  TurkTrust accidentally issued intermediate CA certs

to customers who requested regular certificates
n  Ankara transit authority used its certificate to issue a

fake *.google.com certificate in order to filter SSL
traffic from its network

This rogue *.google.com certificate was trusted
by every browser in the world

slide 108

