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Abstract—Permission-based access control enables users to
manage and control their sensitive data for third-party appli-
cations. In an ideal scenario, third-party application includes
enough details to illustrate the usage of such data, while the
reality is that many descriptions of third-party applications are
vague about their security or privacy activities. As a result, users
are left with insufficient details when granting sensitive data to
these applications. Prior works, such as WHYPER and AutoCog,
have addressed the aforementioned problem via a so-called
permission correlation system. Such a system correlates third-
party applications’ description with their requested permissions
and determines an application as overprivileged, if a mismatch
between the requested permission and the description is found.
However, although prior works are successful on their own
platforms, such as Android eco-system, they are not directly
applicable to new platforms, such as Chrome extensions and
IFTTT, without extensive data labeling and parameter tuning.

In this paper, we design, implement, and evaluate a novel
system, called TKPERM, which transfers knowledges of permis-
sion correlation systems across platforms. Our key idea is that
these varied platforms with different use cases—like smartphones,
IoTs, and desktop browsers—are all user-facing and thus allow
the knowledges to be transferrable across platforms. Particularly,
we adopt a greedy selection algorithm that picks the best source
domains to transfer to the target permission on a new platform.
TKPERM achieves 90.02% overall F1 score after transfer, which is
12.62% higher than the one of a model trained directly on the tar-
get domain without transfer. Particularly, TKPERM has 91.83%
F1 score on IFTTT, 89.13% F1 score on Chrome-Extension,
and 89.1% F1 score on SmartThings. TKPERM also successfully
identified many real-world overprivileged applications, such as a
gaming hub requesting location permissions without legitimate
use.

I. INTRODUCTION

Permission-based access control is ubiquitously used in
a variety of platforms—such as Android [4], Chrome Ex-
tension [3], IFTTT [5] and Samsung SmartThings [6]—to
restrict the access of third-party applications to user private

information. Take the Android platform for example. Access
to the device location requires special permissions that are
approved by users during the installation time of a third-
party application. Similarly, on the Chrome platform, if a user
installs an extension that requires access to the device location,
the user needs to approve it before installation.

One important task of third-party applications on
permission-based access control system is to provide enough
knowledge for the user, essentially the decision-maker while
granting these permissions, so that he or she can understand the
rationale behind those applications requesting certain permis-
sions. Such knowledge is usually in the format of a human-
readable language that describes the app’s functionality, and
implies the connection to the permission. For example, an
Android app, which describes itself to provide local weather
information to users, justifies its request of the location per-
mission as local weather needs the user’s location.

Many prior works, such as WHYPER [37], AutoCog [40],
and SmartAuth [49], have proposed to parse and understand
such provided knowledge from applications, correlate it with
requested permissions, and detect whether applications are
requesting for unnecessary user privacy information. Such a
permission correlation system is useful and successful to de-
termine and detect overprivileged applications with unexpected
permissions, such as a weather application requesting your
contact information without any justifications. One can deploy
permission correlation systems at either the client-side as an
alert to the end user or the server-side that filters overprivileged
applications with unexpected permissions.

Despite the success of existing permission correlation sys-
tems, one open question is that permission-based platforms
are diverse, ranging from Android to Chrome extension and
Internet of Things (IoT), while existing permission detec-
tion systems are all limited to one platform. For example,
WHYPER [37] and AutoCog [40] focus on only Android,
and SmartAuth [49] on only Samsung SmartThings. It would
require much human work, such as data labeling and pa-
rameter tuning, to build a customized correlation system for
each newly-emerged platform. More importantly, these newly-
emerged platforms, usually having a relatively small number of
third-party applications, may not have enough data for building
a good correlations system with reasonable accuracy.

In this paper, inspired by prior successful use cases of trans-
fer learning in image recognition systems [16], [34], [57], we
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explore the idea of transferring permission knowledge across
platforms so that one can easily build a new correlation system
for a different platform with prior knowledge. Our key insight
is that while these platforms are varied with different use cases,
like smartphones, IoTs, and desktop browsers, they are all user-
facing, thus sharing certain aspects that are transferrable across
platforms. Particularly, we propose a system, called TKPERM,
to transfer semantics and permission correlation knowledge
from one source platform to a target one, build the model
using the transferred knowledge, and then integrate the model
into a permission correlation system.

First, TKPERM transfers semantics knowledge, such as the
semantic meanings of words, from one platform to another.
The observation here is that many third-party applications on
these platforms are of the same purpose or with similar descrip-
tions. For example, both Android and Chrome extension have
weather and proxy applications; similarly, birthday reminder
applications exist in both IFTTT and Android platforms.
Therefore, TKPERM can transfer this semantic knowledge,
particularly in the form of word embeddings—that is, those
words that share the same or similar meaning are close in
the embedding space, and such similarity is transferred across
platforms.

Second, TKPERM transfers permission correlation knowl-
edge, such as the relationship of certain permissions with
certain descriptions, from one platform to another. The ob-
servation here is that different platforms, though with usages,
sometimes share certain permissions. For example, the location
permission exists in both Android and Chrome extension;
calendar access is required on both IFTTT and Android.
Such permission knowledge, especially the correlation with
application descriptions, is transferred by TKPERM in the form
of parameters in neural network layers that are close to the
input layer.

While the idea of transferring semantics and permission
knowledge is intuitively simple, the challenge is that these
permission-based platforms, though sharing some knowledge
in common, are indeed different. Take permission knowledge
for example. Android has two types of location permissions,
one coarse-grained and the other fine-grained, but Chrome
extension only has one location permission. Some permissions,
such as evernote trigger on IFTTT, are platform-specific with
no counterpart on other platforms.

TKPERM tackles the problem in platform differences via
two steps. On the one hand, TKPERM fine-tunes the model
transferred from the source platform using a small number
of target domain data so that the subtle difference between
platforms can be mitigated. Specifically, TKPERM freezes
layers close to the input to preserve transferred knowledge
and at the same time adjusts these layers close to output using
such fine-tuning data to make the transferred model optimized
for the target platform.

On the other hand, TKPERM introduces a greedy selection
algorithm to choose the knowledge that is best suited for the
target permission. Specifically, we define a domain as all the
applications with a certain permission on a certain platform.
TKPERM uses a greedy domain selection algorithm to choose
the domains on the source platform with the highest F1 score
and continue to add more domains on the source platform

until the F1 score decreases. By doing so, TKPERM can select
the best source domain combination for each given target and
apply them in the transfer procedure.

We implemented a prototype of TKPERM that transfers
knowledge from Android to three different platforms, which
are IFTTT, Chrome extension, and SmartThings. Our source
model, essentially a neural network, is built from 36,193
manually-labeled sentences of 1,234 Android apps and has
84.2% average F1 score on nine domains. The overall F1 score
of the transferred models on three platforms is 90.02%, with
91.83% on IFTTT, 89.13% on Chrome Extension, and 89.1%
on SmartThings.

Our target model built via the transfer learning performed
by TKPERM successfully identifies 329 overprivileged appli-
cations in total. Examples of such overprivileged applications
are like that a gaming hub Chrome extension requesting
location permissions without legitimate use and a weather
forecast recipe on IFTTT requesting access to a user’s BMW
car. We have responsibly reported these issues of overprivileges
to these application developers if we can find their contact
information somewhere online. We received some positive
feedback, and we are still in the process of filing the issues
and negotiating these issues with application developers.

We make the following contributions in designing and
implementing TKPERM:

• We are the first to propose a generic framework,
called TKPERM, which transfers knowledge between
permission-based platforms. We implemented a proto-
type of TKPERM that transfers permission knowledge
from Android to three different platforms.

• We manually labeled 36,193 sentences on Android,
4,705 on Chrome-extension, 666 on IFTTT, and
292 on SmartThings. We have publicly released our
labeled dataset on https://drive.google.com/drive/
folders/1Yfnz-ZpBpL8lftYIdM6JtH-QKE88NcSX?
usp=sharing to facilitate open science.

• Our evaluation of TKPERM shows that TKPERM
can successfully transfer knowledge from the Android
platform to IFTTT, Chrome-Extension, and Smart-
Things with high F1 score. The transferred models
find 329 overprivileged applications across these three
platforms.

The rest of the paper is organized as follows. Section II
introduces a motivating example of using transfer learning in
our problem setting, Section III describes how transfer learn-
ing works, Section IV demonstrates the four components of
TKPERM, Section V illustrates implementation of TKPERM,
Section VI evaluates our system’s performance, we include
a case study of overprivileged applications from the three
different platforms in Section VII, we discuss some limitations
of our work in Section VIII, we compare TKPERM with the
existing research works in Section IX, finally we conclude our
paper in Section X.

II. A MOTIVATING EXAMPLE

In this section, we illustrate our transfer learning idea
with a real-world Google Chrome extension. The Chrome
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Fig. 1: The “Oplao weather” application from Chrome Exten-
sion. The application shows a correlation of its description,
e.g., location weather forecast, to its request of location per-
mission. We use this application as an example to show that
knowledge can be transferred across domains.

extension, as shown in Figure 1, called “Oplao weather”, is
designed for accurately predicting the weather in either local
or any arbitrary location specified by the user. This extension
needs the location permission from user on Google Chrome to
forecast the local weather.

It is worth noting that if we do not apply transfer learning
to build a permission correlation system, we need extensive
human work to label extensions like this in order to build a
model. The reasons are two-fold. First, the extension itself
does not have any descriptions related to locations, such as
GPS and IP address, and therefore a direct correlation with the
permission and extension description like what Whyper [37]
does is not applicable here. Second, we cannot assume, like
what AutoCog [40] does, that if many similar extensions on
the Chrome, like weather extensions, have access to location
permission, this extension needs to do so as well. The reason
is that the weather extension itself does not need access to
location, but an extension forecasting local weather needs.
In fact, there are some extensions on Google Chrome that
require users to input a city and do not have access to the
location permission. To sum up, the construction of a new
permission correlation system on a different platform, like

Fig. 2: An illustration of the transfer learning idea upon a
neural network model. (In the figure, we transfer two particular
layers, i.e., word embedding and pooling as depicted in the
dashed boxes, from the source domains to the target. All the
rest layers are left untouched.)

Chrome Extension, is challenging and needs human work in
labeling.

We now illustrate how we transfer knowledge from the
Android platform to Google Chrome and build a permission
correlation system that links the extension’s description with
the location permission. As mentioned, there are two major
types of transferred knowledge: semantics and permission.
First, the extension is a weather forecast, which also exists in
the Android platform. When TKPERM transfers knowledge, it
transfers the semantics, such as the word “weather” related
and close to “forecast” and “city” close to “local”, in the
word embedding space from Android to Google Chrome.
Second, TKPERM transfers permission knowledge, such as the
phrase “local weather” correlated to the location permission
across the platform. For example, there exists an app on the
Android platform, called “Garmisch-Partenkirchen”, which is
a tour guide of the German city. The app also mentions “local
weather” and has access to the location permission.

One important task during transfers is to select corre-
sponding domains, i.e., apps with certain permissions, on the
source for the target so as to maximize the transferred knowl-
edge. This specific transfer, i.e., from Android to the location
permission on the Chrome extension, TKPERM selects three
domains on the Android, which are “fine location”, “coarse
location” and “read contact”. It is natural that both fine and
coarse locations on Android are close to the target location
permission on the Chrome extension. The “read contact”
permission can help as well, because many apps on Android
with this permission are related to event scheduling, which
needs somewhat location information as well.

III. TERMINOLOGIES AND DEFINITIONS

In this section, we give a brief introduction of transfer
learning and some terminologies and definitions related to
transfer learning and used in TKPERM. Generally speaking,
Transfer Learning (TL), as illustrated in Figure 2, is a type
of Machine Learning technique that transfers knowledge from
one party, called source, to another, called target, so as to
improve the performance of the target. The most widely-used
scenario is to transfer knowledge from a source neural network
to a target by copying the weights of several layers close to the
input layer. Figure 2 shows that we transfer two neural network
layers, i.e., a pooling layer and an embedding, from a source to
a target. Transfer Learning, in the past, has been widely used
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in solving many Computer Vision (CV) and Natural Language
Processing (NLP) problems [23], [42], [56].

Next, we will present several terminology and definitions
of transfer learning that are used for TKPERM.

• Domain. A domain in transfer learning refers to a
set of data, e.g., images or sentences, with similar
properties. In the context of TKPERM, a domain is
defined as a set of applications requesting a certain
permission, particularly all the positive and negative
sentences extracted from these applications and la-
beled by human. For example, we consider all the
sentences extracted from apps requesting location per-
mission on Android platform, which are labeled as
either positive, i.e., related to location permission,
or negative, i.e., unrelated to location, as a location
permission domain on Android.

• Domain Selection. Domain selection in transfer
learning refers to the procedure of selecting a set of
domains to be transferred to the target. In the con-
text of TKPERM, domain selection is that TKPERM
selects a set of domains on the source platforms and
transfers knowledge of these domains to a permission
model on the target platform. For example, in our
motivating example of Section II, TKPERM transfers
knowledge from three domains, i.e., “fine location”,
“coarse location” and “read contact”, on the Android
platform to the location domain on the Chrome Ex-
tension platform.

• Fine Tuning. Finetuning is a procedure performed
often after transfer to adjust the transferred parameters
so that they can be better fit in the target domain. In
the context of TKPERM, it adopts a small number of
data in the target domain to adjust these parameters in
the copied layers and train parameters in new layers so
as to better improve the performance of the transferred
model.

IV. SYSTEM DESIGN

In this section, we introduce the overall design of
TKPERM, as shown in Figure 3. Generally speaking, there
are four sub-procedures of TKPERM: (i) Source Domain
Selection, (ii) Source Model Training, (iii) Fine Tune Data
Selection, and (iv) Target Model training.

Here are the details of these four sub-procedures. First,
TKPERM takes all the possible domains on the source plat-
forms as inputs (i.e., circled one in Figure 3) and then outputs
a subset of domains (i.e., circled two) for transfer. Second,
TKPERM trains a source domain model (circled three) based
on the selected domains. Third, TKPERM selects a small
number of data in the target domain using the source model
(circled four) and data on the target platform (circled five) for
the purpose of fine tuning. Lastly, TKPERM builds a target
model (circled eight) based on the source model (circled seven)
and fine tuning data (circled six).

In the rest of this section, we introduce these four sub-
procedures separately from Subsections IV-A to IV-D.

A. Source Domain Selection

TKPERM adopts a source domain selection algorithm to
select the most useful source or a combination of source(s) that
can help to boost the target model’s performance at the target
domain. While intuitively simple, the challenge of domain
selection on permission-based platforms comes from the dif-
ficulty of mapping from one target domain to source domains
with different permissions. That is, we followed several state-
of-the-art approaches, including keyword overlapping check-
ing, KL-divergence [27], H-divergence [11]. Unfortunately,
none of those techniques worked in our problem settings.
Keywords overlap checking method as domain relevancy mea-
surement has an as intrinsic drawback as KL-divergence. KL-
divergence calculation is based on words distribution while H-
divergence takes sentences into consideration. As a result, it
has the ability to capture the contextual information from the
sentences. Though H-divergence works comparatively better
than others, however, it also failed to outperform our selection
algorithm’s performance on permission-based platforms.

Now let us introduce our domain selection, which is a
greedy algorithm that identifies the best source domain(s) for
Transfer Learning as listed in Algorithm 1. Here, TKPERM
computes the best source(s) by evaluating the performance on
the target data dt. In each time, we select one target domain
from the target platform. Then, TKPERM computes the per-
formance of the source domain on the selected target domain
using computealldsf1 listed in Line 5 of Algorithm 1. It takes
the list of the source domain,[DS ] and a single target domain,
dt as input. And then, TKPERM creates the set which indicates
the mapping of F1 score with source domain in [{DS , df1}].
For example, let us consider the scenario, where we want to
check the overprivileged applications of “geo-location” permis-
sion from Chrome Extension platform. TKPERM computes all
the nine sources with chrome’s “geo-locaiton” permission and
calculates F1 score for all of the source domain. For future use,
TKPERM stores them in [{DS , df1}]. After that, TKPERM
selects the source which has the highest F1 score compared
to others. TKPERM removes the selected source domain, ds
from [{DS , df1}] and aggregates it to the aggregated source
list, AS . TKPERM computes the AS performance on the target
domain in Line 10 of Algorithm 1. In the next round, TKPERM
again identifies the next best source with the highest F1 score
listed in [{DS , df1}] and aggregates it with the previous best
source list. And thus, TKPERM constructs AS and removes the
selected source domain from [{DS , df1}]. TKPERM repeats
the whole process for aggregating source domain in AS (as
listed between Line 7-15 of Algortihm 1), until F1 score
drops below Pbest. Otherwise, TKPERM keeps adding the next
best source from [{DS , df1}] until there is no source left in
[{DS , df1}].

B. Source Model Training

TKPERM trains binary classification models, particularly,
Fully Connected Neural Networks (FCNN) for target permis-
sion using selected domains on the source platform. FCNN is
a type of Neural Networks where each neuron in one layer has
connections with all the neurons in the previous layer except
the input layer. TKPERM starts the process of building our
source model by combining all the data from Android platform
to build word-embedding [38]. TKPERM then uses these word
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Fig. 3: System overview of TKPERM. (TKPERM has four major sub-procedures: domain selection, source model training,
find-tune data selection, and target model training.)

Algorithm 1 Source Domain Selection using Greedy Selection
Algorithm

Input: Source Domain Data List, [DS ]; Target Domain
Data, dt

Output: Aggregated Source List, [AS ]
1: procedure SELECTSOURCEDOMAINS
2: [AS ]← ∅
3: Pbest ← −∞
4: Pcurrent ← initialize to zero
5: [{DS , df1}]← computealldsf1([DS ], dt)
6: while size([{DS , df1}]) > 0 do
7: ds ← highestf1([{DS , df1}])
8: remove ds from [{DS , df1}]
9: add ds to [AS ]

10: Pcurrent ← computedsf1([AS ], dt)
11: if Pcurrent < Pbest then
12: remove ds from [AS ]
13: break
14: end if
15: Pbest ← Pcurrent

16: end while
17: Return [AS ]
18: end procedure

embedding vectors for building the embedding layer for all
the source models. Next, TKPERM builds other layers of
the neural networks, particularly, two hidden layers, which
consists of 300 and 200 neurons with ReLU (rectified linear
unit) as the activation function. Particularly, TKPERM adopts
CBOW (Continuous Bag-of-Words) encoder to translate each
sentence into a vector and then trains other layers of the neural
networks. Note that before using CBOW encoder, TKPERM
pre-processes all the sentences by following the standard NLP
practice, such as removing unicode character, punctuation, stop
words (e.g., “a,” “this”), and converting letters to lowercase [1].
We believe that this will help our model to learn useful features
for the textual data.

We now discuss two design choices of our source model,
which are CBOW encoder and FCNN. First, we choose the
CBOW encoder, due to the scale limitation of our dataset
for sentence encoder training. Although Existing universal

sentence encoders, like InferSent [14] or SkipThoughts [26],
are claimed to perform generally well, they did not outperform
CBOW in our experiments. Data source mismatching and
higher dimensionality of their outputs can be the possible
reason [35]. Second, we choose FCNN for building our model
structure for source domain knowledge distilling due to the
following reason. Particularly, compared with more advanced
models, such as Long Short-Term Memory, it is easier to get
a better performance on a small scale dataset using FCNN
model [45].

C. Data Selection

TKPERM, or in general transfer learning technique, needs
a small amount of labeled data in the target domain to fine
tune the transferred model to better fit in the target domain.
Such data is selected by TKPERM to reduce human efforts
on labeling. Specifically, TKPERM takes a source model and
an unlabeled target data as inputs and then ranks all the data
based on the prediction value on the listed sentences inside that
application. The ranking score of an application indicates the
possibility of an application whether it is worth to label or not.
TKPERM selects sentences from these top-ranked applications
for manual labeling.

We now describe the detailed ranking algorithm in Algo-
rithm 2 to illustrate the process of selecting fine-tune data
from the target domain. The ranking process will first divide
descriptions of an application into sentences, which is shown
in Line 2-3 of Algorithm 2. Then, source model starts pre-
dicting on each sentence. TKPERM increases the rank of an
application by following Equation 1.

RA =

len(A)∑
j=1

1 | bP(yj |xj)e = 1

∀ sentence, xj ∈ document,A

(1)

If TKPERM gets prediction result as positive for sentences
inside an application, TKPERM increments the ranking score,
RA of that application by one. Next, TKPERM counts ranking
score ranges from zero to Rmax, where Rmax represents
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Algorithm 2 Selecting fine-tune dataset for target model using
Data Selection Module.

Input: Source Model, MS ; Unlabeled Target Domain
Dataset, [At]

Output: Fine-tune Dataset, [DF ]
1: procedure SELECTFINETUNEDATASET
2: for each document, A ∈ [At] do
3: for each sentence, dt ∈ A do
4: pred← prediction(dt,MS )
5: if pred = 1 then
6: RA ← RA + 1
7: end if
8: end for
9: add {A,RA} to [DR]

10: end for
11: [DR]∗ ← sorteddesc([DR])
12: [DF ]← top20([DR]∗)
13: Return [DF ]
14: end procedure

highest number of predicted positive sentences inside an appli-
cation. Thus, TKPERM builds a list, [DR] containing a set of
applications and their final rank. For example, an application
where four sentences have been predicted as positive, the
ranking score of that application will be four. This process
is based on two intuitions: (1) selected source models have
enough knowledge to distinguish data in the target domain,
thus it can recognize potential positive sentences in the target
domain; (2) source models are trained with many negative
sentences (irrelevant to the considered permission), thus source
model can successfully exclude negative sentences from target
domain as well.

According to the state-of-the-art [23] transfer learning on
NLP domain, we do not need large scale data to fine-tune the
model. Small scale data is enough to fine-tune the target model,
which shows significant improvement over the target domain.
After finishing the ranking process for all the applications in a
domain, TKPERM sorts the applications based on their ranking
score in descending order according to Equation 2 and thus,
TKPERM gets the sorted list, [DR]∗.

[DF ] = [sortdesc[{Ai,RAi
}mi=1]]

n
j=1 (2)

where sorting is based on the descending order of RAi
, total

number of applications in target domain, m and the total
number of considered applications, n = 20.

From the sorted list, TKPERM selects top application list
[DF ], which have a higher rank than others, as mentioned in
Line 12 of Algorithm 2. These top applications are divided
into training and validation set based on a hyperparameter.

D. Building Target Domain Model

We now describe how TKPERM builds the target domain
model from two aspects: transferring and fine-tuning. First,
TKPERM transfers two layers of the source domain model,
i.e., one embedding layer and another pooling, from the
source domains to the target. Second, TKPERM fine-tunes the
transferred model based on the data selected in Section IV-C.

Say, TKPERM selects data Dt
T ∪Dv

T (Dt
T = training data, Dv

T =
validation data) for fine-tuning process: A human needs to
label all Dt

T ∪Dv
T .

TKPERM then try different combinations of hyper-
parameters in the target domain and select these hyper-
parameters based on the performance of the target model on
Dv

T . Specifically, these hyperparameters include the number
of hidden layers, different optimizer (such as Stochastic gra-
dient descent, Adagrad, and Adam optimizer), dropout for
regularization, learning rate, epoch, pooling type, and freezing
model’s lower layer. TKPERM enumerates all the different
combinations of the hyperparameters and chooses the one with
the best performance on Dv

T for the selected target domain.

V. IMPLEMENTATION

In this section, we first describe all the datasets used in the
implementation and evaluation of TKPERM in Section V-A,
and then present the models and hyperparameters built or
selected by TKPERM in Section V-B.

A. Datasets

We now describe the collection procedure, manual labeling,
and then some statistics of the datasets.

1) Collection Procedure: We collect datasets from four
different platforms, including Android, Chrome Extension,
IFTTT, and SmartThings.
• Android. Android is a mobile platform that provides range

of applications available in the Play Store. We adopted the
crawled data, provided by the authors of Autocog [40], in
order to be consistent with prior works. This dataset contains
the descriptions along with the permission information of
45,811 android applications that were available in May 2014
in Google Play Store.
• Chrome Extension. Chrome Extension is a platform

that provides small programs integrated in Chrome browser
and built in HTML, JavaScript, and CSS to enhance the
browsing experience. We collected 1,059 chrome extension
applications in November, 2018. At that time, there were
twelve different categories available in Chrome store, in-
cluding accessibility, blogging, by google, news, shopping,
web development, fun, photos, productivity, search tools,
communication, and sports. We build a Chrome data crawler
to get all the application’s information. First, we extract
all the IDs of chrome extension applications by browsing
webstore. Then, we made a query with the id in “chrome
extension source viewer” [2]. Finally, with the help of our
crawler, we were able to get the detailed information, such as
title, description and required permissions. Then we stored
those information and constructed our chrome extension
dataset.
• IFTTT. IFTTT is a platform that supports trigger-action

programming (TAP) with IoT automations. We collected
259,523 IFTTT recipes in October 2017 using our crawler
built with python and beautiful soup. Here are the detailed
procedures. We searched the recipes for each of the services
by going through each service page in IFTTT. For each
service, we collected the relative information including its
description, title, trigger title, trigger service, action title,
action service, and url (i.e., link to the recipe). One recipe
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may appear both in trigger service page and action service
page. For removing redundancy, we did not collect the recipe
twice, and each recipe has two permissions, one for trigger
service and the other for action service.
• SmartThings. SmartThings is another popular platform

in IoT domain provided by Samsung. We collected 243
SmartThings applications in August 2019. Here is how we
collect them. We build a python crawler to extract data
from the official Github repository1 of SmartThings. Here,
we considered the capability for each application as its
permission. At the time, there were 39 different capabilities,
including lock, switch, motion sensor, acceleration sensor,
presence sensor, and contact sensor. We select the top three
capabilities based on the size of each dataset.

2) Manual Labeling: After data collection, we choose top,
common permissions, i.e., these with enough applications on
each platform, and manually labels sentences from descriptions
of applications with these permissions. A detailed list of these
top permissions is shown in the second column of Table I. We
select all the sentences on IFTTT, SmartThings and Chrome
extensions, i.e., our target platform, for human labeling; We
only select these applications that are classified as positive by
AutoCog for human labeling in the Android platform due to
the large number of involved applications.

Our labeling process is as follows. We first present the
official documents of our platforms and permissions to two
students, who later become co-authors of the paper, as anno-
tators and also ask them to get familiar with all the platforms
under our study. We then ask them to label some dataset
with our human annotated ground truth to ensure that they
understand these platforms and permissions. Next, we ask them
to label whether a sentence in a particular application is related
to a certain permission requested by the application. If the
student considers the sentence indicates the requirement of
a permission, he or she will label it as positive; otherwise,
negative.

Once we have labels from two annotators, we will integrate
all the labels from these two sources together. Interestingly,
several sentences were vague enough to make a confusion
among the annotators, as a result disagreement occurs. On an
average we have a very good consistent labels between two
annotators, i.e., we have an agreement rate as 97.89%, and
kappa as 0.901. That is, we believe that our dataset is with
a high quality based on prior works [22], [50]. Furthermore,
for these disagreements, we resolved the conflict issue by
presenting the case to these two annotators again and asking
them to reach a consensus. They reached a consensus for all
the conflicts after a discussion.

We now describe a concrete example in which two an-
notators have disagreement but reached a consensus after a
thorough discussion. Here is the sentence: “When you have
a meeting, auto create a note at Evernote”, which belongs
to an IFTTT recipe requiring access to Google Calendar.
Two annotators have disagreement because one thinks that
this sentence has no relationship with Google Calendar, while
the other thinks that a recipe can only know that you have
a meeting based on an access to Google Calendar. After a

1https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/
master/smartapps

TABLE I: Manually-labeled Data distribution of 20 different
domains from Android, IFTTT, Chrome Extension and Smart-
Things. Android is the source platform and the rest are target
platforms.

Plat. Permission #Sent. #Pos. Sent. #Doc. #Pos. Doc.

A
nd

ro
id

Fine Loc. 16,402 728 (4.44%) 635 635 (100%)
Coarse Loc. 5,550 208 (3.75%) 193 193 (100%)
Camera 498 166 (33.33%) 11 11 (100%)
Read Cal. 802 401 (50.00%) 16 16 (100%)
Read Con. 842 421 (50.00%) 17 17 (100%)
Record Au. 366 183 (50.00%) 10 10 (100%)
Wr. Settings 1,524 398 (26.12%) 31 31 (100%)
Send SMS 8,398 407 (4.85%) 286 286 (100%)
Write APN 1,811 92 (5.10%) 35 35 (100%)

IF
T

T
T

Evernote 202 133 (65.84%) 145 85 (58.6%)
BMW Lab 77 52 (67.53%) 65 43 (66.2%)
Facebook 158 84 (53.16%) 115 45 (39.1%)
G. Cal. 144 88 (61.11%) 102 73 (71.6%)
G. Con. 85 50 (58.82%) 49 43 (87.8%)

C
hr

m
. Geoloc. 1,540 126 (8.18%) 138 67 (48.6%)

Proxy 2,391 483 (20.20%) 123 98 (79.7%)
C. Settings 774 92 (11.89%) 58 28 (48.3%)

Sm
ar

t
T

hi
ng

s Lock 34 10 (29.31%) 30 8 (26.67%)
Motion 73 40 (54.79%) 60 35 (58.33%)
Switch 185 118 (63.78%) 153 111(72.55%)

discussion, they agree that the latter annotator is correct as the
IFTTT platform does not provide other permissions so that a
recipe can know that the user has a meeting.

3) Statistics: We now describe the statistics of our datasets
after human labeling. In total, we labeled 36,193 sentences
from 1,234 Android applications, 666 sentences from 476
IFTTT recipes, 4,705 sentences from 319 Chrome extensions
and 292 sentences from 243 SmartThings applications. Table I
shows the number of total and positive sentences and docu-
ments in each platform. Note that a document means all the
descriptions from a certain application on a platform.

Now let us describe several observations made from our
manually-labeled dataset. First, the number of positive sen-
tences on Android and Chrome Extension is scarce when
compared with negative ones. On the Android platform, only
8.3% of sentences, i.e., 3,004 out of 36,193 labeled ones, are
positive, i.e., indicating the selected permission. The scenario
on Chrome Extension is similar, with 13.42% positive sen-
tences. Such a percentage is much higher on SmartThings and
IFTTT, which are 49.29% and 61.29% respectively.

The reason of such a drastic difference on different plat-
form is due to the length of descriptions. Android apps usually
have the longest descriptions on many functionalities that are
unrelated to the app’s permission request and the same applies
to Chrome extensions. The descriptions of IFTTT recipes and
SmartThings applications are usually short, which precisely
presents the permission requirement. Therefore, the percentage
of positive sentences on Android and Chrome extensions is
scarce, but the one on IFTTT and SmartThings is abundant.

Second, many applications on IFTTT, SmartThings and
Chrome extensions are overprivileged as indicated in the
percentage of positive documents on these platforms. Such an
observation emphasizes our motivation in building a permis-
sion correlation system on these platforms. Note that all the
documents on Android are positive because we only select
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applications that are labeled as positive by AutoCog, a prior
permission correlations sytem.

Lastly, although the percentage of positive sentences on
Android is small, the absolute number is still large. The reason
is that Android platform is with much more applications and
users as compared with others. That is also the major reason
that we adopt the Android platform as the source platform for
TKPERM.

B. Models and Hyperparameters

In this section, we describe our source domain model that
is used for transfer and also several hyperparameters. Note that
we used the Amazon Elastic Compute Cloud (EC2) resources
to run all of our experiments. The instance we used is called
‘p3.2xlarge’ with one NVIDIA Tesla V100 GPU, 16 Gibibyte
GPU memory, 8 virtual central processing units (vCPUS)
and 61 Gibibyte Main Memory. The operating system of this
instance is the ‘Deep Learning Amazon Linux Version 23.0’.

1) Source Domain Model: Our source domain model is
built on our manually labeled sentences on the Android do-
main. One major challenge comes from the scarcity of positive
sentences on the Android platform: if we randomly select data
from all sentences for training, tuning, and evaluation, there is
a chance of source domain becoming fully biased to negative
sentences [10], [30]. Therefore, we need to fix the positive and
negative data ratio and train source domain model. With a fixed
ratio, we randomly sampled 70% data to train the model, 10%
to tune the hyperparameters, and rest 20% data to evaluate the
model’s performance. Finally, our results show that a 1:1 ratio
will produce the best results on our evaluation set.

Table II shows the performance, including Accuracy, Pre-
cision, Recall and F1 score, of the source model on each of
the nine different source domains. The average source model
performance in terms of F1 score is 84.2%. We calculate all the
numbers based on the following criteria. The source domain
model first extracts sentences from each of the document
and starts classification on those sentence data. After that,
the model predicts whether an individual sentence belongs
to positive class (i.e. 1) or negative class (i.e. 0). We will
consider the document, i.e., an application, as positive, if one
of each sentences is considered as positive by the source
domain model. If none of a document’s sentences are positive,
we will consider it as negative.

One interesting observation for our source domain model
is that permissions with straightforward descriptions are with
the highest F1 score. For example, the F1 score for “Send
SMS” is as high as 97%, because the descriptions of this
permission usually involves a direct description of SMS. To
the contrary, the F1 score for “Coarse Location” is the lowest,
because the request for “Coarse Location” is often vague with
the request for “Fine Location”. Additionally, there are many
ways to describe the request of locations, such as local weather
as we described in the motivating example.

2) Hyperparameter Selection: Hyperparameter selection in
TKPERM is automatic because TKPERM reserves 10% of
the total data as a validation set so that TKPERM can se-
lect the best hyperparameter. Specifically, TKPERM considers
the following hyperparameters for training the source model,

TABLE II: Performance, i.e., accuracy, precision, recall, and
F1 score, of source models on different source domains in
Android platform.

Performance
Permission Acc. Prec. Rec. F1
Fine Location 85% 73% 84% 78%
Coarse Location 84% 53% 84% 65%
Camera 88% 80% 89% 85%
Read Calendar 89% 87% 89% 88%
Read Contact 92% 92% 90% 91%
Record Audio 84% 83% 83% 83%
Write Settings 87% 69% 86% 77%
Send SMS 93% 93% 100% 97%
Write APN 92% 88% 97% 94%
Total 88.22% 79.78% 89.11% 84.20%

which are epoch, batch size, learning rate, dropout, pooling
types, word vector dimension, gradient norm limit, number of
selected fine tuning data, and number of hidden layers. Many
of these hyper-parameters change according to the different
sources and target models.

We now describe some hyperparameters that are consis-
tently chosen by TKPERM. Specifically, TKPERM selects
lr = 0.01, b = 256, e = 20, where lr = learning rate, b
= number of batch size and e = number of epoch, as these
settings produces a good source model for all the domains.
TKPERM also selects the dimension of this word embedding
to 300 as this dimension works comparatively better than other
dimensions. During the ranking algorithm, i.e., Algorithm 2,
from the sorted list, TKPERM selects top 20 application list
[DF ], which have the higher rank than others, as mentioned in
Line 12. Among top 20 applications, 15 of them are considered
in training set, while the rest five applications are selected as
validation set for tuning hyperparameters.

VI. EVALUATION

In the following section, we present the evaluations of
TKPERM. To check if it is an effective and efficient system
for detecting overprivilege issues, we evaluate both the per-
formance and the computation overhead of TKPERM. For the
performance evaluation, we report the end-to-end performance
for detecting overpriviledged applications, as well as the
performance of different components in TKPERM. We show
that TKPERM is effective for overprivilege detections on all
the three platforms we test (average F1 score is 90.02% with
988 pieces of labeled data). Besides, we demonstrate that our
greedy domain selection algorithm outperforms the popular
source domain selection approaches such as H-divergence for
transfer learning. TKPERM also reduces the labeling cost by
selecting potential useful data for the fine-tuning purpose. Our
experiment results indicate the performance improvement of
the data selection approach than randomly picking fine-tune
data. In the end, we also evaluate the performance overhead
of TKPERM, showing that TKPERM is scalable for a large
number of applications.

A. Evaluation Questions and Metrics

To evaluate the performance of TKPERM, we want to
answer the following questions:
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TABLE III: Detailed Performance of TKPERM in different
target domains.

Performance
Plat. Permission Acc. Prec. Rec. F1

IF
T

T
T

Evernote 84.6% 77.53 % 89.61% 83.13%
BMW Lab 94.00% 99.99% 90.90% 95.24%
Facebook 90.00% 78.72% 100% 88.09%
G. Cal. 88.51% 86.96% 98.36% 94.30%
G. Con. 94.11% 93.33% 100% 98.41%

C
hr

m
. Geoloc. 89.43% 85.96% 90.74% 88.29%

Proxy 89.81% 89.24% 98.80% 93.78%
C. Settings 76.74% 68.97% 95.24% 85.31%

Sm
ar

t
T

hi
ng

s Lock 93.33% 75.00% 100 % 85.71%
Motion 82.22% 77.14% 100% 87.10%
Switch 91.36% 89.38% 100% 94.39%

• What is the end-to-end performance of TKPERM?
• What is the performance of each component in TKPERM?
• What is the computation overhead of TKPERM?

Answering the first two questions helps to show the effective-
ness of TKPERM, as well as the effectiveness of design deci-
sions in each component. Answering the third question helps
to understand the scalability of our solution. For evaluating
the performance of TKPERM and its components, we use F1
score, which is the harmonic mean of precision (the fraction
of relevant instances among the retrieved instances) and recall
(fraction of relevant instances that have been retrieved over
the total amount of relevant instances). Higher precision will
ensure the low FP (False Positive), whereas, a higher recall
will ensure the low FN (False Negative). As a result, higher
F1 score will provide both low FP and FN. That’s why for
evaluating the model’s performance, we are selecting F1 score
as the primary measurement criteria. Models with higher F1
score will have a good chance of identifying overprivileged
applications.

B. Overall performance of TKPERM

As mentioned in Section V-A, we collect data from
three popular platforms with third-party applications (IFTTT,
Chrome extension, and SmartThings). To evaluate the overall
performance of TKPERM, we experiment with 11 popular
and sensitive target permission domains on the three different
platforms. First, we use a small portion of data from the
target domain to fine-tune the target model. According to the
state-of-the-art approaches, we do not need to have a large
amount of fine-tune data [23] to get good performances in
the target model. We extract the fine-tune data systematically
as described in Section IV-C to reduce the labeling cost and
ensure the quality of fine-tuning data. Table I depicts the data
distribution of all 11 different target domains from three differ-
ent platforms. While tuning the hyperparameter, we validated
the model’s performance on the validation dataset. We select
hyperparameter automatically from the list of hyperparameters
as described in Section IV-D.

Comparison with baseline. To get more insight on the
performance of the transfer learning, we evaluate our ap-
proach comparing with “No Transfer” technique (considered
as baseline). To have a fair comparison with “No Transfer”
scenario, we use the same amount of labeled data to train

the model directly. Table IV demonstrates the contrast of the
performance between transfer with no transfer approach. By
observing the improvement ratio for all target domains, we
find that TKPERM outperforms the baseline approach in every
target domain. On average, it exceeds the baseline by 12.62%.

Measurement of overprivilege apps. We find that the app
overprivilege is a pervasive issue. On average, we find 32.33%
of apps are overprivileged. 135 apps (28.36%) from IFTTT,
114 apps (35.73%) from Chrome Extension, and 80 apps
(32.9%) from SmartThings are overprivileged.

In the following, we report the component-level perfor-
mance of TKPERM. In particular, we highlight the perfor-
mance of the source domain selection module and data se-
lection module because we make unique design choices for
these two components.

C. Source domain selection module performance

To successfully transfer knowledge to a target domain,
we need to select the best source domain(s) for each given
target domain. In transfer learning, selecting the best source
domain is a challenging problem [8], [53]. In addition, in
our problem settings, permissions in one platform cannot be
easily mapped to permissions of other platforms intuitively
due to the diversity of platforms. Moreover, if source domain
contains unnecessary data (i.e., inappropriate for completing
the targeted task), then our target model may experience
“negative transfer” [43]. TKPERM overcomes these challenges
by proposing the greedy selection based domain selection
algorithm (listed in Algorithm 1).

To compare our greedy selection algorithm’s performance
on selecting the best source domains, we also ran experiments
with the state-of-art domain selection algorithm H-divergence
algorithm [11] to find the most relevant source domain. Process
of using H-divergence algorithm to select the best source
domain includes a binary classification problem, where the
source and target domain has two different labels (e.g., source
data is labeled as 1, while the target data is labeled as 0).
The intuition is that if the classifier can hardly distinguish two
datasets, e.g., making a lot of errors during the evaluation, then
these two domains are very relevant. For source-target domain
combination with bigger error, most likely those two domains
are relevant to each other.

Table V shows the performance comparison of our greedy
selection algorithm with H-divergence algorithm to find the
best source domain. We can observe that the greedy selection
algorithm achieves 4.59% improvement of F1 score compare to
H-divergence algorithm. Thus, we can conclude that TKPERM
can extract the best source domain for transferring the knowl-
edge to the target domain.

One interesting phenomenon we observe is those source
domains performing well in the source platform are likely
to trigger good performance of their target domains in the
target platform. For example, as is shown in Table II &
III, “Send SMS” achieves 97% F1 score in source domain,
then the performance at its target domain “BMW Lab” is
also outstanding. Our greedy selection algorithm for domain
selection can also identify these kinds of source domains
at an early stage. In the first round of Greedy Selection
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TABLE IV: Performance improvement (based on F1 score) analysis of TKPERM compared with “No Transfer” (baseline) in 11
different target domains with a highest improvement of 33.77% using transfer learning.

Plat. Target Domain Source Domain Trans. No Trans. Improve.

IF
T

T
T

Evernote Coarse Location + Fine Location + Camera 83.13% 79.78% 3.35%
BMW Lab Send SMS + Record Audio 95.24% 85.71% 9.53%
Facebook Camera 88.09% 75.00% 13.09%
Google Calendar Read Calendar + Coarse Location 94.30% 83.54% 10.76%
Google Contact Read Contacts 98.41% 97.22% 1.19%

C
hr

om
e Geolocation Fine Location + Coarse Location + Read Contact 88.29% 62.50% 25.79%

Proxy Send SMS + Fine Location 93.78% 89.69% 4.09%
Content Settings Fine Location + Read Contact 85.31% 59.61% 25.7%

Sm
ar

t
T

hi
ng

s Lock Write Setting 85.71% 75.00% 10.71%
Motion Sensor Read Contact 87.10% 53.33% 33.77%
Switch Send SMS + Read Calendar 94.39% 90.09% 4.3%

TABLE V: Performance comparison of H-divergence with
Greedy Selection algorithm for selecting best source domain
for transferring learning using TKPERM in IFTTT platform.

Target Domain Src Selection Src Domain(s) F1

Evernote

H-divergence Read Calendar 75.86%
Greedy Select. Coarse Location

+ Fine Location
+ Camera

83.13%

BMW Lab
H-divergence Read Contact 92.3%
Greedy Select. Send SMS +

Record Audio
95.24%

Facebook H-divergence Read Calendar 76.09%
Greedy Select. Camera 88.09%

Google Calendar
H-divergence Read Calendar 91.30%
Greedy Select. Read Calendar +

Coarse Location
92.30%

Google Contact H-divergence Read Contacts 99.20%
Greedy Select. Read Contacts 99.20%

approach, “Send SMS” achieves 93.15% F1 score which is
7.44% improvement from “No Transfer”.

In addition, we check if our domain selection algorithm
will cause negative transfer issues. As is shown in Table III,
TKPERM provides the best target model for each of the
domain. In IFTTT, we achieve the best performance with
98.41% F1 score in Google Contact domain whereas, the
lowest performance is 83.13% in IFTTT Evernote domain.
Interestingly, we can notice that all of the target domains
achieve more than 80% F1 score; the average performance
is 90.02%. Therefore, TKPERM’s domain selection algorithm
avoids “negative transfer” issue.

D. Data selection module performance

To further reduce human labeling effort, we design our data
selection module to select high-quality data from the target
domain. Here, by “high-quality data” we meant the data that is
helpful for fine-tuning the target model. We described our data
selection module in Section IV-C, which ranked documents
from the target domain. Through our data selection process,
we select the top 20 applications from the target domain.
After extracting those highly ranked applications, we labeled
sentences from each of the application manually. Section V-A2
describes our detailed methodology of data labeling. Table VII
illustrates the effectiveness of data selection module. We can

observe the comparison of performance between with and
without data selection technique in Chrome Extension plat-
form. While experimenting without data selection approach,
we select randomly 20 fine-tuning applications from the target
domain. To have a fair comparison, we keep the rest of
the techniques the same and only change the data selection
process.

We find that the data selection algorithm we proposed is
effective for building models for target domains. For example,
we show the comparisons of performance with our proposed
data selection algorithm, and with the random data selection
approach in Table VII. In the Chrome platform, we achieve sig-
nificant improvement by applying our proposed data selection
approach. On average, we achieve 89.13% F1 score using data
selection approach while only 84.36% F1 score without data
selection approach. This indicates 4.77% improvement using
data selection approach in the Chrome platform. In addition,
we can observe similar improvements (0.75% on IFTTT and
4.45% on SmartThings), as is shown in Table VI.

TABLE VI: Performance (F1 Score) comparison among three
settings- no transfer, without data selection, and data selection
in three different target platforms and comparison of perfor-
mance improvement compared to “No Transfer” (baseline).

Configuration
Plat. Perform. No Trans. W/ DS With DS

IFTTT F1 score 84.25% 91.08% 91.834%
Improv. - 6.83% 7.584%

Chrome F1 score 70.6% 84.36% 89.13 %
Improv. - 13.76% 18.53%

Smart
Things

F1 score 72.80% 84.65% 89.1%
Improv. - 11.85% 16.3%

E. Computation Overhead

To evaluate the scalability of the TKPERM, we measure
the computation overhead for the system. As mentioned in
Section V-B, we use Amazon Elastic Compute Cloud (EC2)
resources and NVIDIA Tesla V100 GPU to train our model.
We run each experiment for 11 times to compute the average
computation overhead. First, we need to run the experiment on
nine different source domains for any given target domain, then
use the greedy algorithm we have showed in Algorithm 1 to get
the best combination of source domain. We have reached on
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TABLE VII: Performance improvement analysis of fine-tune
data selection process of two different techniques- with and
without data selection (DS) module in Chrome extension
platform. The results clearly show that DS improves the F1
score of the transfer learning on all three target domains.

Target Source Perf. W/DS DS

Geoloc. Fine Location + Coarse Lo-
cation + Read Contact

F1 83.10% 88.29%
Improv. - 5.19%

Proxy Send SMS + Fine Location F1 93.61% 93.78%
Improv. - 0.17%

C. Sett. Fine Location + Read Contact F1 76.36% 85.31%
Improv. - 8.95%

average of 90.02% F1 score on target domain with an average
size of 94 documents.

Table VIII shows the performance overhead of running
experiments on different permissions and platforms, which
includes the information about the size of the data (source
data + target data) and the time cost of TKPERM (getting the
result on the best source combination).

Note that the performance overhead of TKPERM is a one-
time cost, once we train a model for one target permission,
we do not need to retrain the model for new applications.
Therefore, based on the data from Table VIII, TKPERM is
scalable.

F. Factors impacting transfer learning

By looking into the data sets in original domains and target
domains, we have the impression that the word embedding
and permission knowledge might be the major knowledge that
gets transferred for TKPERM. We design some experiments to
control these two factors to give more insights on why transfer
learning works in TKPERM. These experiment results match
our intuition. Indeed, word embedding and permission knowl-
edge have significant impacts on the target model performance.

1) Effect of word Embedding: TKPERM uses source do-
main’s (Android) word embedding and transfers it to the target
domain. As the description in Android is both rich and well
structured, our source model initialized with useful features.
By transferring the pre-trained word embedding to the target
domain, it also shows improvement over the target model.

To investigate the impact of word embedding, we ran
several experiments by using word embedding built from
source platform and target platform. Our intention was to check
whether model initialization phrase is getting any help from
the source data or not. Table IX illustrates the performance
comparison between word embedding from source data and
target data. The key difference between these two settings is
the selection of platform while building the word embedding.
For checking the performance of source word embedding,
we directly use the embedding built from source data (i.e.
Android). Whereas, to test the performance of word embedding
of the target data, we use the corresponding target platform’s
full data to train the word embedding. Important thing to note
that, training word-embedding is an unsupervised approach.
We do not need the labeled data for that. So, we use the
large corpus data from the target platform to built the word
embedding for all the target domains of that platform. For

example, to experiment with “Geolocation” permission in
Chrome Extension platform, we used all the description (from
1,059 applications) to train Chrome word-embedding, and then
we used that in target model’s embedding layer.

Results in Table IX highlight the impact of source plat-
forms word embedding. Indeed, TKPERM gets benefited by
using source platforms word embedding with an improvement
of 3.69% F1 score (average) in all three target platforms.
Finally, we can conclude that we do not need to train different
word embedding for different target platforms. It reduces the
training cost for target platforms.

2) Knowledge of Permissions: TKPERM learns specific
features from the textual data for a particular permission.
Then, it maps such features to the corresponding permission.
In particular, TKPERM correlates requested permission with
the description, and thus resulted output indicates whether a
particular application is overprivileged or not. In our inves-
tigation, we observed that several permissions (though the
applicability may differ with each other) overlap with each
other in source and target platform. For example, Geolocation
from Chrome, and Fine Location & Coarse Location from
Android; Google Calendar from IFTTT, and Read Calendar
from Android, Google Contact from IFTTT, and Read Contact
from Android— all of these pair of permissions from two
different platforms, descriptions of which have some com-
mon characterestis because of the similar functionality. In
our experiment (as illustrated in Table IV), we noticed the
improved performance of such correlated domains. Finally, we
can conclude that, permission knowledge from source domain
is also driving the performance of transfer learning.

VII. CASE STUDY

TKPERM identifies 329 overprivileged applications from
all the different platforms. We have responsibly reported these
applications to their developers. In the following, we will show
a few examples of overprivileged applications from each of
the three platforms, such as Tomorrow’s Forecast on the way
home and YSA email automation from IFTTT, GamingHub
and Private Internet Access from Chrome Extension, Button
Controller and Hue Mood Lighting from SmartThings.

A. IFTTT

“Tomorrow’s Forecast on the way home” is an IFTTT
recipe that helps a driver to get the upcoming weather forecast
while driving back to home from work. To install this recipe,
the user needs to give access to her BMW car. Then, she
will be notified about the upcoming weather forecast during
a particular time of the day. They describe their recipe’s
functionality as “Connect the weather service before running.”
Just by reading the title or description, the user will not expect
that this recipe would access her BMW car because the recipe
does not mention anything relevant in its description and title.

“YSA email automation” is another overprivileged recipe
from the IFTTT platform. This recipe accesses the sensitive
Google contact data, which is not relevant to its description
“YSA email automation New member email tree”. After
installing this recipe, whenever a user adds a new google
contact, the recipe will send out an email notification. Users
would not have expected the app to access their Google contact
information when they install the recipe.
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TABLE VIII: End-To-End evaluation for the overall computation cost of TKPERM. Note that the computation cost include
source model training time and 29 iterations of transfer learning

Plat. Target Source #Doc. in Target #Doc. in Source Time
(hh:mm:ss)

IF
T

T
T

Evernote Coarse Location + Fine Location + Camera 145 839 33:27:03
BMW Lab Send SMS + Record Audio 65 296 14:08:40
Facebook Camera 115 11 22:57:20
Google Calendar Read Calendar + Coarse Location 102 207 15:15:18
Google Contact Read Contacts 49 17 18:40:17

C
hr

m
. Geolocation Fine Location + Coarse Location + Read Contact 138 845 07:37:28

Proxy Send SMS + Fine Location 123 921 06:54:01
Content Settings Fine Location + Read Contact 58 652 09:42:45

Sm
ar

t
T

hi
ng

s Lock Write Setting 30 31 03:47:59
Motion Sensor Read Contact 60 17 04:09:44
Switch Send SMS + Read Calendar 153 302 14:11:08

TABLE IX: Performance comparison of two different word
embeddings (one is built from source platform, while the other
the one is from target platform) while training the target model.

Word Embedding
Plat. Perform. Target Source

IFTTT F1 score 86% 91.83%
Improv. - 5.83%

Chrome F1 score 88% 89.13%
Improv. - 1.13%

Smart
Things

F1 score 85% 89.1%
Improv. - 4.1%

B. Chrome Extension

“Private Internet Access” is a popular extension on the
Chrome platform with more than 170,000 users. It helps to
encrypt user network traffic and keeps them protected while
connected to the internet. They protect the user by webRTC
(real-time web communication) blocking, sorting the gateways
by latency. To install this extension in the Chrome browser,
user needs to allow the Content Settings permission, which
is the ability to “Change your settings that control websites’
access to features such as cookies, JavaScript, plugins, ge-
olocation, microphone, camera, etc.” according to the official
document. TKPERM detects this extension as overprivileged
as its access to sensitive data like cookies, geolocation, mi-
crophone, and camera without clear justification. We have
received some initial, relatively positive feedbacks from this
extension’s developers—they partially acknowledged our issue
and we are still in the process of talking with them regarding
a possible solution.

“GamingHub” is another popular extension on Chrome
platform with over 20,000 users. It enables user quick &
elegant access to some of the most popular web games to
date. It does so by displaying them as quick access links
on browser’s New Tab Page. TKPERM detects this app as
overprivileged because of its access to user’s physical location
without any links to its described functionality of displaying
web games. It is worth noting that many other permissions,
such as “Read and change all your data on the websites you
visit” and “Read and change your browsing history”, of the
extension, are also overprivileged.

C. SmartThings

“Button Controller” is a smartapps from SmartThings
platform. The functionality of this app is to “control devices
with buttons like the Aeon Labs Minimote”. This description
reflects that it will operate like a switch that can control devices
by turning on/off. Unfortunately, there does not exist anything,
neither in their title nor in description, mentioning that they
will also access the “Lock” permission. Interestingly, if a user
allows all the permissions of the app, which are switch, lock,
music player, and alarm, she grants access to the app in both
locking and unlocking her door, which is fearsome.

“Hue Mood Lighting” is another overprivileged application
from SmartThings platform. From the description listed as
“Sets the colors and brightness level of your Philips Hue lights
to match your mood”, it is clear that this application will
change the color and brightness of lights. TKPERM detects
the application as overprivileged as it is requesting permissions
for accessing motion sensor without any clear justification. It
is worth noting that the application also requests many other
unnecessary permissions, such as contact sensor, acceleration
sensor, switch, presence sensor, smoke detector, water sensor,
and button, posing even a greater threat.

VIII. DISCUSSIONS & LIMITATIONS

When choosing targeted platforms, we selected popular
platforms with third-party applications because the overprivi-
leged problems in these platforms would have more impacts
on the users. Currently, two of our selected target platforms
(IFTTT and SmartThings) are both in the domain of IoT. How-
ever, we have Chrome Extension as another target platform
which works very differently comparing to these IoT platforms
and the original domain Android platforms. This justifies that
TKPERM does not just work for to mobile and IoT spaces.
In the future, we plan to include more target platforms such
as - SDN Controller, VR (Virtual Reality) applications when
these platforms gain more popularity and have more third-party
applications.

On one platform during our experiments, we studied some
of the most popular and security-sensitive domains that are
highly representative to the platforms like IFTTT, Chrome
Extension, and SmartThings. The rest of the domains are either
not very important or lack enough data.
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Our current detection of overprivilege is based on the
mismatching of privacy implications in apps’ descriptions and
their permission requests. The reason is that, if apps request
permissions irrelevant to the functionality described in their
descriptions, they might get access to information which users
did not expect them to access. We assume that users will read
an apps’ titles and descriptions to make the app installation
decision. It is an another interesting topic to study users’
decision making processes for app installations. Besides, the
scope of the paper is to check the unexpected permission
requests that are not associated with apps’ functionalities.
It is another interesting research question to check further
how apps use these unexpected permissions. For example,
when source code or binary of an app is available, static and
dynamic analysis of the app can help understand how the app
is managing data and controlling other devices.

One interesting property of TKPERM is that our model,
unlike some prior work [51], still has a high accuracy on
applications with short descriptions. For example, TKPERM
can correctly correlate short sentences with permissions, such
as “Turn cameras on when I am away”, “Add Google Contacts
to a Spreadsheet”, and “Weather for your location”. This
phenomenon is especially prominent on IFTTT platform as
almost all the descriptions are very short compared to those
on other platforms. We believe that there are two reasons.
First, our model is transferred from the Android platform,
which has abundant training data. Second, most short sentences
are concise, i.e., with enough information for the correlation
purpose.

IX. RELATED WORK

In the following, we first describe previous studies of
applying transfer learning at the natural language processing
and computer vision fields in Section IX-A. Next, we present
existing studies on permission-based access control, such as
these using program analysis and natural language processing,
in Section IX-B.

A. Transfer Learning

In Computer Vision, transfer learning is widely used from
general to task-specific cases [55]. In addition, most of the
works achieve good performance over the target model just
by transferring the first few layers of the source model [29],
[46]. Recently, researchers working with language modeling,
sentiment analysis, question-answer modeling are adopting
transfer learning in NLP domain [23], [39], [42], [56]. There
are several ways to do the transferring process, including-
reusing instances from source [13], multi-task learning [25].
A commonly used approach is to pretrain embeddings that
capture the contextual information which is used as different
features or with the intermediate layer’s input [12], [15], [38].

Following the same criteria, we consider our word em-
bedding reusing process as part of the Transfer Learning
methodology. In contrast to the existing transfer learning work
in NLP domain, none of the previous work captures the
security and privacy context from the textual data. TKPERM
extracts the security and privacy knowledge from one domain
and helps to identify the overprivileged applications in a new
target domain with a small scale fine-tuning data.

B. Permission Based Access Control

In mobile and IoT platforms, permission-based access
system has received a lot of attention by the research com-
munity [9], [17]–[19], [32], [48], [54]. Rahmati et al. ex-
plored the benefit of context-specific access control in Android
platform [41]. Whereas, Acar et al. investigated the failure
of the current concept of permission granting system [7].
Based on user study on Android platform, Backes et al.
prioritized contextual integrity for the design of the permission
system [52]. Researchers have also investigated overprivileged
application in IoT platforms [24] from both programming and
description analysis perspective. Fernandes et al. built a static
analysis tool to evaluate overprivileged application [20].

In the access control area, the closet line of work to
TKPERM is NLP-based analysis to detect overprivilege issues
by analyzing descriptions. Previous works have used NLP tech-
niques to conduct privacy & security analysis under different
situations such as mobile apps [31], [36], malware [47], privacy
policy [28], [44], vulnerability in IoT applications [21], [33].
For mobile platform, WHYPER [37] and AutoCog [40] also
addressed this overprivileged problem. However, to protect
the user from the overprivileged application, it becomes com-
paratively difficult for IoT platform compared to the mobile
platform due to the privacy implications of physical context
in IoT platforms. Tian et al. redefined the overprivilege to be
more user-centric and captured the corresponding problem in
SmartThing platform [49].

To the best of our knowledge, most of the previous research
in this area only study one or two systems, which cannot be
easily extended to other platforms. In comparison, TKPERM
is a general framework for detecting app overprivilege across
many different platforms, including- mobile, IoT, and web
browser spaces. Thus, we needed to extract common charac-
teristics among all the overprivileged applications from all the
different platforms. Compared to previous papers, TKPERM
enables using the existing knowledge to identify the overpriv-
ilege problems in different platforms with small scale data.

X. CONCLUSION

Permission-based platforms are popular and diversified,
ranging from Android to Chrome extensions to IFTTT. One
critical yet open task on these permission-based platforms is
to detect overprivileged third-party applications, which have
access to private user data. Prior works have studied and de-
signed permission correlation system that connects permission
with third-party applications’ descriptions. However, all the
prior works can only be used on a certain platform, i.e., the
emergence of a new platform requires tedious and expensive
efforts to have high-quality and large amount of labeled data.
Moreover, it will require corresponding manual efforts in
building and tuning models even if the data is labeled.

In this paper, inspired by the success of applications of
transfer learning on images and natural language processing
fields, we design TKPERM, the first transfer-learning system
that transfers the permission knowledge from one platform to
another. Our insight here is that these platforms, though being
different, are user-facing and share many common knowledges,
such as permissions and semantics.

13



We have implemented a prototype of TKPERM that trans-
fers knowledge on the Android platform to three different
platforms, which are IFTTT, Chrome Extension, and Samsung
SmartThings. Our transferred model can achieve an average F1
score of 90.02% with only handful pieces of labeled data. The
transferred model by TKPERM detects 329 different overpriv-
ileged applications, such as Tomorrow’s Forecast on the way
home and YSA email automation from IFTTT, GamingHub
and Private Internet Access from Chrome Extension, Button
Controller and Hue Mood Lighting from SmartThings.
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