
TextExerciser: Feedback-driven Text Input
Exercising for Android Applications

Yuyu He⋆,1, Lei Zhang⋆,1, Zhemin Yang1, Yinzhi Cao2, Keke Lian1, Shuai Li1, Wei Yang3, Zhibo Zhang1

Min Yang1, Yuan Zhang1, Haixin Duan4

1: Fudan University, 2: Johns Hopkins University, 3: University of Texas at Dalla, 4: Tsinghua University
1: {heyy16, lei zhang14, yangzhemin, kklian18, lis19, zbzhang15, m yang, yuanxzhang}@fudan.edu.cn

2: yinzhi.cao@jhu.edu, 3: wei.yang@utdallas.edu, 4: duanhx@tsinghua.edu.cn
⋆: The first two authors have contributed equally to this work.

Abstract—Dynamic analysis of Android apps is often used
together with an exerciser to increase its code coverage. One big
obstacle in designing such Android app exercisers comes from
the existence of text-based inputs, which are often constrained
by the nature of the input field, such as the length and character
restrictions.

In this paper, we propose TextExerciser, an iterative,
feedback-driven text input exerciser, which generates text inputs
for Android apps. Our key insight is that Android apps often
provide feedback, called hints, for malformed inputs so that our
system can utilize such hints to improve the input generation.

We implemented a prototype of TextExerciser and eval-
uated it by comparing TextExerciser with state-of-the-art
exercisers, such as The Monkey and DroidBot. Our evaluation
shows that TextExerciser can achieve significantly higher
code coverage and trigger more sensitive behaviors than these
tools. We also combine TextExerciser with dynamic analysis
tools and show they are able to detect more privacy leaks and vul-
nerabilities with TextExerciser than with existing exercisers.
Particularly, existing tools, under the help of TextExerciser,
find several new vulnerabilities, such as one user credential leak
in a popular social app with more than 10,000,000 downloads.

Index Terms—Dynamic Analysis, Android Security, Text Input
Generation, Android Application Testing

I. INTRODUCTION

Dynamic analysis is widely used in the past to analyze An-
droid apps for vulnerabilities [1]–[3], malicious behaviors [4]–
[8], and privacy leaks [9]–[13]. One important component,
often used together with dynamic analysis, is an application or
UI exerciser that drives Android apps to reach different code
branches so that the analysis can be performed completely with
a high code coverage. Examples of such exercisers are like the
most famous fuzzing tool, The Monkey [14], which randomly
generates UI events for Android apps. Some other works [5],
[9], [10], [15]–[17] also follow up on The Monkey (Monkey
for short) to exercise apps more thoroughly with even higher
code coverage.

Although these exercisers can successfully drive Android
apps, one critical obstacle is that many apps require text-based
inputs with super-linear possibilities that existing exercisers
cannot enumerate in a reasonable amount of time. Further-
more, these inputs often require a non-trivial constraint that is
hard to be satisfied during analysis. For example, a personal
profile description field of an Android app may require texts
that range between 8 and 1,600 characters and do not contain
any special characters. Such constraints for text-based inputs

are very popular in Android apps: Our manual inspection
shows that text inputs in 150 out of top 200 free non-game
Android apps have at least one constraint.

Due to the difficulties of generating text inputs in exercising
Android apps, some researchers propose to adopt either a
heuristic approach or predefined information. For example,
AppsPlayground [18] and Arnatovich et al. [19] summarize
all the input patterns for a specific field, such as username
and password. Liu et al. [20] rely on machine learning to
automatically learn the input patterns. Several other tools [2]
use predefined third-party login such as Facebook login and
Google sign-in to circumvent text input UI such as login
page. However, these input patterns are diversified: 130 out
of our previously-studied 200 apps have a unique way to
constrain text inputs, which either do not support third-party
login or require unique input constraints that are different
from general heuristics rules. Furthermore, these text fields
are often correlated, e.g., the value of a “maximum wage”
field should be larger than the one of a “minimum wage”.
Therefore, existing works, such as rule or learning-based
summarization of text input patterns, often fail to satisfy these
unique constraints—but a single failure will stop the entire
exercising of the target app.

In this paper, we propose TextExerciser, an iterative,
feedback-driven text input exerciser, which generates inputs
for text fields of Android apps. The key insight here is that
if a text input does not satisfy the enforced constraints, the
Android app—either the client-side program or the server-
side validation—will provide clues or hints for the malformed
input, which can be used as a feedback for improvement. Let
us look at a concrete example: Say we input a password with
five letters into an Android app with a text field that requires a
length of at least six characters. The Android app will prompt
a hint saying that “the password must be at least 6 characters”
so that the user knows how to proceed—and at the same time,
such a hint can be used to refine our text input generation.

Specifically, here is how TextExerciser works itera-
tively to generate text inputs. TextExerciser first extracts
all the hints related to malformed text inputs based on in-
formation that appears after the inputs are fed to the app.
Then, TextExerciser adopts natural language processing
to parse the extracted hints into a syntax tree and understand
the semantics. Next, TextExerciser generates constraints

1

!

"

#

!

"

#

http://password

Login

Sign Up

Click

Click

Input

Input

Input

Input

Click

Input

Figure 1. A Motivating Example of TextExerciser (The Yippi app
contains a vulnerability that transfers password in an HTTP protocol, which
can be sniffed by a man-in-the-middle, only on the “Change Password”
interface. A dynamic analyzer requires many text-based inputs in order to
reach the vulnerable location and find the vulnerability.)

according to hint semantics and outputs a possible input using
a constraint solver. Lastly, TextExerciser feeds the input
back to the target app—if the input still cannot satisfy the
constraints, TextExerciser will iterate the process until a
valid input is found.

We evaluate TextExerciser on 6,000 popular apps
collected from Google Play. The results show that
TextExerciser achieves higher code coverage than state-
of-the-art approaches like Monkey [14], Stoat [21] and Droid-
Bot [22]. We also combine TextExerciser with dynamic
analysis tools, such as TaintDroid [11] and ReCon [23]. Our
evaluation results show that tools with TextExerciser
can find more privacy leaks and vulnerabilities, such as a
previously-unknown user credential leakage vulnerability in
a popular social app, called Coco, with more than 10,000,000
downloads on Google Play. We have responsibly reported all
the vulnerabilities to app developers—the developers of Coco
have fixed the vulnerability internally and will release a new
version shortly.

Contributions. The main contributions of our work are sum-
marized as follows:

● We propose the first feedback-driven input exerciser that
iteratively generates text inputs using a constraint solver
based on hints from the target app.
● We implement a prototype of our text input exerciser
and the source code of TextExerciser is available at
GitHub [24].
● We evaluate the performance of TextExerciser on
popular Google Play apps. The evaluation result shows that
TextExerciser achieves higher code coverage than
state-of-the-art tools and also finds more privacy leaks
and vulnerabilities when combined with existing dynamic
analysis tools.

II. A MOTIVATING EXAMPLE

In this section, we use a real-world example to motivate
the use of TextExerciser to exercise Android apps. The
example, called Yippi as shown in Figure 1, is a message
app with 100,000+ downloads, which, under the developers’
descriptions, allows user communications with a focus on
entertainment and “security”.

The Yippi app has an vulnerability of user-credential leak-
age that requires heavy text-based exercising. We responsibly
reported this vulnerability to the app developer—but have not
received any feedback yet. Here are the details. Once an user
launch the app for the first time, Yippi will ask for the user to
sign up for a new account and then log in with the account.
Therefore text inputs are needed to sign-up a new user account
and log into the app. After login, at the “change password”
page, another text inputs are needed to trigger the password
transfer so that existing dynamic analysis tools can find that
Yippi is insecure as it transfers changed passwords in the
HTTP protocol. Note that all other password transfers in Yippi
are done securely via an HTTPS channel.

It is challenging to generate inputs for Yippi, due to several
input requirements:

● Username Uniqueness. The inputs to the “username” field
need to be unique when comparing with others in the
app’s database. That is, if one chooses a used username
in the database, Yippi will return a warning, saying that
“Username already in use, please try other”.
● Length Requirement. The inputs to the “password” field
need to satisfy certain conditions, i.e., with a length of
at least 6 characters: Yippi will also display a hint if the
condition is not satisfied.
● Joint-field Dependencies. The inputs to the “confirm
password” need to match the one to the “password” field—
leading to a joint-field constraint. Yippi will also alert the
users if these two fields do no match.
● SMS Authentication. After the initial sign-up page, Yippi
asks for a validation code sent via SMS.

We studied existing exercising tools such as Monkey and
found that none of them can exercise Yippi and trigger the
vulnerability. Monkey will stop at the sign-up page, failing to
exercise the app beyond the login wall. Prior exercisers [2],
[21], [22], [25], [26] that rely on pre-defined inputs or third-
party logins cannot generate valid inputs for Yippi, because
the constraints are complex and Yippi does not support any
third-party logins. For example, many of these pre-defined
usernames in prior works are used before by others in Yippi’s
database and the pre-defined passwords may also fail to satisfy
the specific requirement.

III. METHODOLOGY

In this section, we introduce the methodology of exercising
text inputs for Android apps. We start from introducing the
workflow of TextExerciser and then present each phase
of TextExerciser individually.

2

Step 2 : Identify hints

. . .

Category 1

Rule 1 Rule 2

. . .

Hint ParserAPPs

Step 1 : Extract all text on UI

Category 2
Step 3: classify

hints into

different categories

Step 4: generate

syntax trees

Step 5: convert

to constraint

representation

. . .

ML Model

Differential

Analysis on UI

Structural
UI Exploration

Input Generation Engine

Hint Extractor

Step 6: solve

constraints

Constraint

Mapping

Constraint

Solving

Step 7:

generate

inputs

Input Events

Phase 1

Phase 2Phase 3

Figure 2. The overall architecture of TextExerciser. There are three phases to exercise an app: hint extraction (Phase 1), hint parsing (Phase 2), and
input generation (Phase 3). If a generated input fails, TextExerciser will repeat these three phases based on newly collected feedback until a valid input
is generated.

A. System Workflow

TextExerciser is a feedback-driven text exerciser that
understands hints shown on user interfaces of Android apps
and then extracts corresponding constraints. The high-level
idea of understanding these hints is based on an observation
that these hints with similar semantics often have a similar
syntax structure—and therefore TextExerciser can cluster
these hints based on their syntax structures and then extract the
constraints from the syntax structure. Now, let us give some
details of TextExerciser’s workflow.

The exercising has three phases, seven steps as shown in
Figure 2. First, TextExerciser extracts all the texts in the
app’s UI (Step 1) and then identifies static hints via a learning-
based method and dynamic hints via a structure-based dif-
ferential analysis (Step 2). Second, TextExerciser parses
all the extracted hints via three steps: classifying hints into
different categories (Step 3), generating syntax trees for each
hint (Step 4), and interpreting the generated tree into a con-
straint representation form (Step 5). Lastly, TextExerciser
generates a concrete input by feeding constraints into a solver
(Step 6), e.g., Z3. Then, TextExerciser solves the prob-
lem, feeds generated inputs back to the target Android app and
extracts feedbacks, such as success and another hint (Step 7).
In the case of another hint, TextExerciser will iterate the
entire procedure until TextExerciser finds a valid input.

Now let us look at our motivating example in §II again to
explain TextExerciser’s workflow. We start from the sign-
up page, which has three text input fields, i.e., “username”,
“password” and “confirm password”. TextExerciser gen-
erates a random input to the username field: If the username
is used in the database, Yippi returns a “username used” hint.

TextExerciser will then parse the hint and generate a
new username. The “password” and “confirm password” are
handled together by TextExerciser: based on the hint that
“Both password has to be the same”1, TextExerciser will
convert the hint into a constraint that the value of both fields
need to be the same and then generate corresponding inputs.

After TextExerciser generates inputs for the first sign-
up page, Yippi asks the user to input a code that is sent to a
phone number. TextExerciser will first extract hints re-
lated to the phone number page, understand that this is a phone
number, and then input a pre-registered phone number to the
field. Next, TextExerciser will automatically extract the
code from the SMS and solve the constraints by inputting the
code to Yippi.

In order to find the aforementioned vulnerability in §II,
TextExerciser also generates text inputs to the “Change
Password” page. Particularly, TextExerciser extracts the
password matching hint and another hint that distinguishes
old and new passwords, converts them into constraints and
then generates corresponding inputs so that existing dynamic
analysis tools can find the vulnerability.

B. Hint Extraction

The first phase of TextExerciser is to extract hints
related to text inputs from an Android app. There are two
types of available hints in Android apps, i.e., dynamic and
static. A dynamic hint appears once a user inputs an incorrect
text into the Android app, e.g., the app may alert the user
that a specific username has been registered by others. As a
comparison, a static hint appears together with the text input

1The sentence with a grammar error is from the Yippi app.

3

field, e.g., the app may state that a password should contain a
special character.
TextExerciser extracts dynamic hints via a differential

analysis that compares widgets before and after inputting a text
into the app. Information that appears in the widget after text
input is considered as a hint. An example is shown in Figure
3.(a): After the user inputs a short description into her profile,
a hint appears and alerts the user that the description should
be at least 20 characters long. Such differential information
could also appear in the form of a popup window, such as
examples shown in Figure 3.(b).
TextExerciser then extracts static hints via a learning-

based approach. Specifically, we train a neural network model
for classification. The positive training samples come from
dynamic hints extracted from these Android apps via differ-
ential analysis as a training set; the negative samples come
from information extracted from app windows without any text
input, i.e., those that presumably are not hints to text inputs.

Next, TextExerciser needs to map extracted hints to
corresponding input fields. TextExerciser adopts two
methods in the mapping. First, TextExerciser maps key-
words extracted from a hint to the text related to the input
field. For example, if both the hint and the input field mention
“password” as shown in Figure 4.(a), TextExerciser
considers an input generated following this hint is for the
corresponding input field. Second, TextExerciser adopts
a shortest-distance method to find the closest input field. Note
that the distance definition as illustrated in Figure 4.(b) is
the relative location of widgets instead of Euclidean distance
because the widget size depends on the nature of the input.
Note that multiple hints may be mapped to a single input field,
because an input field may have more than one requirement.

Before Entering Input

After Entering Input

 Alert Notification

Toast Notification

(a) Differential Widget Example (b) Popup Notification Example

Figure 3. Example for hint extraction

C. Hint Parsing

In this phase, TextExerciser classifies extracted hints,
parses them into syntax trees, and then generates constraints
in a representation acceptable by solvers.

1) Hint Classification: TextExerciser classifies the
extracted hints into pre-defined categories using a multi-class
model. Now, we first describe how to pre-define hint categories
and then present the classification procedure. We categorize
hints based on their semantics, i.e., how they enforce restric-
tions on text inputs, by manually surveying top 1,200 free non-
game apps from Google Play. The pre-defined categories have

Password

Password must be 8 to 12 characters

Input box 2 Input box 7

Input box 4

Input box 5

Label text

Input box 1

Input box 3 Input box 8

Input box 6

(a)Subject Identity and Hint text

(b)Distance Calculation Between Hint Text and Input Field

Figure 4. Hints to Input Field Mapping.

ROOT

S

NP VP

NN

password

VBZ NP

QP NN

IN JJS CD

at least 6

digit

is

ROOT

S

NP VP

NN

username

VBZ NP

QP NN

IN JJS CD

at least 3

character

is

(a) Syntax Tree A (b) Syntax Tree B

Figure 5. Example of Syntax Tree.

4 major, 10 minor and 18 sub-minor as shown in Table I—we
now describe these major hint categories below.

● Precise Single-field. This category refers to that a hint
precisely describes the requirement, such as the length of
a text input.
● Fuzzy Single-field. This category refers to that a hint
vaguely describes the requirement, e.g., the length is too
small or the input contains invalid characters.
● Precise Joint-fields. A hint in this category indicates
that two input fields are correlated, e.g., the value of the
maximum salary field should be larger than the value of
the minimum.
● Fuzzy Joint-fields. A hint in this category indicates a
vague correlation between two fields, e.g., the length of a
phone number depends on another country field.

Each major category has several minor categories based on
the constraint type, such as length and value, which can be
further divided into sub-minors. We manually label all, i.e.,
1,548 of, the hints from these apps with all the sub-minor
categories and then train a multi-class classifier using both
CNN and RNN [27]. TextExerciser adopts this classifier
to determine the categories of a given hint extracted from
Android apps.

2) Syntax Tree Generation: In this step, TextExerciser
pre-processes the extracted hints and then generates a syntax
tree using the Stanford parser [28]. The pre-processing has

4

Table I
HINT CATEGORIES SUMMARIZED FROM TOP FREE GOOGLE PLAY APPS. WE MANUALLY TEST ALL THE TEXT FIELDS THAT A HUMAN CAN FIND AND

THEN EXTRACT CORRESPONDING HINTS. NOTE THAT, ”#A”: THE NUMBER OF HINTS IN THIS CATEGORY, AND ”#U”: THE NUMBER OF UNIQUE HINTS IN
THIS CATEGORY.

MajorCategory MinorCategory SubMinorCategory Id Example #A #U

Precise
Single-field

Length
Constraints

The lower bound of input length C1 Your password must be at least 6 characters long 295 6
The upper bound of input length C2 Your password should be shorter than 6 characters 15 3
A range of input length C3 Your User ID must be between 6 to 62 characters 87 4
A fixed input length C4 The PIN must have 6 characters 71 8

Existence
Constraints

Input should contain
certain characters

C5 The code needs to contain numbers 47 6

Input should not contain
certain characters

C6 Don’t use a whitespace in your username 13 4

Value
Constraints

The lower bound of value C7 Expiration date must be at least 30 days from today 19 4
The upper bound of value C8 Child must be less than 18 years old 3 2
A range of value C9 Specify your weight between 10 and 999 5 2

Fuzzy
Single-field

Length
Constraints

Require longer input C10 Nickname is too short 7 2
Require shorter input C11 Your entry for the about field is too long 6 2

Value
Constraints

Require larger value C12 Date is too small 2 1

Require smaller value C13
The amount which you have
specified exceeds your limits

1 1

Non-directional
Constraints

Non-directional Constraints
on invalid input C14 Email address format is invalid. 806 5

Precise
Joint-fields

Equivalence
Constraints

The equivalence of two input fields C15 New password does not match 134 3

Non-repetitive
Constraints

Value of two input fields
can’t the same

C16 This username is already taken 30 2

Value
Restriction

The comparison of values
in two input fields

C17
Chosen minimum salary higher than
chosen maximum salary

1 1

Fuzzy
Joint-fields

Non-directional
Constraints

The relationship of the two field
need domain knowledge

C18 Mobile you typed isn’t valid for this country 6 1

two steps: (i) redundant sentence removal, and (ii) word
normalization. First, TextExerciser divides hints into
sentences and removes redundant ones, which are unrelated
to constraints, via our hint classifier trained in §III-B. An
example is like “Oops! Password must be between 7 and 15
characters. Please try again.”—both “Oops!” and “Please try
again.” are removed in this stage. Second, TextExerciser
normalizes words, such as replacing spelled-out numbers with
corresponding digits and plural words into their corresponding
singular one. After pre-processing, TextExerciser calls
the Stanford parser to generate a syntax tree for each sentence
in the extracted hints.

3) Constraint Representation: In this step,
TextExerciser accepts a syntax tree and a hint category
and then generates constraints for the hint. Specifically,
TextExerciser follows a rule selected based on the hint
category to traverse the syntax tree for constraint generation.
A traversal rule is hence defined as a query to the syntax tree
with three predicates, where the Select predicate specifies
the outputted nodes, Match the condition of the selection,
and Generate a constraint equation that can be fed into the
solver:
Select Node1, Node2, ...

Match Condition1 and Condition2 and ...

Generate Constraint

Let us start with a concrete example. Say, the traversal rule
belongs to the length constraint category, i.e., specifying that
the length of a text field needs to be larger than a threshold.
The traverse needs to find a number as the threshold and a
subject, e.g., password and date. Therefore, our traversal rule
will look like the following:
Select cd1, np1

Match Follow(qp1=QP,NN) and Contain(qp1,cd1=CD) and First(np1=NP)

Generate LengthConstraint(Subject(np1), Range(cd1, infinity))

Particularly, the traversal rule returns a Cardinal Number
Node (CD) cd1 as the threshold, and a Noun Phrase (NP) np1
as the text field subject, such that np1 matches the first (i.e.,
satisfying the First condition) NP node and cd1 is a child
node (i.e., satisfying the Contain condition) of a Quantifier
Phrase (QP), which is a sibling (i.e., satisfying the Follow
condition) of a Noun Node. For instance, if we apply this rule
to the syntax tree in Figure 5.(a), np1 equals to “password”
and cd1 equals to “6”; Figure 5.(b) maps to that np1 equals
to “username” and cd1 “3”.

Next, once a traversal, following a rule, returns corre-
sponding nodes, TextExerciser will follow the Generate
predicate to generate constraints. There are three types of
constraints:

● Length Constraint. Such a constraint restricts the
length of valid inputs to a certain range. For exam-
ple, LengthConstraint(A,Range(CD, Infty)) represents
a constraint that the length of A should fall within the
range from the value in CD to the infinite value.
● Content Constraint. Such a constraint restricts the con-

tent of valid input to a certain format. For example,
ContentConstraint(A,Format(NN)) depicts that the in-
put A should fulfill the format determined by NN .
● Value Constraint. Such a constraint restricts the range of

input values. It contains a scope that represents the range
of valid values.

Our example in Figure 5.(a) is converted to a constraint like
LengthConstraint(password,Range(6, Infty)); similarly,
Figure 5.(b) to LengthConstraint(username,Range(3, Infty)).

5

Note that in practice, we often abbreviate a traversal, e.g., as
follows:

LowerBound ∶∶ Follow(QP,NN)&&Contain(QP,CD)&&First(NP)

→ LengthConstraint(Subject(NP),Range(CD,Infty))

&&ContentConstraint(Subject(NP), Format(NN))

Such an abbreviation skips the Select predicate as it is
embedded as part of the Match predicate. The relationship
between Match and Generate is also abbreviated as an
inference symbol. We may also skip corresponding variables
if the variable is unique. In practise, we write 57 traverse rules
based on the unique hints in Table I. We now list examples of
the rules adopted by TextExerciser in Table II.

D. Input Generation Engine

In this phase, TextExerciser generates inputs that sat-
isfy all the constraints converted from the extracted hints. The
first step is to obtain concrete values for each variable in
the constraint representation. There are two major sources:
external and other fields. External sources involve emails and
text messages, in which TextExerciser will pre-register
several email account and phone number to receive such
values, such as PIN. Other fields involve other text inputs
generated by TextExerciser in the case of joint-field
constraint—if the inputs to other text fields are generated,
TextExerciser will apply joint-field constraint with that
concrete value; otherwise, TextExerciser will generate an
input without this constraint and apply the constraint for the
other involved input field.

The second step is to solve the constraints: Particularly,
TextExerciser adopts Z3StrSolver [29], a popular solver,
to generate inputs that satisfy all the constraints. An ex-
ample code for solving two constraints, i.e., LengthCon-
straint(Range(lower bound, upper bound)) and ContentCon-
straint(A,Format(NN))), is shown in Figure 6. Lines 5–6
are the length constraint, in which TextExerciser asks
the solver to generate an input with the length between
lower bound and upper bound. Lines 8–13 are the content
constraint, in which TextExerciser excludes certain char-
acters, such as the one appeared in the hint. TextExerciser
also adopts a special constraint to differentiate the gener-
ated input from the old ones at Lines 15–16, because the
old inputs have already been rejected by the app. Lastly,
TextExerciser asks the solver to generate an input at
Lines 18–19.

IV. IMPLEMENTATION

We implemented TextExerciser with about 6,350 lines
of Python code. Specifically, our constraint extractor has 1,100
lines of code, constraint parser 1,300 lines of code, and input
generation engine 1,900 lines of code. TextExerciser also
relies on some existing tools in the implementation. In phase
1 (hint extractor), we use the UiAutomator [30], to explore
the widgets on UI screen when dynamically running Android
apps. In phase 2 (hint parser), we use Stanford parser [28]
to generate syntax trees for hint texts. In phase 3 (input

1 from z3 import *
2 solver=Solver()
3 input=String(’input’)
4 //LengthConstraint(lower_bound, upper_bound)
5 solver.add(Length(input) > lower_bound)
6 solver.add(Length(input) < upper_bound)
7 //ContentConstraint(A, content)
8 for char in TOTAL_LETTER:
9 if char not in content:

10 exclude_char = ’\\’+str(hex(char))[1:]
11 if len(exclude_char) == 3:
12 exclude_char = exclude_char.replace(’x’, ’

x0’)
13 solver.add(Not(Contains(input,exclude_char)))
14 // Different from old inputs
15 for old_input in INPUT_HISTORY:
16 solver.add(Not(input == StringVal(old_input)))
17 //Generate a text input
18 if solver.check()==sat:
19 print(solver.model())

Figure 6. An Example Z3StrSolver Code with Three Constraints: (i) Length
constraint within a certain range (Lines 5–6), (ii) Value constraint that excludes
certain characters (Lines 8–13), and (iii) Equivalence constraint (Lines 15–16).

generation engine), we use Z3StrSolver [29] to solve the input
constraints.

We now describe two implementation details, i.e., the
dataset and model used in phase 2 and the validation code
extraction in phase 3. First, we collect 1,548 hints from 1,200
top free apps on Google Play and then ask three students to
label them during 14 days, which totals to around 50 hours per
student. Each hint has three labels—if a discrepancy happens,
these three students will discuss and resolve it. Note that the
number of discrepancies is relatively small as the labels are
mostly straightforward: There only exists 10 out of 1,548 hints.
For example, a hint, “Password is case-sensitive”, may be la-
belled as C5 or C14. In the end, all the students agreed to label
it as C14 as it is unclear what characters should be included.
After labeling, TextExerciser pre-processed all the hints
in the training set via two steps: (i) word normalization and (ii)
data balancing. That is, TextExerciser replaces all digits
with a special tag “TaggedASCD” with Stanford POSTTager,
e.g., “4 digits” changes to “TaggedASCD digit”, and then
leverages SMOTE [31] to balance the samples. In the end,
we trained our static hint identification based on a multi-class
text classifier [27] with half of all the labeled data and the
rest data is used for model validation and evaluation of tool
performance.

Second, our validation code handler, used in phase 3 for
solving the constraints, is composed of two parts, (i) an email
code extractor on a server and (ii) a code receiver written
as an Xposed module [32] on the mobile phone. Our email
code extractor keeps pulling emails from a pre-registered email
address designated for the validation code purpose and also
extracts code using a regular expression that matches all the
four or six digits in each email. Then, the extractor sends
the code and the email subject to the code receiver, which
performs a keyword matching of the email subject and the
app that requires a code. If a keyword matching fails, the
code receiver will also try all the recently-received, unmatched

6

Table II
EXAMPLES OF HINT TEXTS AND THE CORRESPONDING INTERPRETATION RULES THAT CAN HANDLE THEM. WE SHOW EACH NODE IN THE SYNTAX TREE

WITH ITS TYPE (E.G., QP, NN, ETC.), AND USE SUBJECT(NODE) TO PRESENT AN INPUT BOX WHOSE IDENTITY IS DESCRIBED BY A NODE.

Minor-Category Hint Text Example (lowercase) Matched Interpretation Rule
Length Constraint password is at least 3 character LowerBound :: Follow(QP,NN) && Contain(QP,CD) && First(NP)

→ LengthConstraint(Subject(NP), Range(CD,Infty))
&& ContentConstraint(Subject(NP), Format(NN))

Value Constraint month must be between 1 and 12 ScopeBound :: Follow(QP)&&Contain(QP,(cd1=CD,cd2=CD))&& First(NP)
→ ValueConstraint(Subject(NP), Range(cd1,cd2))

Length Constraint zipcode must be 5 digit FixLength :: Follow(NP)&&Contain(NP,(CD,NN))&& First(NP)
→ LengthConstraint(Subject(NP), Range(CD,CD))
&& ContentConstraint(Subject(NP), Format(NN))

Existence Constraint username can not contain space Exclusive :: Follow(RB,VP)&&Contain(VP,NN)) && First(NP)
→ ContentConstraint(Subject(NP), ! Format(NN))

Equivalence Constraint new password does not match MultipleEquivalence :: Follow(NP)&&Contain(NP,NN)
→ ValueConstraint(Subject(NP), Range(Subject(NN), Subject(NN)))

Vague Length Constraint nickname is too short DirectRestric :: Follow(NP)&&Contain(NP,NN)
→ LengthConstraint(Subject(NP), Subject(NN+1))

Table III
OVERVIEW OF STATE-OF-THE-ART OPEN-SOURCE DYNAMIC TESTING

TOOLS OF ANDROID APPS

Need of
Tool Instrumentation Text Input Strategy

Monkey [14] No Random
Sapienz [25] System Random String from App Resource File

Stoat [21] No Random
DroidBot [22] No Predefined

A3E-Depth-First [26] App Random String
TextExerciser No Feedback Based Mutation

code for the app that needs a code. Note that the code receiver
also accepts and extracts code that is sent to the mobile phone
directly as a text message. All other steps for this text scenario
are the same as the email one.

V. EVALUATIONS

In this section, we evaluate the performance of
TextExerciser on real-world Android apps via addressing
three main research questions below:
● RQ1: is TextExerciser more effective than existing

tools in exercising Android apps?
● RQ2: can TextExerciser improve existing dynamic

analysis of Android apps?
● RQ3: is TextExerciser efficient for generating text

input for popular Android apps?
A. Comparison with State-of-the-art Testing Tools

In this section, we answer RQ1 (is TextExerciser more
effective than existing tools in exercising Android apps?) by
comparing the method and activity coverage achieved by each
exerciser. Because TextExerciser is a specialized text
input exerciser while others are general purpose, we replace
the text input generator in each general-purpose exerciser with
TextExerciser and compare the modified version with
the original one for code coverage. According to Wang et
al. [33] and as shown in Table III, there exists five open-source
tools of exercising Android apps, which are Monkey [14],
Sapienz [25], Stoat [21], DroidBot [22], and A3E-Depth-
First [26]. Sapienz [25] requires system instrumentation and
A3E-Depth-First [26] app instrumentation, which are both
incompatible with our code coverage measurement. Therefore,

we compare TextExerciser with the rest three state-of-
the-art tools that do not need any instrumentations. Note
that both Sapienz and A3E-Depth-First adopt random text
generation as shown in Table III—the results will be similar
to the tested three exercisers.

Our settings of three existing tools are as follows. During
our experiment, we configure Monkey with a fixed-event seed
as documented by Continella et al. [34] so that Monkey will
always explore the same sequence of events, e.g., clicking on
the same position during different runs. Such a configuration
will mitigate randomness that is introduced in comparing Mon-
key with TextExerciser and random text input generation.
We configure DroidBot via manually writing text inputs based
on the principle illustrated in their paper [22] for DroidBot.
We adopt the default configuration of Stoat together with their
own random text input generation.

1) Experiment Setup: We now describe our dataset, i.e.,
40 Android apps in Table IV, used for comparing existing
exercisers. Here is how we select these apps. We choose
top 500 apps in terms of download amount from all the
categories except for games from Google Play and form all
these apps into a dataset. Then, we randomly select 1,200
apps for our hint analysis in Table I—the rest is further
filtered to ensure that their required Android version is lower
than 4.3 so that they can be used in the sensitive behavior
detection in §V-B. Next, we apply Ella [35] to measure
code coverage of all the rest apps; if Ella cannot instruments
these apps, particularly Yippi and BlackWhiteMeet, we apply
miniTracing [36] instead. Note that both Ella and minTracing,
just like many other instrumentation tools, cannot cover and
instrument native code.

We then introduce our experiment environment, i.e., four
OnePlus 6T mobile phones with the same device configura-
tion (Android 9.0, System build number A6010 41 181115).
All devices are connected with servers, either a Windows
server 2018 or a Ubuntu 16.04, via Android Debug Bridge
(ADB) [37]. We choose the server platform based on the
corresponding tools’ requirement. Each experiment runs for
one hour, a reasonable exercising time that is also adopted by
prior work [19], [25], [33], and is repeated for three times

7

Table IV
OVERVIEW OF THE INSTRUMENTED TOP APPS USED FOR TESTING EFFECTIVENESS OF MONKEY, STOAT, DROIDBOT AND TEXTEXERCISER . THE

NUMBER OF INSTRUMENTED FUNCTIONS ARE LISTED IN THE COLUMN “#METHOD”, AND THE “#ACTIVITY” ARE CALCULATED BY EXTRACTING THE
ACTIVITY NAMES FROM THE ANDROIDMANIFEST.XML OF EACH APP. WE ALSO MANUALLY VERIFY WHETHER AND HOW AN APP SUPPORT LOGIN. #:

THIS APP DOESN’T SUPPORT LOGIN, G#: THIS APP NEED SIGN UP BEFORE LOGIN H#: THIS APP ONLY CAN LOGIN WITH 3RD PARTY ACCOUNTS LIKE
FACEBOOK ACCOUNT. : THIS APP CAN LOGIN WITH REGISTERED ACCOUNTS OR 3RD PARTY ACCOUNTS.

ID App Name Category Down. Login #Activity #Method ID App Name Category Down. Login #Activity #Method

01 AndSMB Productivity 1M+ # 17 17,410 21 Atomy Business 1M+ G# 6 1,088
02 AutoScout24 Vehicles 10M+ G# 40 104,044 22 DealDash Shopping 5M+ 58 44,946
03 BeautifulHairstyle Beauty 1M+ # 7 3,715 23 Cram Education 1M+ 66 17,390
04 CV-Library Business 500K+ G# 22 24,603 24 Unfollowers Social 1M+ H# 5 12,314
05 EasyMobileRecharge Shopping 1M+ 42 13,187 25 Meet24 Dating 5M+ 62 26,272
06 Eskimi Social 1M+ 7 31,855 26 Schoolcalc Education 1M+ # 4 947
07 FiltersorSelfie Beauty 1M+ # 8 2,884 27 Callernamepro Lifestyle 1M+ # 5 242
08 FloorPlanCreator Art 5M+ # 13 8,848 28 MybabyPiano Parenting 5M+ # 3 727
09 Hdr.Lite Photography 1M+ # 23 13,807 29 Tapeatalk Productivity 1M+ # 9 3,286
10 InNote Tools 1M+ # 5 7,915 30 Hanjahandwritingrecog Education 1M+ # 6 3,827
11 LINECamera Photo 100M+ # 64 83,215 31 Writeonimage Photography 1M+ # 7 843
12 OfficeSuite Business 100M+ 117 283,841 32 DocsToGo Business 50M+ G# 31 32,148
13 Speedometer Auto & Vehicles 1M+ # 11 17,031 33 Healthplus Health & Fitness 1M+ 76 22,145
14 Stock Watch Finance 1M+ # 33 2,606 34 Coco Communication 10M+ G# 126 65,677
15 Wakelockdetector Productivity 1M+ # 8 669 35 SuperShuttle Travel & Local 500K+ G# 57 26,125
16 HeartRateMonitor Health 1M+ # 5 786 36 Saviry Shopping 100K+ 20 5,652
17 CurrencyConverter Tools 1M+ # 2 253 37 10times Events 100K+ 88 33,002
18 StatusDownloader Tools 1M+ # 8 2,849 38 Flipboard News & Magazines 500M+ 70 27,527
19 BestHairstyles Beauty 5M+ # 4 5,704 39 Yippi Social 500K+ G# 171 214,998
20 Yandex Shopping 10M+ 26 3,5480 40 BlackWhiteMeet Dating 100K+ G# 221 113,299

to reduce randomness. After each experiment, we will revert
the app’s private data and modifications to shared resources,
e.g., SD card and data stored in system services. Note that
because ADB may be offline after a long time, our Xposed
module, which is responsible for validation code, will also
automatically reboot the Android system and reconnect the
ADB if this happens.

In the following, we measure the code coverage of An-
droid apps via two detailed metrics, i.e., method and activity
coverage. Method coverage refers to the number of methods
instrumented by Ella or miniTracing and triggered during
exercising, and activity coverage the number of triggered
activities on the stack during exercising, which are registered
in the AndroidManifest.xml.

2) Code Coverage of Popular Android apps: Table V
shows the results of method and activity coverage on 40 apps
achieved by three existing exercisers. On average, the code
coverage of TextExerciser is higher than or on par with
the default text exerciser, i.e., either random or predefined.
Particularly, TextExerciser triggers 48.5% more activities
and 29.0% more methods for Monkey, 37.0% more activities
and 20.2% more methods for DroidBot, and 45.3% more
activities and 26.4% more methods for Stoat.

It is worth noting that the number of triggered methods
by Stoat+TextExerciser is sometimes smaller than the
one by Stoat+Random especially when the text inputs are
with less constraints and can be easily fulfilled. The reason
of such a slight decrease is that Stoat written in Ruby
needs to communicate with TextExerciser written in
Python via a slow, relatively-inefficient command line pipe.
This unnecessary overhead will sometimes affect the code
coverage under our strictly one-hour testing. Particularly, we
find that such an overhead of Stoat+TextExerciser is
8.3 mins for each app on average, i.e., two times more
than the one of Monkey+TextExerciser (3.1 mins) and
DroidBot+TextExerciser (3.4 mins).

B. Improvement of Existing Dynamic Analysis

In this section, we answer RQ2 (can TextExerciser
improve existing dynamic analysis of Android apps?) by evalu-
ating TextExerciser on existing dynamic security analysis
such as sensitive behavior detection and privacy leak detec-
tion. We use TextExerciser to drive existing dynamic
analysis tools shown in Table XI and see whether we can
observe any improvement when compared with prior Android
exercisers. Particularly, we choose two open-source tools—
namely TaintDroid [11], a taint analysis of tracking dataflows
between sensitive APIs, and ReCon [23], a traffic analysis
of detecting privacy information in network packets—out of
many existing dynamic analysis tools [9], [11], [23], [38].
We also implemented a keyword-based traffic analysis that
searches for the existence of keywords in network packets for
privacy leaks—all the used keywords are shown in Table VI.

1) Experiment Setup: Our experiment is conducted on two
Android Nexus 4 phones with Android 4.3 systems because of
the requirement of TaintDroid and ReCon. Since DroidBot is
incompatible with this runtime environment, we only compare
TextExerciser with Monkey and Stoat. The apps are the
same as these popular ones in §V-A and the exercising time
limit is also one hour.

2) Results of Privacy Leak Detection: The results of pri-
vacy leak detection are shown in Figure 7. Note that we
removed all the redundant results and only kept privacy leaks
with unique source and sink for TaintDroid. A high-level
observation is that all dynamic analysis detects more privacy
leaks with the help of TextExerciser. We manually check
some of these found new privacy leaks, which are due to
two reasons. First, since TextExerciser can generate valid
inputs to satisfy the input restrictions during the exploration
of Android apps, TextExerciser can explore deep code
branches of Android apps, and trigger more critical app be-
haviors. Second, because many privacy leaks occur when users
input personal information to the app, TextExerciser can

8

Table V
THE METHOD AND ACTIVITY COVERAGE ON 40 INSTRUMENTED APPS OF THE THREE EXERCISERS, I.E., MONKEY (M.), STOAT (ST.) AND DROIDBOT

(D.), WITH DIFFERENT TEXT INPUT GENERATION STRATEGY, I.E., RANDOM (R.), TEXTEXERCISER (TE) AND PREDEFINED (P.). WE ADOPT THE
DEFAULT TEXT INPUT GENERATION STRATEGY OF THESE TOOLS WHEN COMPARING WITH TEXTEXERCISER . NOTE THAT ↑ AFTER TEXTEXERCISER

NUMBER MEANS THAT THE IMPROVEMENT IS LARGER THAN 1%, - THE DIFFERENCE IS WITHIN 1%, AND ↓ THE DECREASE IS LARGER THAN 1%.

ID #Triggered Activity #Triggered Method
M.+R. M.+TE St.+R. St.+TE D.+P. D.+TE M.+R. M.+TE St.+R. St.+TE D.+P. D.+TE

01 6.0±0.0 7.3±0.5 ↑ 5.3±0.5 6.0±0.8 ↑ 4.7±0.5 4.7±0.5 - 933±32 990±111 ↑ 662±13 824±145 ↑ 661±9 671±25 ↑
02 2.3±0.5 3.0±0.0 ↑ 2.0±0.0 2.0±0.0 - 1.3±0.5 3.0±0.0 ↑ 17,332±1,267 19,471±726 ↑ 18,548±637 19,307±106 ↑ 16,662±33 17,498±998 ↑
03 3.7±0.5 3.7±0.5 - 3.0±0.0 3.0±0.0 - 3.0±0.0 3.0±0.0 - 1,372±77 1,378±75 ↑ 1,194±55 1,250±2 ↑ 1,292±31 1,302±13 ↑
04 1.0±0.0 1.0±0.0 - 1.0±0.0 1.3±0.5 ↑ 1.0±0.0 1.0±0.0 - 1,829±49 1,848±28 ↑ 1,637±73 1,856±10 ↑ 1,835±17 1,894±42 ↑
05 2.3±0.5 4.3±0.5 ↑ 4.7±0.5 7.3±3.3 ↑ 4.7±0.5 16.3±2.4 ↑ 1,701±187 1,875±37 ↑ 1,845±46 2,079±111 ↑ 1,901±25 2,418±75 ↑
06 2.0±0.0 3.0±0.0 ↑ 2.0±0.0 2.3 ±0.5 ↑ 2.0±0.0 3.3±0.5 ↑ 3,632±663 6,455±47 ↑ 4,212±26 5,795±1,423 ↑ 4,365±42 6,340±232 ↑
07 3.0±0.0 3.0±0.0 - 1.0±0.0 2.0±0.0 ↑ 3.0±0.0 3.0±0.0 - 1,021±13 1,106±48 ↑ 209±46 883±21 ↑ 1,076±46 1,146±10 ↑
08 6.3±0.5 6.3±0.5 - 5.0±0.8 5.3±1.2 ↑ 4.0±0.0 4.0±0.0 - 3,279±77 3,305±46 - 2,337±289 2,700±275 ↑ 2,704±11 2,710±17 ↑
09 5.3±0.9 5.3±0.9 - 7.0±0.8 8.3±0.9 ↑ 6.0±0.0 6.0±0.0 - 900±82 971±130 ↑ 1,672±162 1,766±93 ↑ 872±202 1,063±1 ↑
10 2.0±0.0 2.3±0.5 ↑ 3.0±0.0 3.0±0.0 - 2.0±0.0 2.0±0.0 - 1,713±18 1,768±68 ↑ 1,695±33 1,624±8 ↓ 1,482±1 1,482±1 -
11 9.7±0.5 9.7±0.5 - 9.3±1.2 11.0±1.6 ↑ 5.3±0.5 6.0±1.4 ↑ 15,314±656 16,404±1,180 ↑ 19,021±335 19,687±636 ↑ 10,125±90 10,254±293 ↑
12 8.0±0.8 10.7±0.5 ↑ 9.0±3.3 13.3±2.1 ↑ 11.0±1.4 12.0±2.2 ↑ 47,828±4,155 53,414±1,126 ↑ 30,667±6,294 41,584±7,130 ↑ 46,256±1,552 53,183±5,846 ↑
13 5.0±0.8 5.3±0.5 ↑ 5.3±0.9 5.3±0.5 - 2.0±0.0 2.0±0.0 - 4,375±213 4,491±116 ↑ 5,291±151 5,172±62 ↓ 4,378±26 4,661±261 ↑
14 11.0±0.0 11.0±0.0 - 7.7±1.7 8.7±0.5 ↑ 11.0±0.8 11.0±0.0 - 839±87 963±36 ↑ 784±135 833±20 ↑ 982±254 1,233±48 ↑
15 4.3±0.5 4.3±0.5 - 3.0±1.4 4.3±0.5 ↑ 2.0±0.0 2.7±0.5 ↑ 208±27 224±12 ↑ 216±47 249±22 ↑ 180±1 216±22 ↑
16 2.0±0.0 2.0±0.0 - 3.0±0.0 3.0±0.0 - 3.0±0.0 3.0±0.0 - 169±2 175±0 ↑ 326±5 324±12 - 277±0 277±0 -
17 1.3±0.5 1.3±0.5 - 1.0±0.0 1.0±0.0 - 1.0±0.0 1.3±0.5 ↑ 120±0 120±0 - 116±2 119±0 ↑ 107±6 111±2 ↑
18 4.3±0.9 5.0±0.0 ↑ 5.0±0.0 5.0±0.0 - 5.0±0.0 5.0±0.0 - 843±5 847±1 - 882±1 855±9 ↓ 864±7 865±6 -
19 3.0±0.0 3.0±0.0 - 3.0±0.0 3.0±0.0 - 3.0±0.0 3.3±0.5 ↑ 2,304±2 2,304±0 - 2,282±9 2,280±11 - 2,254±11 2,268±5 ↑
20 4.7±0.9 5.3±0.5 ↑ 5.0±0.8 8.0±0.8 ↑ 4.7±0.5 7.7±0.5 ↑ 12,391±624 13,325±539 ↑ 13,266±377 13,467±182 ↑ 10,870±208 14,315±247 ↑
21 2.0±0.0 2.0±0.0 - 2.0±0.0 2.0±0.0 - 2.0±0.0 2.0±0.0 - 290±8 319±49 ↑ 244±16 260±6 ↑ 278 ±9 283±7 ↑
22 6.3±0.5 17.0±2.9 ↑ 6.3±3.1 8.0±0.0 ↑ 9.0±0.0 11.0±1.4 ↑ 6,609±64 10,715±690 ↑ 6,597±387 6,785±41 ↑ 6,822±29 8,677±383 ↑
23 6.7±0.5 11.0±0.8 ↑ 10.3±1.2 14.3±1.9 ↑ 11.0±1.4 12.7±1.9 ↑ 1,539±440 2,324±114 ↑ 2,103±325 2,796±335 ↑ 1,488±511 1,986±592 ↑
24 2.0±0.0 2.0±0.0 - 2.0±0.0 2.0±0.0 - 2.0±0.0 2.0±0.0 - 1,988±214 2,278±0 ↑ 2,354±40 2,440±162 ↑ 2,257±1 2,268±14 -
25 6.0±0.0 18.0±2.2 ↑ 6.3±0.5 17.3±0.9 ↑ 7.0±0.0 21.7±2.1 ↑ 3,264±269 5,441±115 ↑ 3,803±9 5,512±16 ↑ 3,845±48 6,207±403 ↑
26 1.0±0.0 1.0±0.0 - 3.0±0.0 3.0±0.0 - 3.0±0.0 3.0±0.0 - 407±1 407±1 - 404±0 404±0 - 390±10 406±6 ↑
27 4.0±0.0 4.0±0.0 - 4.3±0.5 4.3±0.5 - 4.0±0.0 4.0±0.0 - 115±2 115±2 - 118±1 112±0 ↓ 121±1 123±1 -
28 1.0±0.0 1.0±0.0 - 1.0±0.0 1.0±0.0 - 1.0±0.0 1.0±0.0 - 336±10 348±0 ↑ 301±17 324±4 ↑ 344±7 346±10 -
29 3.7±0.5 4.0±0.0 ↑ 2.7±0.9 3.7±0.5 ↑ 2.0±0.0 2.0±0.0 - 415±17 414±8 - 274±110 773±18 ↑ 338±3 336±0 -
30 3.0±0.0 3.0±0.0 - 3.0±0.0 3.0±0.0 - 4.0±0.0 4.0±0.0 - 788±9 788±17 - 387±12 385±11 - 423±20 451±2 ↑
31 4.0±0.0 4.0±0.0 - 5.0±0.0 5.0±0.0 - 5.0±0.0 5.0±0.0 - 79±3 87±14 ↑ 115±0 111±2 ↓ 149±3 151±0 -
32 4.3±0.5 5.3±0.5 ↑ 5.0±0.8 6.7±0.9 ↑ 2.3±0.5 3.0±0.0 ↑ 3,320±114 6,613±792 ↑ 5,894±109 5,884±68 - 3,386±623 4,616±26 ↑
33 4.0±0.0 9.3±1.9 ↑ 5.0±0.0 8.0±1.6 ↑ 4.0±0.0 6.0±0.0 ↑ 1,807±127 3,516±320 ↑ 1,904±100 2,805±156 ↑ 1,956±11 1,963±7 -
34 3.3±0.5 13.0±1.6 ↑ 8.0±2.9 10.3±1.7 ↑ 5.0±0.0 9.3±4.8 ↑ 3,341±220 7,946±299 ↑ 4,738±2,043 8,046±656 ↑ 3,375±20 5,237±2,361 ↑
35 4.0±0.0 4.3±0.5 ↑ 4.0±0.0 4.7±0.5 ↑ 4.0±0.0 15.3±0.9 ↑ 4,016±212 5,123±36 ↑ 4,321±44 5,221±13 ↑ 4,303±1 7,428±50 ↑
36 6.3±0.9 7.7±0.5 ↑ 6.3±0.9 6.3±0.5 - 12.0±0.0 14.3±0.9 ↑ 1,684±142 1,784±27 ↑ 1,773±39 1,818±50 ↑ 1,944±17 2,045±51 ↑
37 5.0±0.8 16.0±0.0 ↑ 7.0±0.0 9.7±2.1 ↑ 7.0±0.0 13.3±2.1 ↑ 4,171±151 7,779±44 ↑ 4,378±45 6,648±1,482 ↑ 4,322±22 7,885±286 ↑
38 5.0±0.8 7.0±0.0 ↑ 4.7±0.5 10.3±0.5 ↑ 15.0±0.8 15.3±0.9 ↑ 4,667±223 8,021±86 ↑ 4,485±609 4,823±159 ↑ 9,446±260 9,876±177 ↑
39 2.0±0.0 12.7±0.9 ↑ 2.0±0.0 12.5±1.5 ↑ 2.0±0.0 16±0.8 ↑ 6,456±303 12,705±850 ↑ 5,488±279 10,297±537 ↑ 6,215±237 13,721±412 ↑
40 4.7±0.5 7.7±0.9 ↑ 4.0±0.0 7.0±1.4 ↑ 5.3±0.5 9.3±0.5 ↑ 5,800±144 10,083±690 ↑ 2,869±72 3,435±726 ↑ 4,616±823 10,869±363 ↑

Total 166.2±12.8 246.8±18.8 177.0±23.2 242.5±27.6 186.3±7.8 270.7±25.1 169,223±10,908 218,239±8,478 159,410±12,995 191,534±14,716 165,162±5,227 208,780±13,296
- +48.5% - +37.0% - +45.3% - +29.0% - +20.2% - +26.4%

Table VI
THE CATEGORY OF PRIVATE INFORMATION IN TAINTDROID, RECON AND
A KEYWORD-BASED TRAFFIC ANALYSIS IMPLEMENTED BY OURSELVES.

WE LIST ALL THE USED KEYWORDS IN THE LAST COLUMN.

Category TaintDroid ReCon Keyword-based traffic analysis

Device
Identifier

Accelerometer
IMEI, IMSI
ICCID
Serial Number

MAC Address
Device ID
Advertiser ID
IOS IFA ID

MAC Address,
IMEI, IMSI, ICCID,
Device Serial Number

User
Identifier

Phone Number
Microphone
Camera
Browser History

Name
Gender
Birthday
E-mail
Relatioship Status

Birthday, Date Of Birth, Expire,
Expiration Year/Month/Day, Year,
Month, Day, Date, Birth, Username,
First Name, Last Name, User ID,
Nick Name, Skype Name,
Name, Nick, Email, Mailbox,
Email Address, Mail

Contact
Information Contact Provider Phone Number

Address Book

Contact/Cell/Phone/Mobile/Full
number, Phone No, Mobile Phone,
Country Code, CC

Location
GPS Location
Net-base Location
Last-known Location

Zip Code
Postal/Post Code, ZipCode,
ZipNumber, Location, Country,
City, Address, Area, Region

Credentials Account Information Username
Password

Id, Account Number, Partner Code,
Password, Passwd, PassCode
Verify, Verification, Check Number,
Verification/Verify Code,
Verification Number, Otp, PinView,
Pin, Pinnum, Account Pin,
Pin Code, PinNumber, Pin Number,
Card Number, Account Name,

successfully generate such inputs and trigger the privacy leak.
Next, we compare the detection capability of these three

tools and start from TaintDroid and the other two. TaintDroid
detects the most number of privacy leaks, because TaintDroid,
comparing with ReCon and keyword-based search, can detect
encrypted private identifiers. On the contrary, ReCon and
keyword-based search detect more categories of private infor-
mation, especially user credentials, because it is hard to mark
the sources of these information in taint analysis. A detailed
breakdown of these detected privacy leak categories can be
found in Appendix C.

We then compare ReCon and keyword-based search. Recon
detects one more user identifier than the keyword-based search
because some keywords, such as “user”, are very common
and cannot be used for detection—that is the limitation of
a keyword-based search. When using Stoat, the keyword-
based search detects seven more privacy leaks due to special
encoding like “@” as “%40”. It is worth noting that the false
positive rate of ReCon is relatively high mainly due to the fact
that ReCon often mistakenly considers a large port number as
a zipcode during our manual inspection.

3) Case Study: In this part, we present a case study of the
apps with additional privacy leaks found by TaintDroid and
ReCon with the help of TextExerciser. Note that inter-
estingly, as a byproduct, TextExerciser also finds some

9

Figure 7. The number of detected privacy leakage of three dynamic analysis,
i.e., TaintDroid, ReCon, and a keyword-based traffic search.

Table VII
ALL VULNERABILITIES AND BUGS DETECTED IN THE GOOGLE PLAY APPS

BY USING TEXTEXERCISER AS EXERCISERS.

App Name #Downloads Description

Previously-unknown Vulnerabilities:

BlackWhiteMeet 100,000+ Doesn’t verify signature in https
Coco 10,000,000+ Leak user credential in http
10times 100,000+ Leak user location and device info in

http
Yippi 100,000+ Change user password in http
Saviry 100,000+ Modify user profile in http
Eskimi 1,000,000+ Leak user credential and profile in http

Previously-unknown Bugs:

Flipboard 500,000,000+ Unable to login after mobile sign-up
SuperShuttle 500,000+ Bypass constraints for phone number

bugs, e.g., malformed text constraints, of existing Android
apps when generating text inputs. A list of these apps is shown
in Table VII—We have responsibly disclosed all these issues
to corresponding app developers.

a) Insecure Transfer of User Credential or Private Infor-
mation: We describe three apps that transfer user credentials
such as username and password in plaintext, i.e., via HTTP
protocol.

● Coco, a popular social app with more than 10,000,000
downloads on Google Play. The 7.6.8 version of Coco,
i.e., the latest at the paper’s submission, has a vulnera-
bility that transfers user credentials in plaintext without
any encryption. This vulnerability involving two con-
secutive HTTP requests is triggered with the help of
TextExerciser during the sign up and login pages of
Coco. It is worth noting that all other network communica-
tions in Coco except these two adopt HTTPS protocol. We
have reported the vulnerability to Coco’s developer and a
patched version is coming soon.
● Saviry, a shopping app with more than 100,000 down-
loads on Google Play and a 4.4 rating score. The latest

version of Saviry has a vulnerability that transfers an HTTP
post request in plaintext. Specifically, an active network
attacker can directly modify the request to alter user’s
profile and a passive network attacker can also sniff the
cookie and send another request to tamper user’s profile.
TextExerciser helps to discover this vulnerability by
correctly filling all the fields in the user profile and then
triggering the request.

● Eskimi, a social app to find and communicate with new
friends. Eskimi transfer private information, such as
birthday, gender, email, and city, as well as user credentials
all in plaintext. TextExerciser helps to discover more
private information transfers, such as birthday and email,
on certain pages.

b) Insecure Configuration (i.e., Missing Certificate and
Hostname Check) of SSL Communication: We describe Black-
WhiteMeet, a dating app with more than 100,000 downloads
on Google Play, which enables users to find new friends
and communicate with each other. BlackWhiteMeet configures
SSL communication incorrectly by missing certificate and
hostname check so that an adversary can mimic the authentic
server using a fake certificate.

c) Constraint Bugs for Checking Text Inputs: We de-
scribe two bugs of existing Android apps when checking text
constraints. This is a byproduct of TextExerciser when it
tries to generate text inputs—TextExerciser compares the
generated text inputs with a common knowledge of that field,
e.g., a phone number and email address. If the generated input
violates the common constraints enforced by all other apps,
we will consider it as a bug. Now, we introduce two concrete
bug examples.

● Phone number validity checking bug in SuperShuttle, a
travel app on Google Play. TextExerciser finds a
bug that can bypass the original constraints enforced for
phone numbers. More specifically, SuperShuttle requires
user to enter a valid phone number along with country
code, and the app server will check if the number and
the country code match with each other. Once the check
failed, SuperShuttle will notify the user to modify the
input. However, TextExerciser finds that if we enter
a much larger country code, for example “100000”, any
number entered as the phone number is considered as valid.
This bug can be potentially exploited to register a large
amount of fake or bot accounts with the app server.

● Sign-in bug in Flipboard, a news app on Google Play.
The app has a bug in its mobile sign-in page: Specifically,
if one signs up an account with the app server in its mobile
app, he or she cannot log into the app using the newly
registered account. One can only log into the app using an
account registered in the web browser or keeps logged in
using the newly registered account after sign-up in mobile
devices. We confirm the bug via manually registering an
account and trying to log into the app.

10

C. Tool Performance on Popular Android Apps

In this section, we answer RQ3 (is TextExerciser
efficient for generating text input for popular Android apps?)
by evaluating TextExerciser from four perspectives:

● Coverage of syntax rules. We evaluate the coverage of
our rules in interpreting the syntax trees of all the hints
from a larger dataset of randomly collected Android apps.
● Code coverage of a larger number of Android apps. We

evaluate the capability of Monkey+TextExerciser and
DroidBot+TextExerciser in analyzing these randomly
collected Android apps and their corresponding code cov-
erage.
● Efficiency of input generation. We evaluate the number of

trials before TextExerciser can generate a valid input
for a given text field.
● Performance of learning model. We evaluate the perfor-

mance of the learning model used by TextExerciser
with different parameters.

1) Dataset and Experiment Setup: In this part, we use a
dataset of 6,000 randomly-collected, popular Android apps
from Google Play. We conduct the experiment on 16 official
Android x86 emulators with 4 CPU cores, 2 GB RAM
and 2 GB SD card and the aforementioned four physical
phones (OnePlus 6T), all of which run Android 9.0. We
first run an app on Android emulator together with Mon-
key+TextExerciser or DroidBot+TextExerciser and
if the execution fails, we will run the app in physical phones.
We restrict each execution to be within 30 minutes. Note
that for similar reasons stated in §V-B, we only evaluate
Monkey/DroidBot+TextExerciser in this section.

Monkey/DroidBot+TextExerciser in total analyze
5,640, i.e., 94.0% of all the Android apps, which is the same
as the results if we run the Monkey/DroidBot alone. In other
words, TextExerciser does not bring any additional failed
apps to the Monkey or DroidBot. The details are that 5,060
apps run correctly without crashing in Android emulators, and
then additional 580 runs correctly in physical phones. We
manually look at these fail cases—the major reason is that
aapt does not extract the complete launcher information and
thus the Monkey/Droidbot cannot automatically start the apps
via Android ADB.

2) Syntax Rule Coverage: TextExerciser achieves
87.3% coverage when using the syntax rules to parse the
hint texts in §III-C. Here are the details. TextExerciser
extracts 328,282 text sentences from all the apps in the dataset.
After phase 1 with a learning model, TextExerciser finds
that 3,450 of them are input hints and the rest are general de-
scriptive sentences of user interface. Then, TextExerciser
successfully analyzes 3,012 of input hints, leading to a 87.3%
coverage. After that, TextExerciser generates 3,993 con-
straints and 5.7 lines of Z3StrSolver code on average for each
constraint.

Let us look at a successful example of utilizing syntax
rules in Table II to parse input hints. TextExerciser
finds an input hint (“Please choose a username that is at

least 3 characters to sign up and doesn’t contain special
characters”) in the app, rateME. Then, TextExerciser
splits this long hint into two short hints with the conjunction
word “and”. Next, the first hint will be classified into C1
(“Length Constraints”), and the second hint C6 (“Input should
not contain certain characters”). TextExerciser parses C1
through the rule LowerBound and parses C6 through Exclusive
in Table II. Then, the parsed results will be passed to our input
generation engine, and be combined together to solve an input.

Next, we look at some of the failure cases in parsing the
hint text. First, some apps utilize unusual words or vague
words to illustrate hints. For example, ”Authentication failed”.
Second, some hint texts are embedded in popup figures. Since
TextExerciser does not apply an OCR [39], it cannot
identify texts in figures. Third, the popup window of some
apps disappear so quickly that TextExerciser does not
have enough time to obtain the texts.

Lastly, we show the category distribution for all the suc-
cessfully analyzed 3,012 hints in Figure 9. The distribution is
similar to the one of our training set of Android apps. C14
(“Non-directional constraints”) is the most popular category,
because most apps tend to provide such a constraint first
together with other directional ones to warn the users. C1
(“The lower bound of input length”) and C15 (“Equivalence
Constraints”) come next, because passwords are widely used
in many Android apps during the login phase.

3) Code Coverage of This Large Dataset: We evaluate
the code coverage on this larger dataset in Figure 10. Let
us start from the comparison with Monkey. On average,
Monkey+TextExerciser triggers 24.0% activities in An-
droid apps as opposed to 19.0% activities triggered by the
Monkey with the default random text input generation. Fur-
thermore, the upper bound of triggered activities of Mon-
key+TextExerciser is 80%, larger than 67%, i.e., the
one of Monkey with a random strategy. We also compare
TextExerciser with predefined strategy in DroidBot.
DroidBot+TextExerciser triggers 25% activities as op-
posed to 20% by DroidBot+Predefined on average. The upper
bounds of triggered activity of DroidBot+TextExerciser
and DroidBot+Predefined are both 100%, but the absolute
value of the upper bound in DroidBot+TextExerciser is
72 as opposed to 52 by DroidBot+Predefined.

We further break the code coverage based on the con-
straint categories by randomly selecting 10 apps with a
certain constraint category and exercising these apps using
DroidBot+TextExerciser and DroidBot+Predefined. Fig-
ure 8 shows the median (middle line), 25%–75% (bar), and
top/bottom of activity coverage broken down by 18 constraint
categories. TextExerciser is on par with or outperform
predefined strategies in all the metrics across 18 constraint
categories. It is worth noting that all the apps have many hints
and corresponding categories and our evaluation ensures that
at least the target hint category is involved in the selected 10
apps.

4) Number of Trials in Generating Valid Text Inputs:
TextExerciser achieves about 95.1% success rate when

11

Figure 8. The activity coverage of TextExerciser and DroidBot on 10
apps in each hint category.

Figure 9. The category distribution of successfully-interpreted hints by
TextExerciser. These categories, i.e., C1–18, are explained in Table I.

Figure 10. Activity coverage of Monkey (random and TextExerciser)
and DroidBot (predefined and TextExerciser).

generating an input for a text field for the first time. Then,
in the second trial, TextExerciser takes more feedbacks
and achieves 96.7% success rate. In practice, most of the input
generations are finished in three rounds. The number of trials
is limited to 30 and only 1.2% of mutation will exceed this
limitation.

Let us first see a concrete successful example, i.e., “Achieve-
ment - Rewards for Health”, which needs three trials in
generating a password. The hints for password generation
of this app show up step by step. Specifically, in the first
trial, TextExerciser does not identify any input hint and
generate a random input “PA”. After entering this input, the
app prompts the first hint—“Minimum of 8 characters”. Then,

Table VIII
BREAKDOWN OF REASONS THAT CAUSE FAILED INPUT GENERATION

AFTER 30 TRIALS.

Type #Hints Reason for exceeding 30 trials

1 1.088% Semantics-specific hints
2 0.80‰ Hints with loose constraints
3 0.32‰ Misclassified hints

Total 1.2%

in the second trial, TextExerciser pares this hint and
generates an input “HPPABEQH” using the solver. This input
is still invalid and the app prompts another input hint—“Must
contain at least 1 lowercase, 1 uppercase, and 1 number”.
Therefore, in the third trial, TextExerciser adds three
more constraints to the solver code and generates an input
“1PA07aAO”, which finally satisfies the requirements of this
input field.

We then break down the failed cases, i.e., 1.2% of all the
hints, based on their reasons and show them in Table VIII.
There are three major reasons: (i) semantics-specific hints,
(ii) hints with loose constraints, and (iii) misclassified hints.
First, some hints are semantics specific, which require certain
external knowledge to solve. Now, we illustrate an example,
called “DQ Texas”. The app’s sign-up page requires username,
password, and phone number, which can be exercised by
TextExerciser, but more importantly also contains a so-
called “invite code” field. The hint provided by the app for a
random code is that “Please check your invite code and try
again.” A real user can either obtain the code from DQ store
or search one online; by contrast, TextExerciser cannot
generate one without knowing the semantic meaning.

Second, there are some hints that express a constraint that
is looser than what has been actually enforced. We believe
that these are unfriendly designs of user interfaces. Here is
one example, called “TeamLease”. Once someone inputs an
invalid phone number, the app shows a hint saying that “please
enter valid 10 digital”. However, the actual constraint enforced
by the app for the phone number field is 10 digits plus a
country code with “+91”. TextExerciser cannot solve this
constraint without a proper hint.

Lastly, because TextExerciser adopts a machine learn-
ing model to classify hints, misclassifications are inevitable,
especially for these hints with formats that are not seen in
the training dataset. These misclassifications will also lead
to failed generation of inputs. Note that TextExerciser
may still be able to generate inputs if one hint is misclassified
because other hints may still help TextExerciser in the
generation.

5) Performance of Hint Classifier: In this section, we
evaluate the performance of our hint classifier, an open-
source multi-class CNN-RNN model [27], trained from dataset
mentioned in §IV. We tried to adjust all the parameters, such
as batch size, the number of hidden units, and max pooling,
but observed that the default parameters provided by the tool
are still the best ones in our problem. Therefore, we adopted
their default setting as shown in Appendix B. Our evaluation

12

results of this model against testing set show that the accuracy,
precision and recall are 90.2%, 89.4% and 90.2% respectively.

It is worth noting that false positives have less impact on
the performance of TextExerciser because even if a non-
hint is misclassified as a hint, TextExerciser will just add
more constraints but still generate valid inputs. False negatives
have a relatively higher impact but 90.2% recall is sufficient
because even if one hint is misclassified, other hints may still
help TextExerciser to generate a valid input.

VI. DISCUSSION

We discuss some practical issues in implementing and
deploying TextExerciser in real world.

Supported Language. Our prototype of TextExerciser
supports only English apps, but can be extended to apps
in other languages. As a proof of concept, we extend
TextExerciser to 10 non-English apps using Google
Translate to convert the hints to English. Our evaluation shows
that TextExerciser solves 20 of 21 hints extracted from
these apps and then successfully generates inputs based on
these hints. Details of these apps can be found in Appendix A.
Apps with WebView. TextExerciser relies on UiAu-

tomator [30] to identify and capture WebView widgets and
corresponding embedded hints. We manually checked 150
popular apps excluding games, i.e., those mentioned in the
introduction, and the results show that 25 apps contain Web-
View widgets and 23 of these widgets are correctly captured
by UiAutomator and TextExerciser in exercising.
Server- vs. client-side validation. We perform a small-

scale, manual experiment to compare the number of server- vs.
client-side input validations. Our methodology is as follows.
We first use a mobile app with network connection enabled
and record the appeared hints, and then repeat the same
procedure with the network connections disabled. We perform
the experiment on the 150 popular apps excluding games as
mentioned in the introduction and the results show that 86 out
of 649 hints in these apps correctly displayed without network
connection, i.e., implemented purely at the client-side, and the
rest, which is 563 hints, requires more or less server support.
Result randomness. We reduce the randomness in our

experiment results via two methods: (i) fixing random seed,
and (ii) repeating experiments. Specifically, we fix the random
seed of Monkey during different runs in our experiment and
also repeat every experiment for three times. It is worth noting
that randomness cannot be fully mitigated due to many other
factors, such as network delay. For example, even if we fix
the seed of Monkey, network delay may cause a login page
shows up after the next event is triggered. Therefore, all the
follow-up events may be influenced as well.
Exclusion of Gaming Apps from Our Evaluation Dataset.

We exclude gaming apps from our evaluation due to two rea-
sons. First, gaming apps commonly utilize figures to illustrate
notifications and most of their contents are presented in the
form of images. Since this paper focuses on the text input
generation, image-based game apps are apparently beyond the
scope. We will release the collected apps for the convenience

of other studies on text input generation of Android apps.
Second, gaming apps usually heavily rely on native code for
performance reasons—it is hard to measure the code coverage
in native code.
Hint Obfuscation. TextExerciser requires that Android

apps provide enough and clear hints for text inputs—this is
reasonable because these hints are intended to provide to
users so that they can interact with the app. We do find
that some apps provide hints via figures and voices, which
cannot be recognized by TextExerciser. Currently, the
evaluation result shows that only about 1.4% of hints are
missed by TextExerciser. In the future, we plan to
introduce OCR [39] and voice recognition [40], and further
understand these hints in the image or audio format.

VII. RELATED WORK

In this section, we review related prior researches.

A. Input Generation in Testing Android Apps

Traditionally, a plenty of work focus on generating testing
input for Android apps, especially in automating dynamic
analysis. However, they either focus on event based input
such as UI event and system event, or rely on a plenty
of manual effort to generate valid text input. For example,
Monkey [14], the most frequently used Android testing tool,
only can generate UI events like randomly clicking elements
on UI screen. Dynodroid [16] and Mulliner et al. [41] expands
the UI events with system events, such as SMS receiving.
However, when encountering a text input field like password,
they must pause the testing and wait for manual input.

Some modern works, such as Sapienz [25], A3E-Depth-
First [26], DroidBot [22], AppsPlayground [18] and Droid-
DEV [19], fulfill text input fields by searching in a set of
pre-defined input. If none of the pre-defined inputs can satisfy
an input’s constraints, these prior works will fail to exercise
beyond this input. Another thread of work, i.e., Liu et al. [20],
utilize RNN to train a learning model and use it to generate
text input based on the app context. Unfortunately, it requires a
large amount of manual effort to write input for training such a
model. As a comparison, TextExerciser first identifies the
input restrictions from UI screen by combining machine learn-
ing with UI structural analysis and then generates a text input
with a mutation based strategy. The main advantage is that
TextExerciser iteratively generate inputs for a given text
field—i.e., even if a particular input fails, TextExerciser
can still generate more inputs based on newly-collected hints
as feedback.

In addition, another work Mobolic [42] uses symbolic
execution to extract the input constraints in app code and
utilizes a solver to generate valid input. However, many input
checks are enforced at the server side of Android apps.

As a comparison, TextExerciser can generate inputs
even if these input checks are performed at server side, because
input hints are eventually shown at client-side app.

13

B. Widget Identification in Android Apps

UI widget identification is often combined and used to-
gether with Android app testing because an exerciser needs
to interact with different Android UI widgets. SUPOR [43]
and UIPicker [44] extract UI widget information from the lay-
out’s XML file and then identify sensitive inputs. UiRef [45]
improves prior works by adopting a hybrid approach that
combines both static and dynamic identifications: the static
method identifies widgets from layouts, just like prior work
and the dynamic method extracts each rendered layout during
on-device execution. Similarly, CuriousDroid [46] instruments
the Dalvik virtual machine to obtain the UI widgets and
generate UI-related events during execution.

All the prior works on UI widget identification can
be combined with TextExerciser in testing Android
apps as widget identification is an orthogonal problem.
TextExerciser adopts UIAutomator because of two major
reasons. First, UIAutomator obtains all the widgets informa-
tion dynamically during execution, which has incorporated
many advantages claimed by prior works. Second, UIAu-
tomator is open-source and compatible with many real-world
Android apps.

C. Text Input Generation in Web

Input generation is a critical problem in testing web ap-
plications and locating vulnerabilities such as SQL Injection
and XSS vulnerabilities. Based on their requirements for the
source code of web apps, we can classify the prior work
into two categories. The first part of work utilize white box
testing to launch analysis on targeted web apps. For example,
ACTEve [47] and S3 [48] first use symbolic execution to ex-
tract input constraints in the source code and then use a solver
to generate an input. As a comparison,TextExerciser
works for Android apps and does not require any source
code—some of the source code is at the server side and
unavailable to TextExerciser.

Another thread of related work [49], [50] leverage black
box testing, but use manual effort to pre-define text inputs.
For example, one of many vulnerabilities studied Vieira et
al. [50] is to exploit web services using Acunetix web vulner-
ability scanner [51] with pre-defined username and password
combinations.

These works are only available for generating some particu-
lar text fields, such as password, which has a public database.
In many cases like salary, username, and ages, such a public
database is unavailable. As a comparison, TextExerciser
works on Android apps and relies on hints as a feedback to
generate all the text inputs.

D. Fuzzing based Approach in Android Dynamic Analysis

Fuzzing is widely used in Android dynamic analysis. Com-
monly, the state-of-art approaches generate their input based
on a bunch of domain knowledge about the input structures.
For example, prior works [52]–[55] focus on fuzzing critical
data structures in Android such as Intent and Binder, which
are well-documented. In addition, another thread of work like

Caiipa [56] use synthesized context observed in the wild to
guide its fuzzer so that it can cover different context variations.
As a comparison, TextExerciser focuses on exercising
text inputs, which are not target of existing Android fuzzers.
We can consider TextExerciser as a fuzzer on text inputs,
but the text-based fuzzer is guided by feedbacks, i.e., these
hints, provided by Android apps.

VIII. CONCLUSION

In this paper, we propose TextExerciser, an itera-
tive, feedback-driven text input exerciser, which generates
text inputs for Android apps. TextExerciser relies on a
key insight that Android apps often provide feedback, called
hints, for malformed inputs from users—at the same time,
TextExerciser can also utilize such hints to improve the
input generation.

Our evaluation shows that TextExerciser can achieve
significantly higher code coverage than these tools with default
text input generators. We also combine TextExerciser
with existing dynamic analysis tools like TaintDroid and
ReCon and show existing dynamic analysis tools are able to
detect more malicious behaviors with TextExerciser than
with existing exercisers. TextExerciser together with ex-
isting dynamic analysis tools is able to find several previously-
unknown vulnerabilities in popular Android apps, such as
user credential leakage in a social app, arbitrary user profile
modification in a shopping app, and a software bug in another
traveling app.

IX. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the
paper. This work was supported in part by the National
Natural Science Foundation of China (U1636204, U1736208,
U1836210, U1836213, 61972099, 61602121, 61602123), Nat-
ural Science Foundation of Shanghai (19ZR1404800), and Na-
tional Program on Key Basic Research (NO. 2015CB358800).
Min Yang is the corresponding author, and a faculty of Shang-
hai Institute of Intelligent Electronics & Systems, Shanghai
Institute for Advanced Communication and Data Science, and
Engineering Research Center of Cyber Security Auditing and
Monitoring, Ministry of Education, China.

REFERENCES

[1] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing,” NDSS, 2018.

[2] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic discovery
of vulnerable authorizations in online services,” in CCS. ACM, 2017.

[3] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in NDSS, 2014.

[4] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications,” in SPSM. ACM, 2012.

[5] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards
on-device non-invasive mobile malware analysis for art,” in USENIX
Security, 2017.

14

[6] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
Automatic reconstruction of android malware behaviors.” in NDSS,
2015.

[7] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang, “Vetting undesirable behaviors in android apps with permission
use analysis,” in CCS. ACM, 2013.

[8] M. Zheng, M. Sun, and J. C. Lui, “Droidtrace: A ptrace based android
dynamic analysis system with forward execution capability,” in IWCMC.
IEEE, 2014.

[9] M. Sun, T. Wei, and J. Lui, “Taintart: A practical multi-level information-
flow tracking system for android runtime,” in CCS. ACM, 2016.

[10] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy enforce-
ment for android applications,” in USENIX Security, 2012.

[11] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones,” TOCS, 2014.

[12] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in USENIX Security, 2014.

[13] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-
Rodriguez, “Bug fixes, improvements,... and privacy leaks,” 2018.

[14] Google. (2019) Ui/application exerciser monkey.
Https://developer.android.com/studio/test/monkey.

[15] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for the
dynamic analysis of android malware.” in NDSS, 2016.

[16] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in FSE. ACM, 2013.

[17] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively detecting
mobile app bugs with appdoctor,” in EuroSys. ACM, 2014.

[18] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security
analysis of smartphone applications,” in CODASPY. ACM, 2013.

[19] Y. L. Arnatovich, M. N. Ngo, T. H. B. Kuan, and C. Soh, “Achieving
high code coverage in android ui testing via automated widget exercis-
ing,” in APSEC. IEEE, 2016.

[20] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in ICSE. IEEE,
2017.

[21] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
FSE. ACM, 2017.

[22] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in ICSE-C. IEEE, 2017.

[23] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon:
Revealing and controlling pii leaks in mobile network traffic,” in
MobiSys. ACM, 2016.

[24] Textexerciser open source address. Https://github.com/yyyyHe/TextExerciser.
[25] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated

testing for android applications,” in ISSTA. ACM, 2016.
[26] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for

systematic testing of android apps,” in SIGPLAN Notices. ACM, 2013.
[27] jiegzhan. (2018) Multi class text classification cnn rnn.

Https://github.com/jiegzhan/multi-class-text-classification-cnn-rnn.
[28] T. S. N. Group. (2019) The stanford natural language processing group.

Https://nlp.stanford.edu.
[29] M. Research. (2017) Z3str3 string constraint solver.

Https://sites.google.com/site/z3strsolver/.
[30] Google. (2019) Android ui automator. https://developer.android.com/

training/testing/ui-automator.
[31] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” JAIR, 2002.
[32] rovo89. (2019) Xposed framework. Https://www.xda-

developers.com/xposed-framework-hub/.
[33] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie, “An

empirical study of android test generation tools in industrial cases,” in
ASE. ACM, 2018.

[34] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, and G. Vigna, “Obfuscation-resilient privacy leak detection
for mobile apps through differential analysis.” in NDSS, 2017.

[35] saswatanand. (2016) Binary instrumentation of android apps.
Https://github.com/saswatanand/ella.

[36] T. Gu. Ape: Automated testing of android applications with abstraction
refinement. http://gutianxiao.com/ape/#minitracing.

[37] Google. (2019) Android debug bridge.
Https://developer.android.com/studio/command-line/adb.

[38] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S. Weis-
gerber, “Artist: The android runtime instrumentation and security
toolkit,” in Euro S&P. IEEE, 2017.

[39] Wikipedia. (2019) Optical character recognition. https://en.wikipedia.
org/wiki/Optical character recognition.

[40] ——. (2019) Speech recognition. https://en.wikipedia.org/wiki/Speech
recognition.

[41] C. Mulliner and C. Miller, “Fuzzing the phone in your phone,” Black
Hat USA, 2009.

[42] Y. L. Arnatovich, L. Wang, N. M. Ngo, and C. Soh, “Mobolic:
An automated approach to exercising mobile application guis using
symbiosis of online testing technique and customated input generation,”
SPE, 2018.

[43] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“{SUPOR}: Precise and scalable sensitive user input detection for
android apps,” in USENIX Security, 2015.

[44] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipicker:
User-input privacy identification in mobile applications,” in USENIX
Security, 2015.

[45] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie, “Uiref:
analysis of sensitive user inputs in android applications,” in WiSec, 2017.

[46] P. Carter, C. Mulliner, M. Lindorfer, W. Robertson, and E. Kirda, “Cu-
riousdroid: automated user interface interaction for android application
analysis sandboxes,” in FC, 2016.

[47] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in FSE. ACM, 2012.

[48] M.-T. Trinh, D.-H. Chu, and J. Jaffar, “S3: A symbolic string solver for
vulnerability detection in web applications,” in CCS. ACM, 2014.

[49] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state: A
state-aware black-box web vulnerability scanner,” in USENIX Security,
2012.

[50] M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners
to detect vulnerabilities in web services,” in DSN. IEEE, 2009.

[51] acunetix. (2019) Audit your web security with acunetix vulnerability
scannerk. Https://www.acunetix.com/vulnerability-scanner/.

[52] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the
android apps with intent-filter tag,” in MoMM. ACM, 2013.

[53] R. Sasnauskas and J. Regehr, “Intent fuzzer: crafting intents of death,”
in WODA & PERTEA. ACM, 2014.

[54] T. Wu and Y. Yang, “Crafting intents to detect icc vulnerabilities of
android apps,” in CISIS. IEEE, 2016.

[55] H. Feng and K. G. Shin, “Understanding and defending the binder attack
surface in android,” in ACSAC. ACM, 2016.

[56] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra et al., “Caiipa: Automated
large-scale mobile app testing through contextual fuzzing,” in MobiCom.
ACM, 2014.

15

APPENDIX

A. NON-ENGLISH APPS

In this appendix, we introduce the details in evaluating
non-english apps using TextExerciser. We select top
5,000 apps from Google Play, filter all the English ones and
then randomly select 10 apps as shown in Table X. This
selection of apps covers seven different languages ranging
from western language like Spanish to languages of east Asia
like Japanese. All the apps are popular, i.e., with more than
100,000 downloads.

Table IX
PARAMETER CONFIGURATION OF TEXTEXERCISER’S CNN-RNN

CLASSIFIER

#Parameters #Value #Parameters #Value

batch size 128 12 reg lambda 0.0
dropout keep prob 0.5 max pool size 4
embedding dim 300 non static false
evaluate every 200 num epochs 1
filter sizes 3,4,5 num filters 32
hidden unit 300

B. PARAMETER SETTINGS OF TEXTEXERCISER’S
CNN-RNN CLASSIFIER

In this appendix, we introduce the parameters adopted
in TextExerciser’s open-source multi-class CNN-RNN
model [27]. After adjusting all the parameters, we find
that the default parameters shown in Table IX are still
the best and therefore we adopted these default values for
TextExerciser.

C. DETAILED RESULTS OF TAINTDROID AND RECON

In this appendix, we break down the privacy leaks detected
by TaintDroid, Recon and the keyword based approach in
Table XI. As mentioned, TaintDroid detects the most number
of device identifiers, but is relatively weak in detecting creden-
tials and user inputted locations. As a comparison, both Recon
and the keyword based approach detect privacy categories
other than device identifiers. One important take-away here
is that TextExerciser can help all existing tools to detect
more privacy leaks.

16

Table X
NON-ENGLISH APPS COLLECTED FROM GOOGLE PLAY.

#Package Name #Downloads Language Version Captured Hints Generated Inputs Reason for Generation Failure

com.projectm.ezbrother.ssm 500,000+ Korean 1.8.7 3 3 N/A
by.onliner.ab 100,000+ Arabic 1.4.1 3 3 N/A
com.deals.deal 100,000+ Arabic 1.38 2 2 N/A
ru.medsolutions 100,000+ Russian 1.2.3 2 2 N/A
com.moneyforward.android.app 1,000,000+ Japanese 2.0.4 2 2 N/A
de.mobiletrend.lovidoo 500,000+ German 230 1 0 Translation inaccuracy
com.sabqelmfradon 1,000,000+ Japanese 1.1 2 2 N/A
kr.co.dany.threelinediary 500,000+ Korean 2.0.24 2 2 N/A
jp.co.mapple.cotripofficial 100,000+ Japanese 4.1.4 3 3 N/A
jp.co.dwango.nicoch 100,000+ Japanese 1.8.4 1 1 N/A

Table XI
THE CATEGORY OF PRIVATE INFORMATION IN TAINTDROID, RECON AND A KEYWORD-BASED TRAFFIC ANALYSIS IMPLEMENTED BY OURSELVES. WE

LIST ALL THE USED KEYWORDS IN THE LAST COLUMN.

Dynamic
AnalysisTools Exerciser Device

Identifier
User
Identifier

Contact
Information Location Credentials Total

TaintDroid

Monkey
Monkey+TE
Stoat
Stoat+TE

23
56
32
66

0
0
0
0

0
0
0
0

0
1
0
1

0
0
0
0

23
57
32
67

ReCon

Monkey
Monkey+TE
Stoat
Stoat+TE

1
2
1
2

1
10
2
19

0
0
0
0

1
4
1
5

3
13
4
18

6
29
8

44

Keyword
Search

Monkey
Monkey+TE
Stoat
Stoat+TE

1
2
1
2

1
11
2
20

0
1
0
1

1
4
1
5

3
13
5
19

6
31
9

47

17

