
JSKernel: Fortifying JavaScript against Web
Concurrency Attacks via a Kernel-like Structure

Zhanhao Chen† and Yinzhi Cao‡

lhdxczh@gmail.com, ycao43@jhu.edu
† Palo Alto Networks ‡ Johns Hopkins University

Abstract—As portals to the Internet, web browsers constitute
prominent targets for attacks. Existing defenses that redefine web
APIs typically capture information related to a single JavaScript
function. Thus, they fail to defend against the so-called web
concurrency attacks that use multiple interleaved functions to
trigger a browser vulnerability.

In this paper, we propose JSKERNEL, the first generic frame-
work that introduces a kernel concept into JavaScript to defend
against web concurrency attacks. The JavaScript kernel, inspired
from operating system concepts, enforces the execution order of
JavaScript events and threads to fortify security.

We implement a prototype of JSKERNEL deployable as
add-on extensions to three widely used web browsers, namely
Google Chrome, Mozilla Firefox, and Microsoft Edge. These
open-source extensions are available at (https://github.com/
jskernel2019/jskernel) along with a usability demo at (https:
//jskernel2019.github.io/). Our evaluation shows the prototype
to be robust to web concurrency attacks, fast, and backward
compatible with legacy websites.

I. INTRODUCTION

Web browsers typically form the front line across defenders
and adversaries resulting from the direct access to untrusted
web content on the Internet. The problem is exacerbated by
the rapid evolution of the World Wide Web along with the
continuous introduction of multiple new features (e.g., Web
Workers), and the corresponding new vulnerabilities.

A popular direction in securing browsers is that of attack
surface reduction that aims to constrain specific web function-
alities. Such an approach dates to the early days of the web
where the advocacy was for disabling JavaScript to improve
security. More recently, Snyder et al. [1] also proposed to
disable certain high-risk APIs, such as Web Workers, to
fortify security. However, as the web continues to evolve with
new feature-based functionalities, the disabling approach is
not always realistic. For example, Web Workers are widely
used for background computations in popular websites (e.g.,
Google Maps and Overleaf), and disabling workers would
detrimentally affect the user experience.

Another widely-pursued direction to secure web browsers
is to precisely detect the triggering condition of web attacks
and stop them before they happen. Such an approach dates
back to the seminal BrowserShield [2] work where Reis et al.
proposed to rewrite JavaScript in a proxy to enforce security
policies. Such methods of rewriting JavaScript in a proxy
have gradually evolved to the redefinition of JavaScript APIs
via browser add-ons. For example, more recently, JavaScript
Zero [3] redefines JavaScript APIs in browser add-ons to

prevent side-channel attacks. Similarly, JavaScript API redefin-
ition is widely utilized in many commercial products [4], [5],
and approaches such as Canvas Defender [4] redefine canvas
API to introduce noise and defend against canvas fingerprint-
ing. However, all these existing API redefinition works rely
on an implicit assumption that the triggering condition of
web attacks needs information only from the redefined API.
For example, BrowserShield enforces simple security policies
that check the length of API calls to prevent buffer overflow.
Analogously, JavaScript Zero redefines performance.now, a
modern, fine-grained clock API, to reduce its precision.

However, the above assumption no longer holds in modern
web browsers that include full-fledged, event-driven operating
system architectures with multiple threads. Specifically, we
show that the triggering condition of many modern web attacks
needs information, i.e., the invocation sequence, of multiple
JavaScript functions spread across different web threads. In
this paper, we define these attacks as Web Concurrency At-
tacks. These attacks cannot be prevented using simple API
re-definitions proposed in prior work.

The most prominent web concurrency attack is probably
the web implicit clock [6] used in side-channel attacks, that
can also transpire in many prior attacks [7], [8], [9], [10], [11],
[12]. In particular, the triggering condition of an implicit clock
is the interleaved invocations of two JavaScript functions: one
is the implicit clock API, such as the onmessage callback
of postMessage function, and the other is the measurement
target API. The number of invoked onmessage callbacks is
used to infer the duration of the target API invocation. Prior
approaches that redefine individual APIs (such as JavaScript
Zero) cannot prevent web implicit clocks. This is because
the attack is related to the invocation sequence of multiple
JavaScript functions, which cannot be captured by the security
policy using information from individual functions.

Web concurrency attacks also extend beyond implicit clocks
in timing side-channel attacks. Consider the use-after-free
vulnerability [13] documented in the Common Vulnerabilities
and Exposures (CVE) Database. The triggering condition of
this vulnerability involves three JavaScript functions, namely
the fetch initiating a web request, a false termination of the
worker, and an abort signal to the fetch. Specifically, the
fetch has to occur in the worker, the worker has to be falsely
terminated due to a bug, and then the main thread needs to
send an abort signal to the terminated worker to finally trigger
the use-after-free vulnerability. Again, JavaScript Zero cannot

capture the correlation among these three functions. JavaScript
Zero only replaces the native implementation of workers with
a nonparallel version like a polyfill, which sacrifices true
parallelism of web browsers.

In this paper, we propose JSKERNEL, the first frame-
work that introduces a kernel concept with the capability of
capturing concurrency information of different threads into
JavaScript to defend against web concurrency attacks. The
core kernel concept, of an additional layer with a higher
privilege in between the browser and the website JavaScript,
is inspired by the operating system (OS) kernel analogy. The
key idea is that the JavaScript kernel, similar to an OS kernel,
manages all the JavaScript threads and schedules events in
each thread following a certain security policy thus preventing
a web concurrency attack. The policy for the implicit clock
example can be deterministic [14] or fuzzy [6] scheduling;
the one for the aforementioned use-after-free vulnerability
is a manual specification that explicitly closes the already-
terminated worker after the fetch and before the abort signal.

We have implemented a prototype of JSKERNEL as exten-
sions to three major browsers, i.e., Firefox, Chrome and Edge.
Our implementation is open-source and available at the follow-
ing repository (https://github.com/jskernel2019/jskernel). We
also provide an demo of the attack at https://jskernel2019.
github.io/. Our design and implementation of the JSKERNEL
prototype follows the following principles:

• Browser-agnostic. We design JSKERNEL to be deployable
at any existing web browser. Specifically, we design JSKER-
NEL with a piece of thin extension code for bootstrapping
and a portal kernel runnable at any existing browser.
• Backward compatibility. We design JSKERNEL to be

backward compatible with legacy websites. For example, in
timing APIs, the execution sequence of asynchronous event
enforced by JSKERNEL is one out of many possibilities,
thus being compatible with legacy websites.
• High performance. JSKERNEL incurs insignificant over-

head compared with legacy execution of web applications.
Our evaluation shows that JSKERNEL only incurs 0.30%
median overhead on the Dromaeo benchmark [15].

II. OVERVIEW

In this section, we provide an overview of JSKERNEL. We
start by describing the web concurrency attack in Section II-A
and present examples of security policies needed for prevent-
ing web concurrency attacks in Section II-B.

A. Threat Model: Web Concurrency Attack

Web concurrency attack is defined as a web-level attack
triggered by a specific invocation sequence of two or more
JavaScript built-in functions, e.g., system APIs and callbacks,
with certain parameters and possibly located in multiple
threads. The consequence of web concurrency attack varies,
where the manifestation could be a privacy leak of cross-origin
information or an exploit of a low-level vulnerability. The

1 // worker.js:
2 function(){
3 for (var i = 0; i < BIG_NUMBER; i ++)
4 postMessage(i);
5 }
6 // Main Script:
7 <style>.f { filter: url(#morphology) } </style>
8
9 <svg>

10 <filter id="morphology">
11 <feMorphology operator="erode" radius="30">
12 </filter>
13 </svg>
14 <script>
15 worker = new Worker("worker.js");
16 startTime = performance.now();
17 worker.onmessage = function (event) {
18 count = event.data;
19 if (event.data == NUM) {
20 tick = (performance.now() - startTime)/NUM;
21 callback = function(){
22 asyncTimerDuration = tick * (count - NUM);
23 }
24 document.getElementById("e").classList.toggle(’f’);
25 requestAnimationFrame(callback);
26 }
27 }
28 </script>

Listing 1: Web Concurrency Attack Example 1: A JavaScript
worker uses the callback function of postMessage as an
implicit clock.

common thread among such attacks is that the triggering con-
dition requires a particular invocation sequence of JavaScript
functions.

Note that web concurrency attacks differ from low-level
concurrency attacks [16]. Low-level concurrency attacks are
mostly caused by a race condition, which could then lead to,
for example, a privilege escalation from the user space to the
kernel. The cause of web concurrency attacks, if targeting a
low-level vulnerability, is that a particular invocation sequence
of JavaScript functions across multiple threads will result
in control and data flows at the low level such that the
vulnerability can be triggered.

Next, we present two examples to illustrate web con-
currency attacks. We start from an implicit clock example
in Section II-A1 that measures unknown information, e.g.,
loading time of a cross-origin resource in timing attacks,
and then describe a low-level use-after-free vulnerability in
Section II-A2.

1) Attack Example 1—An implicit web clock: We first
describe a timing attack with an implicit clock in Listing 1
to illustrate web concurrency attacks. Consider the general
pattern of a timing attack with an implicit clock. An adversary
measures a secret, e.g., the operational time of an SVG filter
(Lines 7–13), using the number of invocations of an implicit
clock API, e.g., onmessage events (Lines 17–27) triggered
by the postMessage call (Line 4) in a JavaScript worker
(Lines 2–5). As the operational time of the SVG filter differs
based on the image contents, an adversary can infer the image
contents based on prior works [9]. The use of an implicit clock
belongs to a web concurrency attack because of the interleaved
invocation of the secret and the implicit clock API.

The attack transpires in two stages covering the measure-
ment of (i) a tick and (ii) a secret. First, similar to the clock

1 // worker.js
2 var abortCtl0 = new AbortController();
3 var abortSig0 = abortCtl0.signal;
4 setInterval(function (e) {
5 fetch("./fetchedfile0.html", {signal:abortSig0}).then(

function(e){...}).catch(function(e) {...});
6 }, 32);
7 // Main Script
8 <script type="text/javascript">
9 var worker = new Worker("worker.js");

10 setTimeout(function(){location.reload();},300);
11 </script>

Listing 2: Web Concurrency Attack Example 2: A use-after-
free vulnerability triggered by a complex function invocation
sequence.

edge attack [6], the adversary needs to measure the length of a
clock tick, i.e., the invocation time of onmessage event in the
current browser that includes an i ++ (Line 3) and a message
passing from the worker to the main thread (Line 4). Particu-
larly, the adversary executes the operation multiple times and
then divides the overall duration by the number of executions
to obtain one tick’s length (Line 20). Second, the adversary
invokes the target, i.e., an erode operation, and measures the
number of onmessage events from the worker thread. Then,
the duration of the operation will be the tick length multiplied
by the event number (i.e., asyncTimerDuration in Line 22).

2) Attack Example 2—A use-after-free vulnerability: A
web concurrency attack targeting a use-after-free vulnerability
(CVE-2018-5092) is depicted in Listing 2. The vulnerability
is a use-after-free where the browser code sends an abort
signal to a fetch request that has already been freed due
to a false worker termination.The triggering code, simplified
from Bugzilla [13] while preserving its functionality, first
registers a fetch in the worker thread at Line 4, causes the
false termination in the fetch request at Line 5, and then
triggers the abort signal by closing the main thread at Line 10.
The exploitation of this use-after-free vulnerability is a web
concurrency attack because of the strict invocation sequence
of these JavaScript APIs across the worker and main threads.

B. Security Policy

We illustrate some example security policies adopted by
JSKERNEL to defend against web concurrency attacks. A
security policy in JSKERNEL, represented in a JSON format
and specifies the corresponding functions to be invoked for a
user-space, i.e., a website JavaScript, function call in either
the main or the worker thread. A security policy has access to
kernel objects, such as the event queue described subsequently
in Section III-C, such that it can schedule events in a specific
sequence for defense.

We present two examples of security policies in defending
the aforementioned web concurrency attacks in Section II-A
and then present how to specify policies in general.

1) A Deterministic Scheduling Policy against Implicit
Clocks: We outline a security policy implementing a determin-
istic scheduling in Listing 3. The policy arranges all the events,
such as onmessage , in a deterministic order. Particularly, the
policy creates a pending onmessage for each callback of

1 policy_deterministic = {
2 worker: { // policy for worker thread
3 JSKernel_WorkerPostMessage: (callback) => {
4 var pendingOnMessage = new Event(callback, [], "

pending");
5 var expectedTime = predictOnMessage();
6 event_queue.push(pendingOnMessage, expectedTime);
7 }
8 },
9 main: { // policy for main thread

10 JSKernel_WorkerPrototypeOnmessage: (e) => {
11 event_queue.lookup(e.command).status = "

confirmed";
12 }
13 }

Listing 3: A Security Policy of Deterministic Scheduling to
Defend against Attack Example One

1 policy_cve-2018-5092 = {
2 main: { // policy for main thread
3 JSKernel_WorkerPrototypeOnmessage: (e) => {
4 if (e.command == "pendingChildFetch") {
5 //inform the worker thread
6 this.postSysMsg("confirmFetch", e.id);
7 // close the worker if it is freed after fetch
8 var cleanWorker = new Event(() => {
9 if (!this.alive) this.terminate()

10 });
11 event_queue.push(cleanWorker,

expectedTimeforFetch);
12 }
13 }
14 },
15 worker: { // policy for worker thread
16 JSKernel_Fetch: (url) => {
17 //inform main thread
18 var kernelFetch = new Event(legacy_fetch, [url], "

pending");
19 postSysMsg("pendingChildFetch", kernelFetch.id);
20 event_queue.push(kernelFetch,

expectedTimeforConfirm);
21 return kernelFetch.stub;
22 },
23 JSKernel_onmessage: (e) => {
24 if (e.command == "confirmFetch")
25 event_queue.lookup(e.command).status = "

confirmed";
26 }
27 }
28 }

Listing 4: A Manually-specified Scheduling Policy to Defend
against CVE-2018-5092

postMessage (Line 4), predicts a deterministic time (Line
5), and then pushes the pending event into an event queue
(Line 6). Once the real onmessage event happens, the policy
changes the status of the pending event to “confirmed” (Line
10) and waits until its turn to execute the event.

Such a policy can defend against the aforementioned impli-
cit clock. Due to the deterministic scheduling policy, all the
onmessage and callback invocations are arranged determin-
istically in the time axis. There, the number of onmessage
invocations in between the starting and ending of callback in
Listing 1 is deterministic, i.e., count (Line 24) is fixed, and
so is asyncTimerDuration .

2) A Scheduling Policy Preventing Triggering Condition of
CVE-2018-5092: In this part, we show a scheduling policy
in Listing 4 to defend against the aforementioned use-after-
free vulnerability. When a worker thread initiates a fetch
call, the policy asks the kernel code at the worker thread
to send a “pendingChildFetch” message to the main thread

Figure 1: JSKERNEL Architecture

(Line 19), which confirms the receipt of the message via
a “confirmFetch” and also creates a “cleanWorker” event to
check the liveness of the worker thread and prevent any abort
signal from the main thread by closing the worker thread
(Lines 6–11). This policy can defend against attacks targeting
CVE-2018-5092 because the main thread will be aware of the
termination of a worker and thus avoid sending an abort signal
to the fetch function.

3) Policy Specification: Currently, there are two types of
policies, general and specific, which are allowed in JSKER-
NEL. The aforementioned examples belong to these two types.
The policy in Listing 3 is a general one that defends against
timing attacks. The policy in Listing 4 is specific to CVE-
2018-5092. The writing of specific policies is manual and
requires the understanding of the vulnerability triggering con-
dition. We utilize CVE-2018-5092 to explain how a policy
is written. An expert reads and understands the exploit code
in Bugzilla to extract two critical triggering conditions: (i)
a fetch call that causes a false termination in one thread
and (ii) a reload that causes another termination in another.
Subsequently, the expert writes the policy in Listing 4 to model
the interplay between these two triggering conditions.

III. JSKERNEL DESIGN

We now outline the design of JSKERNEL.

A. Overall Architecture

The architecture of JSKERNEL, similar to an OS kernel,
has two areas classified per their privilege levels, i.e., the
kernel and the website (or called the user space as borrowed
from OS). Our kernel has four major components: a storage
place of kernel objects, a scheduler, a dispatcher, and a
thread manager. The storage place holds all the kernel-related
objects, such as a clock, an event queue, JavaScript objects
(undefined and Worker) used in the kernel along with event
and thread structures. The scheduler handles all the user-to-
kernel communication and places events into the event queue,
e.g., a manually specified policy or a deterministic scheduling.
The dispatcher, essentially an event loop, fetches and invokes
all the ready events following the time sequence determined
by the scheduler. The thread manager is responsible for

1 // kernelworker.js:
2 function(){
3 kernelWorkerInterface = (function(){
4 kernelPostMessage = postMessage;
5 postMessage = function (e) {...};
6 return {src:...};
7 })();
8 importScripts(kernelWorkerInterface.src); //

kernelWorkerInterface.src="worker.js"
9 }

10 // Kernel script in main thread:
11 var kernelInterface = (function(){
12 kernelWorker = Worker;
13 constructWorker = function (userWorker) {...};
14 registerMsg = function () {...};
15 requestAnimationFrame = function () {...};
16 return {constructWorker, registerMsg, ...};
17 })();
18 var worker_handler = {
19 set: (obj, prop, val) => {
20 if (prop=="onmessage")
21 kernelInterface.registerMsg(...);
22 },// kernel trap
23 construct: (obj, prop) => {
24 var myworker = {name:prop[0]};
25 kernelInterface.constructWorker(myworker);
26 return new Proxy(myworker, worker_handler);
27 }
28 }
29 var Worker=new Proxy(Function, worker_handler);
30 // original attack scripts
31 var worker = new Worker("worker.js");
32 worker.onmessage = function (event) {...};

Listing 5: Kernel Interface Code for User-Kernel
Communication

creating kernel threads, which will spawn user threads. Thread
communication is also handled by the thread manager.

B. Kernel Interface

The kernel interface provides a set of APIs for the user
space, i.e., the website JavaScript ops. When the user-level
code calls the corresponding APIs, the kernel code will be
invoked instead of the browser native code. Listing 5 provides
an example: Worker (Line 29) and postMessage (Line 5)
are user-space APIs. When the user code tries to create a new
worker thread, our kernel code will first create a kernel worker
thread (Line 2–9). Then, the kernel code in main thread will
communicate the user creation request to the kernel worker,
which will then subsequently import the user worker (Line 10)
under a similar environment like the main thread.

We now categorize the interfaces into two types of commu-
nications: user→kernel and kernel→user.

1) User→Kernel Communication: The user space may
invoke a kernel space function via the following three methods:
• Kernel API calls. Kernel API calls are that a user-space

script calls an API, such as setTimeout and postMessage,
which are redefined by the kernel space. This redefined API
will call the corresponding functions in the kernel space.
• Kernel Traps. Kernel traps result when a user-space script

access an object property, the access will be automatically
trapped to the kernel. We implement traps via the setter
function provided by JavaScript. For example, the code, i.e.,
Object.defineProperty (this, ‘onmessage’, { set: function(e)
{ ... } }); defines a setter function for onmessage such that
when the user space accesses onmessage, the access will be
trapped to the setter function in the kernel space.

• User-space Stub. The stub provides a user-space object,
which calls a corresponding kernel space function. The
Worker object (Line 27 in Listing 5) is such an example
stub—all the accesses to the Worker object will be redir-
ected to the worker handler in the user space. Then, the
worker handler invokes methods provided by the kernel.
Take the new operation for example. When the website
JavaScript creates a Worker object, i.e., a Proxy instance,
the Proxy will invoke the constructor in worker handler ,
which then calls constructWorker method provided by the
kernel interface.
Note that the user-space script is free to redefine any API

or objects provided in the kernel interface. There could be two
reasons. First, as a legitimate case, the user-space script may
obtain the old definition and call the old one in the newly
defined function. For example, requestAnimationFrame is ob-
tained as a backup copy and then redefined in youtube.com. In
such cases, the user-space script obtains our kernel interface
API but thinks that it is the original definition. The user-
space function will eventually call our kernel interface API
in their backup copy invocation. Second, as an adversarial
case, an attacker may try to bypass our kernel interface
by redefinition. In such an example, although the attacker
can bypass our kernel, she cannot launch any attacks either
because timing-related objects are encapsulated in the kernel,
which the attacker cannot access. The attacker cannot use
Object.defineProperty to redefine setter functions of critical
properties like onmessage either, because such properties are
not configurable.

2) Kernel→User Communication: When a user-space
script requests the kernel to finish a task, the kernel needs to
communicate with the user space after fulfilling the tasks—
such communication is done via a callback function. Usually,
the callback function is passed to the kernel when the user-
space script requests the task. For example, the function passed
to onmessage at Line 30 of Listing 5 is a callback. When the
kernel decides to invoke the callback, i.e., via the dispatcher
component, the kernel needs to prepare the correct execution
context and the arguments. For example, consider the onload
event in the document object model (DOM). The onload event
of a DOM element needs to be executed with the this object
as the element. Therefore, the kernel first binds the callback
function with the correct this object, and then applies the
callback with the arguments returned from the browser under
the correct execution context.

C. Kernel Objects

We now introduce two key types of kernel objects.
1) Event Queue: An event queue arranges all the events,

i.e., items in the queue, based on the predicted time. The
event queue supports regular queue APIs. For example, a pop
API returns the event with the smallest predictedTime and
removes it from the queue. Similarly, a top API returns the
same event but still keeps it in the queue. Next, the push
API inserts an event into the queue and puts it along with
other events based on their predictedTime value. Lastly, the

remove API removes an event from the queue regardless of
its predictedTime.

2) Clock: A clock in JSKERNEL is simply a counter that
ticks based on certain information, which could be a physical
clock tick or specific API calls. A clock object provides two
APIs in the kernel space: ticking and displaying. First, the
ticking API allows the clock to tick either by or to a certain
value. Second, the displaying API allows the clock to return
the current time, when a kernel function asks for it. For
example, both performance.now and the callback function
of requestAnimationFrame need to use this API to query
current time.

D. Scheduler and Dispatcher

We now detail event scheduling and cancelling in JSKER-
NEL.

1) Event Scheduling: The JSKERNEL schedules an event
via two steps: registration and confirmation. In the registration
step, the scheduler pushes a pending event with a predicted
time into the event queue. In the confirmation step, the
scheduler confirms the arguments, this object, and sometimes
callback for the pending event to result in the change of its
status to ready.

First, the registration stage, typically initiated by
the user-space scripts calling a kernel API such as
requestAnimationFrame , prepares an event object with its
predicted invocation time and callback function. Specifically,
the scheduler creates an empty, pending event object, and
predicts the time for the event based on the current time,
i.e., querying the clock, and the registration type—the
prediction depends on the detailed scheduling algorithm,
such as determinism and fuzzy time. Next, the scheduler
prepares the callback function for the event. In some cases
like setTimeout , the callback is unique; in some cases, such
as image loading, the callback varies on external factors—an
onload callback is fired if the image is available, and
otherwise an onerror . The scheduler puts all the possible
callbacks in the event object and pushes the event object
into the event queue. After that, the scheduler registers a
kernel callback function with the browser under the original
registration type to trigger the confirmation stage with the
created event object.

Second, when the browser initiates the kernel callback
function, the confirmation stage is automatically triggered. In
this stage, the scheduler needs to put the event arguments
and this object into the event object. If the event object
has multiple callbacks, the scheduler confirms the triggered
callback and deletes others from the callback list. For example,
if the image is correctly loaded, the onerror callback will be
deleted. Then, the scheduler will change the event status to
ready so that the dispatcher can fetch and execute the event.

2) Event Cancellation: Once an event is scheduled by
JSKERNEL in the event queue, a user-space script may
request to cancel the event, e.g., via clearTimeout and
cancelRequestAnimation . When our scheduler receives a
cancellation request, usually accompanied by the return value

in the event request stage, the scheduler will look up the
event based on the ID field. Then, there are three possible
cases. First, the event has not happened in the browser. If
so, the scheduler will first cancel the event by calling the
corresponding cancellation API and then marked the event as
cancelled in the queue. Second, the event has happened in the
browser and confirmed in the event queue, but not invoked
by our dispatcher. If so, the scheduler will change the event
status to cancelled directly. Lastly, the event has already been
invoked by the dispatcher. If so, the scheduler will ignore the
request.

3) Event Dispatching: The dispatcher is essentially an
event loop that keeps fetching events from the event queue
following their predicted time. If the status of the fetched
event is ready, the dispatcher will invoke the event callback
with the correct execution context and arguments, and then
removes the event from the event queue. If the status of the
fetched event is pending, the dispatcher will wait for the event
to become ready. If the status of the fetched event is cancelled,
the dispatcher will directly discard the event.

E. Thread Management

Different JavaScript threads, i.e., WebWorkers, have their
own runtime, e.g., self object, and can freely communicate
with the main thread. Therefore, JSKERNEL takes control
of thread management and puts it into the kernel. We now
first describe how to create kernel and user threads, and then
introduce the communication between different threads.

1) Kernel and User Thread Creation: The thread manager
of JSKERNEL provides a customized interface for the user-
space script to create a thread. For example, when a user-space
script constructs a new Web Worker, the the thread manager in
the kernel code, will first construct a thread object to represent
a kernel thread. The thread object contains four fields: status,
ID, src, and kernel worker. The status field indicates whether
the kernel thread has started (“started” status), loaded the user
thread (“ready” status), or closed (“closed” status) due to either
main or user thread request. The ID field represents a unique
identifier for the kernel thread, the src field the user thread
source, and the kernelWorker field a WebWorker responsible
for the kernel thread. Next, the thread manager will create and
then communicate with the kernel thread.

The kernel thread, once created, will prepare an environment
for the user thread. Specifically, the kernel thread wraps all the
timing related objects and APIs, available in a WebWorker, to
an anonymous closure, which is just like what the kernel code
does for the main thread. Note that a kernel thread maintains
a separate event queue and clock from the main thread, i.e.,
the scheduling and clock ticking follow APIs and events in
this kernel thread only (not the main thread or other kernel
threads). Once the thread environment is prepared, the kernel
thread will import the user-space thread with the source passed
from the kernel code in main thread.

2) Thread Communication: Similar to OS’s interprocess
communication, there are two types of thread communication
in browser: message passing, i.e., postMessage, and shared

memory, i.e., SharedArrayBuffer . The former is very popular
and widely used—and therefore JSKERNEL also adopts it for
kernel communication; the latter is rarely used and currently
disabled in many browsers due to Spectre attack. We discuss
both communications.

First, JSKERNEL adopts message passing for both user-
space and kernel-space communication. For example, JSKER-
NEL passes the user thread source from the main thread to one
kernel thread via the kernel-space communication. Because
there only exists one channel, i.e., the postMessage and
onmessage one, between two threads, we create an overlay
upon the channel. Specifically, JSKERNEL wraps the original
object under a new object and uses a special field, i.e., a type
field, in the object to indicate whether it is a kernel- or user-
space communication. A kernel-space communication will be
directly handled by the kernel code, and a user-space will be
handled by the scheduler in each thread. Currently, JSKERNEL
supports two types of kernel-space communication: exchan-
ging a clock and passing thread source.

Second, browsers support SharedArrayBuffer for two
threads to share a chunk of memory, which may also be
used for a fine-grained timer [12]. JavaScript cannot directly
access contents of SharedArrayBuffer , but has to rely on
yped array or DataView . Just like the Worker object in
Listing 5, JSKERNEL provides a customized interface to
access SharedArrayBuffer contents so that every access is
redirected to the kernel and put into the event queue.

IV. SECURITY ANALYSIS

We now evaluate the robustness of JSKERNEL along
with depicting the corresponding security policies to handle
web concurrency attacks. As a comparison, we evaluate five
browsers—namely Google Chrome, Firefox, Microsoft Edge,
Tor Browser [17], DeterFox [14] and Fuzzyfox [6]—and one
browser extension, i.e., Chrome Zero [3]. It is worth noting
that when we mention JSKERNEL, we refer to all three
extensions on Firefox, Chrome and Edge. As the capability in
defending against timing attacks for all three extensions are the
same, for simplicity, we uniformly use the term JSKERNEL.

In the rest of the section, we start from implicit clocks
in Section IV-A and cover web concurrency attacks in Sec-
tion IV-B.

A. Implicit Clocks as a Web Concurrency Attack

In this section, we evaluate the robustness of JSKERNEL
with a deterministic scheduling policy against timing attacks
using different implicit clocks. A summary of the evaluation
results is shown in Table I, i.e., JSKERNEL can defend against
all existing attacks, while many of them can only defend
against a limited number.

1) setTimeout as an implicit clock: In this part, we adopt
setTimeout as an implicit clock and evaluate it against three
types of timing attacks.
• Cache attack. A cache attack is where an adversary steals

the contents being cached in the system—if certain contents
have been flushed out from the cache, the access time to

Table I: Evaluation of Defenses against Web Concurrency
Attacks

Attacks Legacy
Three†

Fuzzyfox DeterFox Tor
Browser

Chrome
Zero

JSKERNEL

setTimeout as the implicit clock

Cache Attack [7] 7 7 3 7 7 3
Script Parsing [8] 7 7 3 7 7 3
Image Decoding [8] 7 7 3 7 7 3

Clock Edge [6] 7 3 3 7 7 3

requestAnimationFrame as the implicit clock

History Sniffing [9] 7 7 3 7 7 3
SVG Filtering [9] 7 7 3 7 7 3
Floating Point [10] 7 3 3 3 7 3

Loopscan [11] 7 7 3 7 7 3

CSS Animation [12] 7 3 3 7 7 3

Video/WebVTT [6] 7 3 3 3 7 3

Other web concurrency attacks

CVE-2018-5092 7 7 7 7 7 3
CVE-2017-7843 7 7 7 7 7 3
CVE-2015-7215 7 7 7 7 7 3
CVE-2014-3194 7 7 7 7 3 3
CVE-2014-1719 7 7 7 7 3 3
CVE-2014-1488 7 7 7 7 7 3
CVE-2014-1487 7 7 7 7 7 3
CVE-2013-6646 7 7 7 7 3 3
CVE-2013-5602 7 7 7 7 7 3
CVE-2013-1714 7 7 7 7 7 3
CVE-2011-1190 7 7 7 7 3 3
CVE-2010-4576 7 7 7 7 3 3

†: “Legacy Three” refers to three commercial, legacy browsers, i.e., Firefox, Chrome
and Edge; 3: The defense can prevent the attack; 7: The defense is vulnerable.

Table II: Averaged, Measured Time of Different Targets under
Varied Attacks (SVG filtering attack: averaged image loading
time with different resolutions; Loopscan attack: maximum
Measured Event Interval; note that all the numbers are aver-
aged from multiple repeated experiments.)

Defense SVG Filtering Loopscan Attack

Low Resolution High Resolution google youtube

Chrome 16.66 ms 18.85 ms 4.5 ms 8.8 ms
Firefox 16.27 ms 17.12 ms 50 ms 74 ms
Edge 23.85 ms 25.66 ms 20.8 ms 21.1 ms
Fuzzyfox 109.09 ms 145.45 ms 200 ms 500 ms
Tor Browser 16.63 ms 17.81 ms 500 ms 600 ms
Chrome Zero 15.71 ms 21.63 ms 12.8 ms 8.1 ms
JSKERNEL 10 ms 10 ms 1 ms 1 ms

such contents will be larger than the time to access unflushed
ones. That said, the secret being targeted for extraction
in a cache attack is the access time of specific contents.
Web-level cache attacks were first proposed by Oren et
al. [7], where an attacker accesses a specific shared storage,
measures the latency, and guesses the website that the user
has visited before. In this paper, we adopt a simplified
version of the cache attack, i.e., measuring the access time
of flushed and unflushed contents, using all the defenses.
JSKERNEL can defend against the attack via a deterministic
time.

• DOM-based side channel attacks. This timing attack pro-
posed by van Goethem et al. [8] is to infer the size of
cross-origin resources, such as the number of the user’s

0

2

4

6

8

10

12

14

16

 2 4 6 8 10

R
e
p
o
rt

e
d
 T

im
e
 (

m
s
)

Size (MB)

Chrome

Firefox

Edge

JSKernel

ChromeZero

Tor Browser

Fuzzyfox

Figure 2: Script Parsing Attack with Asynchronous Clock
(Except for JSKERNEL, the reported parsing time measured
by the callback of setTimeout increases for all other defenses
when the size of the file increases.)

social network Friends, by appending them to the Document
Object Tree (DOM) tree and measuring the loading time.
Hence, the secret, which the adversary tries to steal, is
the loading time of DOM operations, such as appending
children. There are different types of DOM elements that
the adversary may want to steal—specifically, van Goethem
et al. propose two types of attacks, i.e., script parsing and
image decoding. The former loads a cross-origin resource as
a script and the latter as an image. Both attacks, as shown in
Table I, are still possible in all the existing defenses except
for JSKERNEL and DeterFox, which adopt determinism to
defeat timing attacks.
The evaluation results in Figure 2 show that existing de-
fenses other than JSKERNEL are vulnerable to script parsing
attacks. Specifically, when the file size increases, the loading
time also does so. That is, an adversary can infer the file size
based on the loading time. Firefox, Chrome and Edge show
a linear line, i.e., it is easy to differentiate fine-grained file
size in both browsers. Tor Browser, Fuzzyfox and Chrome
Zero raise the bar, making it harder to differentiate files with
small size difference, but it is still possible to infer two files
with larger than 1MB difference.
2) Animation-related timing attack using requestAnim-

ationFrame or CSS Animation as an implicit clock:
An animation-related timing attack, such as history sniff-
ing [9], SVG filtering [14], floating point [10], relies on the
requestAnimationFrame API or CSS Animation [12] to
measure the time to launch a repainting related operation, i.e.,
a secret. The time may be used to further infer cross-origin
contents, such as pixels in a cross-origin image. For example,
the history sniffing attack can be used to differentiate the
color of a visited and unvisited link, thus determining whether
the link is visited by the browser user. The SVG filtering
attack mentioned in the DeterFox paper [14] can be used to
differentiate two images with drastically different resolutions.
The floating-point attack [10] is designed to steal pixels from
a cross-origin image. The original attacks have been fixed by

Chrome and Firefox, and the version that we used here is a
combination of the original attack and pixel stealing one [9].

We take a closer look at the SVG filtering attack in Table II
(SVG Filtering column). We run each test for 25 times against
each defense and take the average duration as the measurement
results. The evaluation results show that this side channel still
exists in all other defenses except for JSKERNEL. Specifically,
the adversary can easily differentiate two images in Chrome,
Firefox, Edge, Chrome Zero, and Tor browser with a few runs.
Fuzzyfox does increase the bar, because it adds much noise to
the execution time; however, an adversary can still average the
results of 25 runs and differentiate two images with different
resolutions.

3) Loopscan Attack: Loopscan [11] is a novel attack that
monitors the event loop usage pattern to infer the domain
name of cross-origin websites visited by the user. For example,
the usage pattern of google.com is different from the one
of youtube.com, and therefore an adversary can infer what
websites are visited by the victim user. We adopt the original
implementation of Loopscan to evaluate existing defenses.
For simplicity, we only record the maximum event interval
and evaluate existing defenses’ capability to differentiate two
websites. Table II (Loopscan Attack column) shows the eval-
uation results: except for JSKERNEL, all other defenses are
vulnerable to the Loopscan attack. That is, the maximum event
intervals of these defenses are different for youtube.com and
google.com, and thus an adversary can infer the website name
based on the interval.

4) Clock edge attack: Clock edge attack [6] measures the
duration of a cheap operation, such as i + +, by using a
coarse-grained clock. Specifically, an adversary can count the
number of a cheap operation between two edges of one tick in
the coarse-grained clock—and the calculate the weight of the
cheap operation by dividing the number by the tick value of
the coarse-grained clock. Then, the cheap operation can serve
as a fine-grained clock to measure a secret.

The evaluation results in Table I show that JSKERNEL can
defend against the clock edge attack. The reason is that the
time interval between two coarse-grained clock API calls is
determined by the number of API calls but not the number
of the cheap operations. By contrast, the clock edge attack
provides a more accurate timer in Chrome, Firefox and Tor
Browser. Fuzzyfox does defend against the clock edge attack
as claimed in the paper.

B. Other Web Concurrency Attacks

We herewith evaluate the capability of JSKERNEL to defend
against other web concurrency attacks. The methodology of
finding and evaluating web concurrency attacks is as follow.
First, we search the keyword “worker” and a browser name,
such as Firefox and Chrome, on the National Vulnerability
Database (NVD) and then manually go through all the vul-
nerabilities to confirm their relationship to web concurrency
attack. Note that this may not be a complete list of all
the web concurrency attacks but it is the best we can do
to find web concurrency attacks. Second, we download the

vulnerable version of the browser together, find the available
attacks online, e.g., on Bugzilla, and then evaluate the corres-
ponding defenses. Since some older browsers do not support
new features, we replace these new features with old ones
correspondingly. Note that some vulnerabilities are platform
specific—for example, CVE-2018-5092 can only be triggered
on Windows 10.

A high-level overview of the results is shown in Table I. The
native defenses are not robust as none of them are equipped to
consider web concurrency attacks except for simpler cases of
timing with implicit clocks. Chrome Zero can defend against
some vulnerabilities at the price of reduced functionalities
as Chrome Zero only adopts a polyfill implementation of a
web worker. We now present some examples to illustrate why
JSKERNEL can defend against these vulnerabilities.

• CVE-2013-1714 [18] is a vulnerability that violates same-
origin policy, i.e., a worker thread can send an XMLHt-
tpRequest to web servers with any origin. The condition to
trigger the vulnerability is that the request needs to come
from a worker thread. Therefore, JSKERNEL enforces a
policy to check the origins for all the requests coming from
a web worker.
• CVE-2013-5602 [19] is a vulnerability that refers to a

null pointer when an adversary assigns an onmessage
callback function to a Web Worker object. JSKERNEL
enforces a policy to avoid assigning an onmessage callback
by hooking both the setter function of onmessage and
setEventListener .
• CVE-2014-1488 [20] is a use-after-free vulnerability, in

which the worker thread passes a transferable ArrayBuffer
to the main thread but will free the ArrayBuffer once it is
terminated. The condition to trigger the vulnerability is that
the worker thread needs to first pass a transferable to the
main thread and then be terminated. Therefore, the policy
enforced by JSKERNEL is that if the worker thread passes
a transferable object, the worker will only be terminated at
the user level, but the kernel level will still maintain the
worker to avoid the triggering condition.
• CVE-2014-1487 [21] and CVE-2015-7215 [22] are two

similar information disclosure vulnerabilities that show
cross-origin information in the error message of a worker
thread creation and the importScripts() function of a
worker thread. JSKERNEL enforces a policy that sanit-
izes the error message of onerror callback function and
importScripts() by throwing a new message without the
cross-origin information and ensuring security.
• CVE-2017-7843 [23] is a vulnerability in which the access

to indexedDB in private browsing mode is not deleted after
existing. Therefore, the policy enforced by JSKERNEL is to
avoid access to indexedDB during private browsing mode
to obey the mode’s specification.

V. SYSTEM EVALUATION

In this section, we evaluate JSKERNEL based on two
metrics: performance overhead and compatibility.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

P
e
rc

e
n
ta

g
e
 (

%
)

Time (ms)

Chrome

Chrome with JSKernel

Chrome with ChromeZero

Firefox

Firefox with JSKernel

Deterfox

Tor Browser

Fuzzyfox

Figure 3: Cumulative Distribution Function (CDF) of Loading
Time of Top 500 Alexa Websites (Browsers with JSKERNEL
and DeterFox incur the least overhead; Tor Browser and
Fuzzyfox are the slowest; Chrome Zero incurs more overhead
than JSKERNEL.)

A. Performance Overhead

We evaluate the performance overhead using both micro-
and macro-benchmarks. The micro-benchmark evaluates the
performance overhead of specific APIs, especially those re-
lated to web concurrency attacks; the macro-benchmark eval-
uates top Alexa websites using both loading times and check-
points specified in the Raptor test. Note that all the experiments
are performed on a Linux machine with an Intel(R) 2.30GHz
Core(TM) i5-6300HQ CPU, 8 GB memory, and an ADSL
network with 9.5 Mbit/s bandwidth.

1) Micro-benchmark: Dromaeo and Worker Test: We first
evaluate JSKERNEL extensions with Google Chrome us-
ing Dromaeo [15], a comprehensive JavaScript performance
benchmark with many micro-level test cases, such as math-
ematical calculations, data structure manipulations, and DOM
operations. Overall, the performance drops 1.99% on average
after installing JSKERNEL on Google Chrome and the median
performance reduction is 0.30%. The DOM Attribute Test
incurs the largest overhead, i.e., 21.15% decrease in the
performance, because this test needs to traverse through the
kernel and the website JavaScript for many times, which brings
overhead.

As Dromaeo does not have any web worker in-
volved, we also tested JSKERNEL extension with Google
Chrome under a Worker benchmark (http://pmav.eu/stuff/
javascript-webworkers/). Specifically, we created 16 workers
and measured the time to create these workers with 5 repeat
experiments—the average overhead is 0.9% with and without
JSKERNEL extension.

2) Macro-benchmark: Alexa Top 500 Websites: We eval-
uated the performance of JSKERNEL using Alexa Top 500
websites. Specifically, we used Selenium [24], a browser auto-
mation tool, to visit Alexa websites and record the timestamp
before the visit and the timestamp when onload event is fired.
We then calculated the interval, i.e., the loading time of the
website, on our experiment machine. Each experiment is per-

Table III: Average Website Loading Time in Raptor-tp6-1 (C:
Chrome and F: Firefox). All numbers in the table are in
milliseconds (ms).

Subtest Chrome (C) JSKERNEL (C) Firefox (F) JSKERNEL (F)

Amazon 107.2±12.8 109.3±11.4 809.1±50.6 831.9±57.9
Facebook 178.8±9.5 172.1±15.7 1,018.9±109.1 1,005±238.3
Google 48.3±3.2 51.3±3.5 400.7±107.9 425.4±105.4
Youtube 298.9±110.6 308.9±100.3 1,249.8±158.4 1,136.8±135.1

formed three times to obtain an average result. Figure 3 shows
the cumulative distribution function (CDF) of the loading time
of Alexa websites with seven different browsers, i.e., Chrome,
Chrome with JSKERNEL, Chrome with Chrome Zero, Firefox,
Firefox with JSKERNEL, DeterFox [14], Tor Browser [17],
and Fuzzyfox [6].

There are four things worth noting. First, JSKERNEL adds
minimal, non-observable overhead to the web browsers. Spe-
cifically, the curve of JSKERNEL with Chrome and Firefox
is very close to the original browser with no observable,
statistically-significant overhead. Second, although the per-
formance of DeterFox is also similar to Firefox, DeterFox
only works as a Firefox variance. That is, it remains unclear
how to integrate DeterFox with Google Chrome, which may
require significant engineering work. Third, both Tor Browser
and Fuzzyfox, which are based on and modified from Firefox,
incur non-negligible overhead, because they add noises to the
browser. In addition, similar to DeterFox, it is unclear how
to integrate these two approaches with Google Chrome either.
Lastly, both JSKERNEL and Chrome Zero can be deployed
as a Chrome extension, but JSKERNEL incurs much less
overhead compared with Chrome Zero.

3) Macro-benchmark: Raptor Loading Tests: In addition to
the aforementioned experiment on Alexa Top 500 Websites,
we also run Raptor loading tests [25], i.e., raptor-tp6-(1–7), to
evaluate the performance of JSKERNEL. The reason that we
use this test is that some modern websites continue loading
after the onload event via JavaScript—Raptor loading tests,
which adopt a hero element to indicate the loading time, can
capture such loading tasks performed by websites. Specifically,
we load each subtest 25 times and skip the first result due
to the involvement of opening a tab. The average loading
overhead for JSKERNEL on Chrome (as indicated by the
loading of the hero element) is 2.75% and on Firefox 3.85%.

We also listed the detailed numbers for raptor-tp6-1 in the
Table III. There are two things worth noting. First, the loading
time with JSKERNEL could be smaller than the one without
JSKERNEL, such as in the case of Facebook and Youtube
(Firefox), because elements loaded in JSKERNEL may follow
a specific sequence in which the hero element is loaded early.
Second, the time differences with and without JSKERNEL are
smaller than the standard deviation, i.e., the overhead is small
enough.

B. Compatibility

In this subsection, we evaluate the compatibility of JSKER-
NEL with legacy websites and JavaScript applications.

1) API Specific Test: In order to find legacy JavaScript
applications with certain APIs, we rely on CodePen [26], a so-
cial development environment for front-end designers and de-
velopers. Specifically, CodePen provides a search interface, in
which we can type an API name, such as performance.now,
and then CodePen will return a list of applications using
that searched API. In this experiment, we obtain the top five
applications returned by CodePen as our test dataset when
searching a corresponding API in CodePen.

Our evaluation methodology works as follows. We ask a
student to first run the application in four different browsers:
Firefox, Fuzzyfox, DeterFox, and a Firefox with JSKERNEL
installed. The student needs to interact with the application
and play with its interface. Then, the student will tell us
the experience when running the application in four different
browsers.

We now describe a summary of the API specific test. First,
when we compare JSKERNEL with the other two defenses,
i.e., Fuzzyfox and DeterFox, JSKERNEL is the one with the
least observable differences. Specifically, Fuzzyfox executes
13 apps out of 20 apps with observable differences, DeterFox
7 out of 20, and JSKERNEL 4 out of 20. All the differences
in JSKERNEL are either a higher or lower FPS caused by the
usage of the synchronous timer performance.now , because
performance.now is mainly used for fine-grained time-related
operations, such as timing and generating an animation with
a time constraint.

Second, both Fuzzyfox and DeterFox introduce non-time
related differences, such as loading errors of the app, images,
objects, and background. By contrast, JSKERNEL introduces
only time-related differences, such as higher frames per second
(FPS) and faster clock. The reason is that both Fuzzyfox
and DeterFox operate on the browser source code, which is
written in C or C++. That is, a small engineering error may
cause the browser to crash. JSKERNEL is written in JavaScript
and therefore has a good memory protection provided by the
browser.

2) Semi-automated Compatibility Test on Alexa Top 100
Websites: In this section, we test the compatibility of JSKER-
NEL with Alexa Top 100 websites. Here is our methodology.
We visit each website twice, one with JSKERNEL and the
other without JSKERNEL, on Google Chrome Browser. During
each visit, we output the document object tree (DOM) of
the website and serialize the structure into a string. Then,
we compare these two strings using cosine similarity: if the
similarity is larger than 99%, we will consider that these two
visits render the same results; if not, we will ask a human to
look at both rendering results.

Our evaluation results show that 90% of websites have
larger than 99% similarity scores if visited with and without
JSKERNEL. We manually checked the rest ten websites, which
are all caused by dynamic contents, such as ads. At the same
time, we visit these ten websites twice directly on Google
Chrome without JSKERNEL and calculate the similarity score.
The score is very close, i.e., less than 2% difference, to the
one obtained from JSKERNEL compatibility test.

3) A Week-long User Experience Test: In this section, we
present a week-long user experience test on compatibility.
Specifically, we ask a student that is not on the author list
to install our JSKERNEL on a Chrome browser on his laptop
and browse the Internet for a week. In the first two days,
the student does experience three issues, one on Overleaf, an
online Latex editor, one on Google Calendar, and another on
Google Map—all the issues are fixed in the current version.
The first issue is that the student cannot compile a PDF file on
overleaf. We looked into it and found that the reason is that
our web worker implementation has a bug in dealing with an
absolute path. The second issue is that all the Mondays on
Google Calendar are shown as Wednesdays due to a bug in
our Date object implementation. The last issue is that one
Google Map Worker accesses the Worker location, which
falsely points to our kernel worker due to a bug. After we
fixed all the bugs, the student did not experience any other
compatibility issues in the rest five days of using the extension.

VI. DISCUSSION

In this section, we discuss several issues related to JSKER-
NEL. First, we consider the robustness of JSKERNEL against
self-modifying code, i.e., when the adversary knows that the
client browser installed JSKERNEL to prevent attacks. We
believe that even if the adversary knows that JSKERNEL is
present, the adversary cannot bypass the protection enforced
by it. The reasons are fourfold. (i) All the JSKERNEL code
and attack-related APIs are encapsulated inside the JSKER-
NEL kernel so that an adversary cannot access them. (ii)
Even if the adversary modifies the interface of JSKERNEL
provided by the kernel, such modification will only affect the
website’s functionality—but still the adversary cannot access
corresponding APIs. These are encapsulated inside JSKERNEL
kernel. (iii) JSKERNEL injects JSKERNEL kernel into every
new JavaScript context, such as a newly-opened window and
an iframe. (iv) JSKERNEL obtains all the JavaScript functions
and redefines them using a customized pointer. JSKERNEL
also adopts Object .freeze() to avoid any pollutions to the
prototype property of system objects (e.g., Array and Object).
In the future, we plan to follow Bhargavan et al. [27] to write
JSKERNEL in a defensive JavaScript subset.

Second, we discuss the capability of JSKERNEL in defend-
ing against unknown vulnerabilities. JSKERNEL can defend
against unknown timing attacks because the scheduler arranges
all asynchronous events in a deterministic order. At present,
JSKERNEL only defends against other web concurrency at-
tacks on a case-by-case base, because JSKERNEL requires
vulnerability-specific policies. We leave it as a future work
to automatically extract policies for a new vulnerability.

Third, we discuss the difference between the triggering
condition and the the underlying vulnerability. Web concur-
rency attacks capture the nature of vulnerability triggering
condition, i.e., the needs of concurrency information from
different threads to trigger a vulnerability, while the underlying
vulnerability may differ, which could be a user-after-free, a
cross-site information leak or a privilege escalation.

VII. RELATED WORKS

We first present existing defenses against timing attacks
and low-level attacks. Next, we overview existing third-party
JavaScript isolation works.

1) Defense against Timing Attacks: There are three cat-
egories of defenses, i.e., attack surface reduction, fuzzy time,
and determinism, to prevent timing attacks. First, Snyder et
al. [1] show that one can disable certain JavaScript APIs,
such as WebGL, Audio, and WebAssembly, to reduce the
attack surface. As one of its applications, Snyder et al. can
also be used to prevent timing attacks by disabling timing
related APIs. Though being effective, such approach will bring
compatibility issues for these websites adopting disabled APIs.

Second, Kohlbrenner et al. [6] randomize the performance
of executions by introducing pause tasks into the browser’s
event queue. Their prototype browser, Fuzzyfox, obfuscates
the duration for a specific execution. Inherited from the idea of
Kohlbrenner et al. [6], JavaScript Zero [3] proposes to redefine
certain timing-related APIs and introduce fuzzy time in the
browser extension level. Such approach significantly increases
the protection range because any users can deploy the pro-
posed extension on a daily basis. However, because JavaScript
Zero still adopts fuzzy time, it cannot fundamentally prevent
timing attacks just as Kohlbrenner et al.

Lastly, deterministic execution model is another strategy to
mitigate timing attacks. The deterministic browser project [14]
is the first attempt to apply deterministic execution model to
the modern browser. As a comparison, JSKERNEL, can be in-
stalled on any existing web browsers, such as Google Chrome,
Firefox and Microsoft Edge, to protect users, and also able to
defend against low-level attacks. At the same time, researchers
also propose deterministic models for specific timing channels,
such as floating-point operations. For example, CTFP [28]
uniformizes the execution of certain heavy-weight floating-
point operations. As a comparison, JSKERNEL can prevent
all types of timing channels including floating-point ones.

It is worth noting that determinism [29], [30], [31], [32],
[33], [34], [35] was proposed long before DeterFox [14] to pre-
vent timing attacks in general. Apart from defending against
timing attacks, the determinism technology is also used to
schedule multi-thread programs to increase their stability [36],
[37], [38], [39], [40], [41]. Additionally, deterministic virtual
clock is used to guard the sequence of execution in distributed
systems [42].

2) Defense against Low-level Attacks: Snyder et al. [1]
disable certain JavaScript APIs to reduce attack surface but
also at the price of reduced functionalities. BrowserShield [2]
proposes to defend against low-level, zero-day browser vulner-
ability via rewriting JavaScript code. Although the rewriting is
effective in defending against many low-level vulnerabilities,
it at the same time incurs significant overhead because it
instruments every JavaScript operations. JShield [43] modifies
a browser to enforce their signatures for security—the defense
is effective but also brings compatibility issues. That is,
JShield is only applicable to one type of browser and needs

to be updated with every browser version. As a comparison,
JSKERNEL is compatible with three browsers and does not
need any updates for a new browser version.

3) Third-party JavaScript Isolation: Third-party JavaScript
isolation, such as AdJail [44], AdSentry [45], JSand [46],
PAD [47], AdJust [48], and Virtual Browser [49], provides
a sandbox for third-party JavaScript like ads. These works
can successfully prevent third-party JavaScript from tampering
with trusted contents, such as first-party JavaScript.

Currently, JSKERNEL adopts an anonymous closure for
isolation, but can adopt any of the aforementioned isola-
tion techniques proposed by prior work. The contribution of
JSKERNEL is the capability of enforcing a customized event
scheduling policy to defend against web concurrency attacks—
the isolation component of JSKERNEL is an orthogonal prob-
lem from event scheduling.

VIII. CONCLUSION

In this paper, we proposed JSKERNEL, the first approach
to introduce a kernel concept that enforces the order of
JavaScript execution of threads and events to defend against
web concurrency attacks. We implemented a prototype system
as extensions to three major commercial web browsers, i.e.,
Firefox, Google Chrome, and Edge and made it open-source.
Our evaluation shows that JSKERNEL is fast, robust to a
variety of attacks and is backward compatible with existing
web applications.

ACKNOWLEDGEMENT

We want to thank our shepherd, Neeraj Suri, and anonymous
reviewers for their helpful comments and feedback. This work
was supported in part by National Science Foundation (NSF)
grant CNS-18-54001. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of NSF.

REFERENCES

[1] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t need to
vibrate: A cost-benefit approach to improving browser security,” in
Proceedings of the 2017 ACM CCS, 2017.

[2] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: vulnerability-driven filtering of dynamic html,” in
OSDI: USENIX Symposium on Operating Systems Design and Imple-
mentation, 2006.

[3] M. Schwarz, M. Lipp, and D. Gruss, “Javascript zero: Real javascript
and zero side-channel attacks,” in NDSS, 2018.

[4] Canvas defender. https://addons.mozilla.org/en-US/firefox/addon/
no-canvas-fingerprinting/.

[5] Disable webrtc. https://addons.mozilla.org/en-US/firefox/addon/
happy-bonobo-disable-webrtc/.

[6] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain times,”
in 25th USENIX Security Symposium (USENIX Security 16), 2016, pp.
463–480.

[7] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox - practical cache attacks in javascript,”
CoRR, vol. abs/1502.07373, 2015. [Online]. Available: http://arxiv.org/
abs/1502.07373

[8] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in Proceedings of the 22nd
ACM CCS, 2015.

[9] P. Stone., “Pixel perfect timing attacks with html5,” Tech. Rep., 2013.
[Online]. Available: https://www.contextis.com/resources/white-papers/
pixel-perfect-timing-attacks-with-html5

[10] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
Proceedings of the 2015 IEEE Symposium on Security and Privacy,
2015.

[11] P. Vila and B. Kopf, “Loophole: Timing attacks on shared event loops in
chrome,” in 26th USENIX Security Symposium (USENIX Security 17),
2017.

[12] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
javascript,” in Financial Cryptography and Data Security (FC), 2017.

[13] Web workers - use after free in nswrapper-
cache::getwrapperpreservecolor(). https://bugzilla.mozilla.org/show
bug.cgi?id=1418074.

[14] Y. Cao, Z. Chen, S. Li, and S. Wu, “Deterministic browser,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. ACM, 2017, pp. 163–178.

[15] J. Resig, “Dromaeo javascript performance test suite,” Tech. Rep.
[Online]. Available: http://dromaeo.com/

[16] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan, “Concurrency
attacks,” in Presented as part of the 4th {USENIX} Workshop on Hot
Topics in Parallelism, 2012.

[17] (2018) Tor browser. https://www.torproject.org/projects/torbrowser.html.
en.

[18] Cross domain policy override using webworkers. https://bugzilla.
mozilla.org/show bug.cgi?id=879787.

[19] Asan segv on unknown address in worker::seteventlistener. https://
bugzilla.mozilla.org/show bug.cgi?id=897678.

[20] Firefox reproducibly crashes when using asm.js code in workers
and transferable objects. https://bugzilla.mozilla.org/show bug.cgi?id=
950604.

[21] Cross-origin information disclosure with error message of web workers.
https://bugzilla.mozilla.org/show bug.cgi?id=947592.

[22] Cross-origin information disclosure with error message of web workers
importscripts(). https://bugzilla.mozilla.org/show bug.cgi?id=1160890.

[23] fingerprinting users in private window using web-worker + indexeddb.
https://bugzilla.mozilla.org/show bug.cgi?id=1410106.

[24] (2018) Selenium. https://www.seleniumhq.org/.
[25] Performance sheriffing/raptor. https://wiki.mozilla.org/Performance

sheriffing/Raptor.
[26] (2018) Codepen - front end developer playground and code editor in the

browser. https://codepen.io/.
[27] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Defensive javas-

cript,” in Foundations of Security Analysis and Design VII. Springer,
2014, pp. 88–123.

[28] M. Andrysco, A. Nötzli, F. Brown, R. Jhala, and D. Stefan, “Towards
verified, constant-time floating point operations,” in Proceedings of the
2018 ACM CCS, 2018.

[29] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating timing
channels in compute clouds,” in Proceedings of the 2010 ACM Workshop
on Cloud Computing Security Workshop, ser. CCSW ’10, 2010.

[30] W. Wu, E. Zhai, D. Jackowitz, D. I. Wolinsky, L. Gu, and B. Ford,
“Warding off timing attacks in deterland,” CoRR, vol. abs/1504.07070,
2015. [Online]. Available: http://arxiv.org/abs/1504.07070

[31] M. Huisman, P. Worah, and K. Sunesen, “A temporal logic character-
isation of observational determinism,” 19th IEEE Computer Security
Foundations Workshop (CSFW’06), pp. 13 pp.–3, 2006.

[37] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang, “Efficient deterministic
multithreading through schedule relaxation,” in SOSP, 2011.

[32] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in Proceedings of the 13th IEEE Workshop on
Computer Security Foundations, ser. CSFW ’00, 2000.

[33] G. Smith and D. Volpano, “Secure information flow in a multi-threaded
imperative language,” in POPL, 1998.

[34] S. Zdancewic and A. C. Myers, “Observational determinism for concur-
rent program security,” in CSFW, 2003.

[35] D. Volpano and G. Smith, “Eliminating covert flows with minimum typ-
ings,” in Computer Security Foundations Workshop, 1997. Proceedings.,
10th. IEEE, 1997, pp. 156–168.

[36] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A.
Gibson, and R. E. Bryant, “Parrot: a practical runtime for deterministic,
stable, and reliable threads,” in SOSP, 2013.

[38] H. Cui, J. Wu, C.-C. Tsai, and J. Yang, “Stable deterministic multithread-
ing through schedule memoization,” in Proceedings of the 9th USENIX
OSDI, 2010.

[39] T. Liu, C. Curtsinger, and E. D. Berger, “Dthreads: efficient deterministic
multithreading,” in SOSP, 2011.

[40] M. Olszewski, J. Ansel, and S. P. Amarasinghe, “Kendo: efficient
deterministic multithreading in software,” in ASPLOS, 2009.

[41] J. Yang, H. Cui, J. Wu, Y. Tang, and G. Hu, “Making parallel programs
reliable with stable multithreading,” Commun. ACM, vol. 57, no. 3, pp.
58–69, Mar. 2014.

[42] D. Jefferson, “Virtual time,” ACM Trans. Program. Lang. Syst., vol. 7,
pp. 404–425, 1983.

[43] Y. Cao, X. Pan, Y. Chen, and J. Zhuge, “JShield: Towards real-time and
vulnerability-based detection of polluted drive-by download attacks,”
in Proceedings of the 30th Annual Computer Security Applications
Conference, ser. ACSAC, 2014.

[44] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan, “Adjail: Practical
enforcement of confidentiality and integrity policies on web advertise-
ments,” in Proceedings of the 19th USENIX Conference on Security, ser.
USENIX Security’10, 2010.

[45] X. Dong, M. Tran, Z. Liang, and X. Jiang, “Adsentry: comprehensive and
flexible confinement of javascript-based advertisements,” in Proceedings
of the 27th Annual Computer Security Applications Conference. ACM,
2011, pp. 297–306.

[46] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet,
and F. Piessens, “Jsand: complete client-side sandboxing of third-party
javascript without browser modifications,” in Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012, pp.
1–10.

[47] W. Wang, Y. Kwon, Y. Zheng, Y. Aafer, I.-L. Kim, W.-C. Lee, Y. Liu,
W. Meng, X. Zhang, and P. Eugster, “Pad: Programming third-party
web advertisement censorship,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 240–251. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155596

[48] W. Wang, I. L. Kim, and Y. Zheng, “Adjust: Runtime mitigation
of resource abusing third-party online ads,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), May 2019,
pp. 1005–1015.

[49] Y. Cao, Z. Li, V. Rastogi, Y. Chen, and X. Wen, “Virtual browser:
A virtualized browser to sandbox third-party javascripts with enhanced
security,” in Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’12, 2012.

