
Redefining Web Browser Principals with a

Configurable Origin Policy

Yinzhi Cao, Vaibhav Rastogi, Zhichun Li†, Yan Chen and Alexander Moshchuk††

Northwestern University †NEC Labs America ††Microsoft Research

Abstract—With the advent of Web 2.0, web developers have
designed multiple additions to break SOP boundary, such as
splitting and combining traditional web browser protection
boundaries (security principals). However, these newly gen-
erated principals lack a new label to represent its security
property. To address the inconsistent label problem, this paper
proposes a new way to define a security principal and its labels
in the browser. In particular, we propose a Configurable Origin
Policy (COP), in which a browser’s security principal is defined
by a configurable ID rather than a fixed triple <scheme, host,
port>. The server-side and client-side code of a web application
can create, join, and destroy its own principals. We perform
a formal security analysis on COP to ensure session integrity.
Then we also show that COP is compatible with legacy web
sites, and those sites utilizing COP are also compatible with
legacy browsers.

I. INTRODUCTION

Web browsers have traditionally used the same-origin
policy (SOP) to define protection boundaries between dif-
ferent web applications. According to SOP, a web site origin
in the form of <scheme, host, port> serves as a label for
the browser’s security principals (isolated security domains).
Each origin is protected from other origins in terms of
resource access and usage.

With the advent of Web 2.0, modern web sites place new
demands on browser’s security that SOP was never designed
to handle. Indeed, while intuitively simple, using web site
origins to label browser principals has its limitations. Some-
times, SOP is too fine-grained. For example, contents from
different web site origins (such as Gmail and Google Docs)
may require unrestricted access to each other’s resources, but
SOP prevents browsers from rendering them as one principal.
Other times, SOP is too coarse-grained. For example, it does
not let browsers isolate logically different instances of web
applications hosted on the same server, i.e., when one site
hosts many distinct mashups, blogs, or user profiles, and
it does not enable sites such as an email provider to run
multiple, isolated sessions of the application in the same
browser.

Faced with inflexibility of same-origin policy, web devel-
opers have worked around its limitations with a multitude of
ad-hoc approaches to merge or separate a browser’s security
principal. For example, subdomains may merge with each
other by setting document.domain to a common suffix, a
practice prone to security problems [1]. MashupOS [2] pro-
poses a sandbox tag together with a verifiable-origin policy to
separate content from the same web site’s security principal,
which is particularly useful for mashups. Various cross-origin

communication protocols are proposed [3]–[5] to break SOP
for AJAX’s XMLHttpRequest. However, while recent works
[2]–[6] have studied ways of breaking SOP, they do not define
different labels for those newly generated principals, which
leads to a mismatch between principals and their origins
(security labels). By utilizing the mismatch, an attack can
camouflage the identity of a merged or separated principal
and fool another server or client with the old SOP origin,
the whole process of which is defined as an origin spoofing
attack.

In this paper, we study a new way to label browser se-
curity principals. We propose a Configurable Origin Policy
(COP), in which a browser’s security principal is defined by
a configurable ID specified by client browsers rather than a
fixed triple <scheme, host, port>. Drawing inspiration from
resource containers [7], we let the applications themselves
manage their definition of an origin. That is, COP allows
server-side and client-side code of a web application to create,
join, destroy, and communicate with its own principals. In our
scheme, one browser security principal can involve multiple
traditional (SOP) web site origins, and various content from
one traditional web site origin may render as multiple differ-
ent principals. Fundamentally, COP origins break the long-
standing dependence of web client security on domain names
of servers hosting web content, and offer several compelling
advantages:

• Flexibility. COP-enabled web applications can specify ex-
actly which content from different domains can interact
with one another on the client web browser. For example,
Google may wish to let gmail.com and docs.google.com
access each other’s resources on the client. Moreover, with
COP, we can disable many ad-hoc, error-prone and po-
tentially incoherent workarounds for SOP limitations [1],
such as subdomain communication via document.domain,
while still allowing sites to function correctly. COP also
supports many scenarios that required a separate security
mechanism, such as sandboxing mashups [2], and those
that are not well supported by existing browsers, such as
allowing a site to run different isolated web sessions in the
same browser, all under one uniform framework.

• Consistency. COP-based browser principal defines a new
security label, a configurable ID, to represent its property.
By examining the new label, other web clients and servers
can easily differentiate the principal from old SOP-based
browser principals and other new COP-based principals.

• Compatibility. Because we change the web’s central secu-
rity policy, we undoubtedly face the challenges of deploy-
ment and backward compatibility. To address compatibility,

TABLE I. COMPARING COP WITH EXISTING APPROACHES.

SOP SOP+Additions Other Non-SOPs COP

Flexibility No Yes Partial Yes

Consistency Yes No No Yes

Compatibility Yes Yes Yes Yes

Lightweight-ness Yes No Yes Yes

Security Low Medium Low High

we design SOP to be a special case of our new origin proto-
col, which makes COP compatible and secure with legacy
web sites. COP-enabled web sites also remain compatible
with existing browsers, since we convey our new design in
existing protocols.

• Lightweight-ness. Our modification of WebKit to support
COP is lightweight (327 lines), and our evaluation shows
it has little overhead (less than 3%). Our modifications on
web servers are also small. In examples we studied, less
than ten lines were required to be inserted into existing
server-side programs. To ease deployment, we also built a
proxy that simulates modifications to web application code,
and evaluated COP.

• Security. COP mitigates SOP specific attacks such as cross-
site request forgery [8], and recently-discovered cross-origin
CSS attacks [9]. For COP specific attacks, such as leaking
the configurable ID (COP security label) through a care-
less programmer’s mistake or an open HTTP connection,
we adopt two corresponding defense mechanisms, i.e., de-
faulting safe behaviors and transmitting IDs in an HTTPs
channel. We also show that even if an attacker sniffs the
configurable ID through an open HTTP connection, he
cannot make additional damages through a COP design.
Furthermore, we perform a formal security analysis by
adopting and modifying an Alloy [10] web security model
proposed and written by Akhawe et al [11]. The session
integrity is ensured given the scope and the attack model.
All details are in Section V.

Contributions. We are making the following contributions:

• Configurable Origin Framework (COF, referring to mod-
ifications necessary to support COP on web clients and
servers) is the first unified framework to merge and sepa-
rate web browser principals at both client and server side.
No other approaches can achieve both functionalities at the
same time.

• We are the first to propose and solve origin spoofing
attacks. We define a new label in COF so that there is no
confusing label for a merged or separated principal.

• COF is with low overhead compared with existing ap-
proaches in combining principals [12]. For example, when
addressing the sub-domain communication problem [1], in
which two domains completely trust each other, COF with
native object access is 2X faster than libraries built upon
postMessage channel [12].

II. MOTIVATION AND RELATED WORK

The work is motivated in this section. We present SOP,
SOP plus all the additions, and other non-SOPs, together with
their limitations, in Section II-A, Section II-B, and Section
II-C. A high-level comparison is also shown in Table I.

A. Same-Origin Policy

The same-origin policy (SOP) is an access control pol-
icy defined in a client web browser, which allows only re-
sources from the same <scheme, host, port> origin to access
each other. Although SOP has been a good model with well-
understood security properties, it has been inflexible for many
modern Web 2.0 applications in the following two main sce-
narios.

• Lack of Principal Cooperation. SOP makes it very diffi-
cult for multiple domains to be “combined” into one single
principal as shown in the following two cases. (i) Several
domains, like mail.google.com and docs.google.com, may
be controlled by a single owner who may want to allow
sharing among the domains the owner controls. (ii) Since
AJAX requests obey SOP, web applications cannot retrieve
a URL from a different origin via XMLHttpRequest.

• Lack of Principal Isolation. SOP makes it very difficult for
one domain to be “split” into different principals as shown
in the following two cases. (i) A web site may require
multiple isolated web sessions in one client browser. For
example, a user may want to log in to multiple email
accounts on the same provider site. (ii) To enrich users’
experiences, many web sites embed third-party gadgets in
iframes, such as Google Gadgets, Microsoft Widgets, and
Facebook applications.

B. Existing Additions to Same-Origin Policy

To overcome such well-recognized SOP inflexibility, web
sites resort to a multitude of different approach to “patch”
SOP. They can be classified into three categories.

• Splitting One Single Principal. Various approaches [6,
13]–[17] create a separated environment to isolate differ-
ent web sessions or third-party content at one client. New
iframe tag in HTML5 [18] also supports a sandbox prop-
erty to prevent access from the same origin.

• Combining Multiple Principals at Server Side. Many pro-
posals [3]–[5] have been made to support cross-origin re-
source sharing (CORS). To support more fine-grained server-
side merging, Content Security Policies (CSP) [19] and
CSP-like mechanisms, such as SOMA [20], specifies ac-
cess control policies at server side through HTTP headers
or manifest files. Client browsers will be modified to en-
force those specified policies.

• Combining Multiple Principals at Client Side. Since doc-
ument.domain, which disobeys least-privilege principle, is
insecure [1], Gazelle [21] disables document.domain and
proposes that sites use these existing cross-principal com-
munication channels, such as postMessage. Other work,
such as Object Views [12], layers complexity on top of
cross-principal communication channels to facilitate easier
object sharing.

Limitations of Existing Additions to SOP. Fundamentally,
all these approaches together fix flexibility problems in SOP,
and thus we are showing the limitations of all existing ad-
ditions to SOP as follows: inconsistency, heavyweight-ness,
and insecurity.

malicious.
com

connect.
com

benign.
com

Merged principal

A cross
origin request
from
connect.com

Frame A Frame B

access

What's my name? Malicious.com or
connect.com? How can browsers
and servers distinguish me from
others?

Fig. 1. Origin Spoofing Attack for CORS (A has full access to B through
a JavaScript library over postMessage channel. But this new combined
principal can still send requests as B. What if C - benign.com, trusts B

but not A?).

1) Inconsistency: After existing approaches split or merge
different SOP principals, unlike traditional SOP principals
with the fixed triple (<scheme, host, port>) as security labels,
those newly created principals do not own such labels. When
browsers or servers check the security label of a principal,
they can only inspect the old SOP label, which we call a mis-
match between the principal and its security label (origin). In
particular, an attacker can utilize the mismatch to camouflage
a principal’s identity and then fool a server or a browser
with SOP origin, which is defined as an origin spoofing
attack. We present the mismatch and its corresponding origin
spoofing attack from two scenarios, namely, for a separated
principal and a merged one.

First, there is a mismatch between a separated principal
and its origin. For example, as supported by the new iframe
feature in HTML5 [18], a.com can be separated into a gadget
G1 (a.com/benign) and another gadget G2 (a.com/malicious)
by specifying a sandbox property. In this case, G1 and G2
shares the same SOP origin but have different security prop-
erties from a.com.

A concrete origin spoofing attack utilizing this HTML5
feature is shown below. Say, for example, three frames, In-
tegrator I (top), Attacker Frame A (middle) and Gadget G1
(bottom), are nested. Barth et al. [22] shows that if G1 sends a
message to I , the attack frame A can navigate its child frame
G1 to a malicious one to receive the reply from A. Therefore,
all the up-to-date browsers check SOP origin of target frame
in postMessage. However, after the HTML5 feature splits
one single principal a.com into G1 and G2, the attacker can
navigate the benign gadget G1 to a malicious one G2 in the
same SOP origin a.com, which is posted by the attacker. The
browser only checks the SOP origin (<scheme, host, port>)
of G2 that is the same as G1 and thus the attack succeeds.

Secondly, there is a mismatch between a merged principal
and its origin. For example, when Principal A from malicious.
com is merged with another Principal B from connect.com
by Object Views [12] or a similar approach built on top of
postMessage to achieve full transparent object access, the
merged principal AB actually represents both malicious.com
and connect.com. However, AB does not have a new origin
to represent its new property, which leads to origin spoofing
attacks and privilege escalation.

A concrete example of origin spoofing attacks is shown
in Figure 1. In a merged principal of A (connect.com) and

B (malicious.com), A can ask B to send a cross-origin re-
quest with the origin connect.com to a third party server,
say benign.com. Benign.com cannot recognize the request
is actually from a merged principal AB consisted of both
malicious.com and connect.com, since servers only check ori-
gin header or referer header for a cross-origin AJAX request.

In addition, other than origin spoofing attacks, the mis-
match between a merged principal and its origin also leads
to privilege escalation. Suppose frame A from facebook.com
is merged with frame B from yelp.com. Then, B can access
localStorage of the entire facebook.com domain, although B
just wants to have full access to the specific frame, A.

2) Heavyweight-ness: In order to have the same flexibility
as COP, all the additions have to be deployed upon current
browser. The overhead is accumulated together. In particu-
lar, when two principals completely trust each other, e.g.,
ads.cnn.com and www.cnn.com, merging such two principals
by a JavaScript library built upon postMessage channel [12]
is heavyweight. We illustrate the performance degradation
from two aspects, namely, in object access, and in merging
more than two principals.

First, object accesses in two principals merged by tech-
niques like Object Views are two times slower than native
DOM accesses even with native JSON support [12]. That
is due to that objects are serialized into JSON representa-
tion, transmitted through postMessage channel, and finally
de-serialized back to objects.

Secondly, the performance decreases when the number of
merged principals increases. For example, a principal from
Twitter needs to join another principal merged from Yelp and
Facebook. The Twitter principal needs to check and merge
with both original principals separately with two postMessage
channels. This becomes a serious scalability problem as the
number of sites that want to communicate grows.

3) Insecurity: The usage of document.domain disobeys
the least-privilege principle and can be insecure, as shown
by Singh et al. [1]. Instead of document.domain, as shown in
Object View [12] and Gazelle [21], web sites can use libraries
over postMessage to facilitate communication. However, the
authentication process through postMessage is often not used
correctly even on popular web sites from reputable vendors,
including Facebook Connect [23] and Google Friend Connect
[24], as shown by Hanna et al [25].

C. Non-SOP Origin

As discussed in Section II-B1, additions to SOP are fun-
damentally inconsistent with SOP. In this section, we intro-
duce previous attempts of defining non-SOP origins.

1) Finer-grained Label - (SOP + Something): A simple
way of defining a non-SOP origin is to use SOP plus some-
thing. Current HTML5 specification [18] defines an origin as
<scheme, host, port, optional extra data>. In history, there
are several ways to define optional extra data, such as path
[26]–[28], public key infrastructure [29, 30], ring [31], and
capability [32].

originID

(OID1)

&path

Client

Principal with

originID

(OID1)

a.com

Principal with

empty originID

URL request

with empty

originID

Principal

with originID

and PSL

Principal

with originID

and PSL

Two Principals

with different

originID and the

same PSL

Partition

a Small

Portion

inside

Assign the value

of originID

(a) Creation of Principal

from Scratch

(b) Creation of Principal

from Another Principal

a.com

Server

Fig. 3. Creation of Principal.

Limitations of Finer-grained Label. Labeling principals by
finer-grained labels (< scheme, host, port, optional extra data
>) has the following inflexibility.

• Lack of Support for Merged Origins. <scheme, host, port,
optional extra data> cannot represent merged origins. For
example, a finer-grained origin cannot represent a principal
merged by frame A from a.com and frame B from b.com
through postMessage channel.

• Lack of Client-side Creation. Host and port in SOP triple
are defined by web servers. When client browsers need
to create a new origin for an iframe, they have to send
a request to the server and wait for the round-trip delay.
Furthermore, in offline mode that is often supported by
many modern web applications, servers are not reachable
to assign new origins.

2) Verifiable Origin Policy - Not a New Label: MashupOS
[2] proposes a new origin policy called the verifiable origin
policy (VOP). “A site may request information from any other
site, and the responder can check the origin of the request to
decide how to respond.” This is a great proposal that is also
adopted in COP.

However, regardless of name similarity, VOP is orthog-
onal to either SOP or COP. In both SOP and COP, a web
site needs to check the origin (SOP origin or COP origin) of
the request from the client browser. VOP does not define a
new label (origin) but instead stress the fact that origin needs
to be checked at server side. In particular, MashupOS cannot
merge two principals at client side, like in Facebook Connect
[23] case and sub-domain communication.

III. DESIGN

A. Concepts in COP

Configurable Origin Policy (COP) abandons SOP, disal-
lows document.domain, and adopts a new origin policy. COP
requires small modifications on both the client browsers and
the server, as shown in Sections IV and VI-A. Yet, COP is
compatible with both legacy browsers and legacy web servers
as demonstrated in Section IV-E. In this section, we proceed
to introduce several concepts fundamental to COP.

Resources. Resources represent contents inside client side
browsers and web servers. Examples of resources from the
server are HTML files, images, script files, etc. Examples of
resources from the client are display, geolocation, and so on.
Resources may be processed to generate further resources.
For example, DOM is produced by rendering HTML files
and modified by JavaScript code.

Principals. The concept of a principal, as borrowed from
operating systems, in the context of web browsers is well
discussed in previous work [2, 21]. It is an isolated security
container of resources inside the client browser. Resources
inside one principal are trusted by the principal itself. Re-
sources outside principal X are not trusted by principal X
but are trusted by the principal that the resources belong to.
A principal is the atomic trustable unit in the browser.

We extend this concept in COP, where a principal is an
abstract container that includes certain resources from both
clients and servers with certain properties. A COP principal
contains two parts, one on the server and the other on the
client. The server-side’s part of the COP principal is a worker,
a thread or a process or a part of it, which serves the client.
The client-side’s part of the COP principal is what comprises
a typical definition of a principal in a browser, an isolated
container that is used to deal with contents from the server.
For the rest of the paper, “principal” will refer to the COP
principal in general.

Origins. An origin is defined as a label of a principal. Two
principals that share the same origin will share everything
between each other, which means they are essentially one
principal. Two principals with different origins are isolated
from each other. They can only communicate with each other
through a well-protected channel.

OriginID. An originID is a private randomly-generated
identifier used to annotate the origin of a principal. The
originID is only known by the principal who owns it. Other
principals cannot acquire the originID of principal X unless
being told by principal X itself. In this sense, an originID is a
capability to manipulate the principal it represents. OriginIDs
are made arbitrarily hard to guess.

There are three reserved values of originIDs: empty, de-
fault, and secret. (i) The empty as a value of originID, spec-
ified by the client browser only, denotes a principal not asso-
ciated with any content (hence the adjective empty). And the
server will assign a value for the originID of such a principal.
(ii) The default as a value of originID, denotes it is the same
as the originID in current principal (both clients and server
side included). (iii) The secret as a value of originID, denotes
that the value of current principal’s originID is not revealed
by the owner.

Each resource in a principal will be labeled by an orig-
inID. With the originID, the client-side browser will decide
in which principal to render the resource.

PublicID. A publicID provides a public identifier for a princi-
pal using which other principals can address this principal. It
does not act as a capability like the originID to manipulate the
principal it identifies. The publicID is designed to be publicly
known. The browser maintains a table of correspondence of
originIDs and publicIDs.

Principal’s Server List (PSL). For each principal, the prin-
cipal’s server list (PSL), visible1 to the users, is a list main-
tained by the browser to record all the servers or part of them

1One can adopt similar approaches in making the status of HTTPs
certificate more noticeable by users for PSL.

COPSOP

a.com b.com c.com

a.com

originID=1

b.com

originID=1

c.com

originID=2 originID=3

d.com

originID=4

Principal

A

Principal

B

Principal

C
Principal A Principal B Principal C Principal D

Server

Client

Fig. 2. Content-to-Principal Mapping in SOP vs. in COP (COP’s core idea, and originID is simplified for easy understanding).

Server

(a) Request Another Web Site for Joining its Principal

a.com b.com

Content with the same originID

and path (/ by default)

Step One Step Two

Server

Can I join?

(c) Join Another Web Site’s Principal

a.com b.com
Yes,

send originID

Step One Step Two

Client

Client

Reject

Case 3

Case 1

Principal 2

No.

Step Three

Case 1

Case 2

Content with

default originID

external

content

Case 2

PSL: http://a.com/;

http://b.com/

PSL: http://a.com/

PSL: http://a.com/

Server

secret

originID

Step One

Client

Content with

default originID

external

content

PSL: http://a.com/

Case 1

Case 2 Reject

(b) Request Another Web Site for Joining without Revealing originID

Step Three

Step ThreeStep Two

PSL: http://a.com/; http://b.com/

msg through

postMessage

channel

originID

and PSL

PSL:

http://a.com/ PSL: http://b.com/

a.com b.com

Fig. 4. Joining another Principal (notice that one server acquires originIDs
of other principals through clients not directly from other servers).

that are involved in current principal by operations described
later in Section III-C. Each server in the list is represented
in the format of <scheme, host, port, path>. For example,
http : //www.a.com/part1 denotes that all the resources
and sub-directories under part1 of http : //www.a.com are
participating in current principal. By default, in order to align
with SOP, if not specified by the server, the default path will
be /, denoting that the PSL includes the whole SOP origin.

Note that PSL, which varies according to participated
servers or part of them, is a list showing a principal’s property,
but not an access control list.

B. Configurable Origin Policy (COP)

With all these definitions, we can define our new origin
policy, the configurable origin policy, as follows.

A principal (both server and client parts included) can
configure any of its resources to an arbitrary but unique
origin.

This means that a principal can change its contents’ origin
to an arbitrary value. The program at the server side of the

principal can configure its originID. For example, the server
may send its content to clients together with an originID. The
program at the client side can also configure its origin. For
example, a client-side JavaScript program may change the
originID of a document tree.

On server side, unlike the SOP model, in which the content-
to-origin mapping is fixed for all contents from the same
<scheme, host, port> tuple, in the COP model, we allow
the principal to configure its own origin. An SOP origin can
be split into several COP origins. As illustrated in Section
II-B, mashups and different web sessions are all examples.
Similarly, multiple SOP origins can be combined together in
configurable origins. For example, Google Docs and Gmail
may want to share code or data dynamically, and thus they
are better put in a single principal. Also, as illustrated in Sec-
tion II-B, www.cnn.com and ads.cnn.com can be combined
into cnn.com origin. Figure 2 clearly shows the differences
between SOP and COP content-to-principal mapping.

On client side, the principal is also given more freedom.
In the classical SOP model, the switching of origins is not
allowed at the client side. document.domain reduces this re-
striction only a little, which may not be enough for some
applications, and that too at the cost of possible malicious
access to the principal. For example, a.com and b.com cannot
share the same principal, even when using document.domain.
Because in the COP model, the origin ID of a principal is not
tied to its location, the origin of a principal may be arbitrarily
decided at the client side.

C. Operations on a COP Principal

We define the following operations on a COP principal.

Creating a Principal. A principal can be created by a server
or a client by giving a new originID, as shown in Figure 3.

Figure 3(a) illustrates the client requesting a URL together
with an empty originID to a.com and the server sending
the corresponding content with a new originID. In order to
have multiple separate sessions from the same server, say
for signing into multiple Gmail accounts, the server sends
different originIDs to the client for different sessions. Given
the different originIDs, the client browser renders the corre-
sponding contents using different principals.

Clients can also create a principal as shown in Figure
3(b). A principal can assign a resource belonging to itself a
new originID value to place this resource in a new principal.
The child principal will inherit the PSL of its parent. Mashup
isolation problem can also be solved using such client-side
operations. Web integrators at client side can create different
principals for content from different (distrusting) third par-
ties by giving different originIDs based on the information
provided by the server.

Joining an Existing Principal. Resources from one principal
may wish to collaborate with, or join, resources from another
principal. The joining process is discussed below.

As shown in Figure 4(a), a web site a.com may request
to use a resource hosted on a different web site b.com under
a.com’s principal — a.com can ask b.com to allow the re-
source to join a.com’s principal. Client browser supplies web
site a.com’s originID and PSL when requesting that resource
from b.com. If b.com agrees that this resource is allowed
to join a.com, b.com will send the resource to a.com and
attach a.com’s originID to it (case one in Figure 4(a)), and
then client browser adds b.com plus the path specified by
the server to the PSL of the current principal. If b.com does
not want to participate in the principal actively, it will send
the resource back with default originID (case two in Figure
4(a)), and then client browser will not change the PSL of the
current principal. If b.com refuses to let this resource join
a.com, it will fail to respond with the resource (case three in
Figure 4(a)).

This join operation can be used for document.domain
problem. For example, when the client has a www.cnn.com
principal and sends a request to ads.cnn.com with the prin-
cipal’s originID and PSL, ads.cnn.com will agree to join the
existing principal with the same originID. On the other hand,
a bank web site will generally not join an existing principal
of another web site.

Second, as shown in Figure 4(b), a web site a.com may
request to use a resource hosted on a different web site b.com
under a.com’s principal without telling b.com its originID.
Client browser supplies a secret originID when requesting
that resource from b.com. If b.com agrees to provide that
resource, it will send the resource with a default originID.
Otherwise, b.com can reject that request the same as case
three in Figure 4(a). In this case, no matter b.com agrees or
not, it will not be participating in that principal but just pro-
vide external resource. In other words, b.com cannot control
the principal.

This pseudo-join operation can be used for supplying
cacheable contents or those from content distribution net-
works. For example, a.com may request a cascading style
sheet (CSS) by this operation since a.com does not want to
reveal its originID to b.com and meantime b.com does not
care which web site is using this style sheet.

Third, as shown in Figure 4(c), a resource or a principal
from a.com may join another existing principal from b.com.
The resource or principal from a.com acquires the originID
of the other principal from b.com it wishes to join via an
auxiliary communication channel (postMessage channel). By
changing to this originID, the resource or the principal from
a.com joins the other principal represented by this originID.
And the PSL of the merged principal will also be the merging
of those two principals’ PSLs.

This case may be useful for collaboration among web
sites. For example, Facebook Connect can be implemented
with the join operation. A Facebook principal at the client
browser may want to share information with another web site,
say Yelp. The Facebook principal will create a new principal

that is used for sharing and will then give the new originID
to the other web site so that the other web site can join that
newly created principal.

Communication inside a Principal. For client and server
communication, accompanied by current originID, the com-
munication with a server in PSL will be considered as a
communication inside the current principal. The communi-
cation with a server not in PSL will always considered as
a join operation (therefore attached with originID and PSL).
Details can be found in Section IV-D1.

Pure client-side communication inside a principal is un-
restricted. Any resource can freely access any other resource.
For instance, one JavaScript object can call the methods of
another object.

Communication between Principals. Communication across
principals can be achieved with explicitly defined and regu-
lated channels. Namely, we can use the postMessage channel
and its communication protocols [22].

Destroying a Principal. Principals may destroy themselves
or be destroyed by a user. For example, a user may close all
the tabs and windows belonging to a principal and in this
way destroy it.

IV. IMPLEMENTATION

Configurable Origin Framework (COF) requires both client-
side and server-side modification. The server-side modifica-
tion requires the server to send each resource together with
the corresponding originID to the client. The client side needs
to recognize the originID and put this resource into the cor-
responding principal.

Server-Side Modification. In our implementation, we mod-
ify the web application at server side so that resources in one
web session will be allocated into one principal at client. This
means the content-to-principal mapping is switched from SOP
origin per principal to web session per principal. The concept
of a session already exists in the present web, and denotes
an information exchange process between the server and the
client [33]. For example, when a user logs into his account on
a web service, the web site sends a cookie to the user as an
identity for further communication. Later on, any communi-
cation with that cookie is inside this session. The web server
will check the identity cookie and reject requests without
that cookie. In our paper, we adopt the existing concept of
session. We will put resources of the same session2 from the
server into the same principal. Our server-side modification
is discussed in Section VI-A. The rest of this section mainly
deals with client browser modification.

Our client-side prototype implementation is based on We-
bKit [34], a popular open-source web browser framework.We
demonstrate COF with the Qt browser that comes with We-
bKit. This browser uses WebKit’s WebCore and JavaScript-
Core. We insert 327 lines into WebKit to implement COF.
The source code can be downloaded from configurable origin
policy google code project [35].

2Notice that originIDs do not substitute session cookies, which still
perform the same functionality as before.

bool SecurityOrigin::canAccess(const

SecurityOrigin* other)const {

...

if (m_protocol == other->m_protocol) {

if (!m_domainWasSetInDOM

&& !other->m_domainWasSetInDOM){

if (m_host==other->m_host&&m_port == other->m_port)

return true;

} else if (m_domainWasSetInDOM

&& other->m_domainWasSetInDOM){

if (m_domain == other->m_domain)

return true;

}

}

return false;

}

(a) Access Control in SOP

bool SecurityOrigin::canAccess(const

SecurityOrigin* other) const {

if (m_originID!="" || other->originID()!="") {

return m_originID == other->originID();

}

else {

SOP Access Control

}

}

(b) Access Control in COP

Fig. 5. Access Control Implementation in SOP and COP.

In the rest of this section, we present originID and publi-
cID generation, and WebKit COP enforcement respectively in
Section IV-A and IV-B. Then, we discuss the association of
originID with different resources in Section IV-C and IV-D.
Finally, Section IV-E presents compatibility issues.

A. OriginID and PublicID Generation

The representation of originID is similar to that of a
session cookie: a long and random string. We generate a 128-
bit random number by CSPRNGs (cryptographically secure
pseudorandom number generator) [36] and encode it as the
value of an originID.

For a principal X , a publicID is an identifier which can
be used by other principals to refer to principal X . Once a
principal is created, a unique publicID is assigned to the prin-
cipal automatically by the browser. The browser maintains a
table of publicIDs and its corresponding information, such as
the domain name and the description from the principal itself.
Other principals can use a new API getpublicID(domain
name), which returns a list of publicIDs belonging to the
domain, to query this table for the information,.

B. Enforcing COP

Access control methods or other isolation mechanisms are
required to protect the boundary of a principal. In COF, to
put contents from the same COP origin into one principal we
need to replace SOP-based access control mechanisms with
those based on COP.

SecurityOrigin is defined as a class in the WebKit
implementation for controlling access over all domains. It
adopts SOP and Figure 5(a) shows its core function. In COF,
we modify it to employ originIDs for access control. The key
part of new design is shown in Figure 5(b). Resources labeled
with the same originID belong to the same principal and can

HTTP Request HTTP Response HTML

HTTP/1.1 200 OK GET /c.htm HTTP/1.1 <iframe originID=∗>

originID: ***** originID: ****** </iframe>

PSLPath:/part1 PSL: http://a.com/

(a) OriginID and PSL with HTTP (b) OriginID with HTML

Fig. 6. Association of originID and PSL with Different Resources.

freely access each other. Since only small modifications are
required for COP on WebKit, we believe it will be relatively
easy to adopt COP for other browsers as well.

C. Association of OriginIDs with Resources

A principal is associated with a container for resources.
We classify resources into two categories, resources from
servers and dynamically-generated resources. Each resource
belongs to one principal, implying that each resource may be
associated with an originID.

1) Origins for Resources from Servers: Resources ob-
tained from servers, such as HTML, images, and some of
plugin data, are mostly transmitted via HTTP protocol3. As
shown in Figure 6(a), we add a header, named originID, in
the HTTP protocol to indicate the originID of the resource.
When the browser sees this field, it will add this resource to
the principal with this originID.

In addition, HTML can be used for originID association.
For example, the content inside an iframe tag may belong
to another principal but this cannot be represented via HTTP
headers alone. As shown in Figure 6(b), for some HTML tags
that will cause an HTTP request or can create a document
object4, we can have an originID different from the one of
the main document. Since HTTP headers, HTML tags, and
HTML attributes are designed to be extensible, our new mod-
ifications are completely compatible with existing browsers;
they simply get discarded in existing browsers.

Some content, such as some plugin data, is not trans-
mitted by HTTP protocol. Such content belongs to the prin-
cipal which requested it. For example, a Flash program in
a Flash plugin creates a TCP connection. Later, contents
transmitted in this TCP connection will have the same ori-
gin as this Flash program. The Flash program belongs to
dynamically-generated resources, which will be discussed in
Section IV-C2. In case the plugin program cannot be trusted,
the whole plugin may be isolated in a different principal by
assigning a different originID. We leave it as our future work
to apply COP to plugin data.

2) Origins for Dynamically-Generated Resources: Dynam-
ically generated resources refer to DOM, dynamic JavaScript
objects, computed CSS, etc. These resources are derived from
resources from servers. For example, DOM is generated from
HTML parsing and JavaScript execution. There are two types

3HTTPS can be dealt with similarly because overall the confidentiali-
ty/integrity of the transfer channel problem is orthogonal to the problem of
defining security principals, and can still use host names.

4Assigning a new originID is useful for only a few HTML tags, the ones
that send another HTTP request or contains another DOM, such as img
and iframe. For other HTML tags, because browser’s access control is not
fine-grained upon each DOM node, we cannot isolate them.

<script type="text/JavaScript">

//Inheritance--create an iframe with the same originID

(1) ifr1=document.createElement("iframe");

(2) document.getElementById("div1").appendChild(ifr1);

(3) ifr1.contentDocument.write("....");

//Dynamic Generation

// --create an iframe with a different originID

(4) ifr2=document.createElement("iframe");

(5) document.getElementById("div1").appendChild(ifr2);

(6) ifr2.contentDocument.write("....");

(7) ifr2.contentDocument.originID=generateOriginID();

</script> <div id="div1"> </div>

Fig. 7. Origins For Generated Resources.

TABLE II. DEFAULT BEHAVIORS FOR HTTP REQUESTS

(COMPATIBLE WITH SOP).

HTTP Requests Default Attached OriginID

Type a URL empty originID from a new empty principal

HyperLink URL in PSL: originID from the current principal

such as URL not in PSL: empty value

Scripts or Stylesheet secret originID

Embeded Object, like URL in PSL: originID from the current principal

iframe and img tag URL not in PSL: empty value

XMLHTTPRequest URL in PSL: originID from the current principal

URL not in PSL: secret originID

of policies for association of originID with these resources:
inheritance and dynamic generation.

Inheritance is the default enforced policy. As shown in
Figure 7, we create an iframe ifr1, which inherits the same
originID from the HTML document (line 1). However, an
originID can also be specified dynamically. As shown line 4
of Figure 7, the iframe ifr2 is created and is given a unique
but different originID value through generateoriginID() (line
7).

D. Transfer of Resources

Resources are transferred from the server to the client
and across browser principals. In this section, we describe
how COF secures client-server communications and how the
browser mediates cross principal communications.

1) Client-server Communication - HTTP: As shown in
Figure 6(a), the HTTP exchanges between the server and
client are associated with an originID. As in the spirit of
verifiable origin policy [2], the originID of the request from a
principal does not decide whether the corresponding response
is accessible to the principal, and this principal is allowed to
access the response only if the response carries the same
originID as the principal’s originID or default originID. (For
default originID in the response, if the principal is empty,
client browser will generate a new originID.) Now we discuss
how the originID is used in the communication.

HTTP Request. HTTP requests in different operations have
different behaviors. (i) Communication inside the current
principal (a request to a server in PSL): launched from the
current principal with its originID. (ii) Join operation (a
request to a server NOT in PSL): launched from the current
principal with its originID and PSL (iii) Create Operation
(no matter whether the requested server is in PSL or not):
launched from a different principal with that principal’s orig-
inID.

TABLE III. ORIGINID IN HTTP RESPONSE ACCORDING TO

DIFFERENT HTTP REQUESTS AND SERVER’S DECISIONS.

OriginID OriginID in HTTP Response

in HTTP Join Comm inside Create Cacheable

Request Operation Principal Operation Content

empty N/A N/A New Value default

OID1 OID1 OID1 N/A default

secret N/A N/A N/A default

To achieve those three requests, in COF, a principal can
configure whether an HTTP request is from the current prin-
cipal or a different one by specifying originID such as . However, to be convenient for pro-
grammers and compatible with SOP, the client browser can
also attach an originID for those HTTP requests without orig-
inIDs specified explicitly, as shown in Table II. The default
policy aligns with SOP.

HTTP Response. An HTTP response is generated by the
web server according to the HTTP request received. Based
on different originIDs in the request and operations that the
web server wants to perform, the web server will attach
different originIDs in the response as listed in Table III. For
example, when the web server receives a request with a empty
originID, it will send its response with a new originID and
the client browser will adopt this originID as the originID for
that empty principal.

An Example. Suppose a web page has an iframe <iframe
originID= ”OID1” src=”example.com”>. The browser will
first create a principal with OID1 for the iframe. Then it will
send a request with OID1 to example.com. If example.com
agrees to join the principal, it will send an HTTP response
with header ”originID: OID1”. Therefore, the browser will
render the response inside the OID1 principal. If example.
com does not agree, it will send a 404 HTTP response or
other error messages.

2) Communications between Principals: The postMessage
channel facilitates cross-principal communication at client
side. The usage of postMessage2 is like popup.postMessage2
(”hello!”, popup.publicID); due to the attack in Section II-B1.
While postMessage takes an SOP origin as its second argu-
ment and performs an SOP check, postMessage2 replaces
this with a publicID check. The attack in Section II-B1 is
mitigated because a malicious gadget always has a different
publicID from a benign one.

E. Discussion on Compatibility

We present whether COP feature can be compatible with
existing web servers, existing browsers and new HTML5
features.

Compatibility with Existing Servers. Existing servers don’t
specify an originID in their transmission. However, we can
still be backward compatible with existing servers. We use
a SOP tuple as an originID because SOP can be viewed as
a special case of COP. We can still assign each SOP origin
a principal if originID is not specified. Other COP-enabled
principals are not allowed to switch their originID to any SOP
tuple. At the same time, we need to allow document.domain.
The security of older web sites neither improves nor worsens.

Compatibility with Existing Browsers. There are two pos-
sible options to make COP-enabled servers compatible with
existing client browsers. First, existing servers can detect the
client browser and deliver content accordingly, but this can be
inconvenient. We have taken the second approach to convey
originIDs in a new protocol field that older browsers will
ignore. We have shown earlier in the section how this is
accomplished for HTML and HTTP.

Compatibility with new HTML5 features. Some new fea-
tures in HTML5, such as localStorage and FileSystem, are de-
signed to grant access to a long-term identifier. Those features
can be still supported in COP. Take localStorage for example.
It can be modified to allow access from those principals
with the same PSL. Therefore, a merged principal from both
Yelp and Facebook cannot access the localStorage of pure
Facebook.

V. SECURITY ANALYSIS

In this section, we first analyze possible attacks on COP
and how such attacks can be mitigated. Then, we discuss
whether COP can help defend against existing web attacks,
such as CSRF. In the end, we perform a formal security
analysis based on an existing web security model.

A. COP-Specific Attacks and Mitigation

1) Leaking OriginIDs: OriginID is an essential and secret
identity for a principal. We neet to prevent leaking originIDs.

Protecting OriginIDs. Given the similarity between orig-
inIDs and session cookies, methods of protecting session
cookies can also be used for protecting originIDs.

• Server-side protection: Reusing protection mechanisms
for session cookies. OriginIDs are generated dynamically
and stored safely the same as session cookies on server
side.

• Protection during transmission: HTTPS.
• Client-side protection: (i) Preventing originID access from
a different principal through a sandbox approach [37] or
JavaScript rewriting approaches [38]. (ii) Channel bound
originID. Similar to channel-bound cookies [39], originID
can be made channel-bound too. Even if an attacker ac-
quires a channel-bound originID, he cannot authenticate it
with the server via other connections.

How do we prevent originID leaks by a careless pro-
grammer’s mistake? Two methods are adopted to prevent
leaking originID by a mistake: (i) Defaulting safe behaviors.
As shown in Table II, default behaviors of sending originIDs
are restricted within known servers (if no merging occurs,
there is only SOP server). (ii) Using secret originID. In case
that the programmer does not know how to use originID
correctly, he can use secret originID to prevent originID leaks.

Given two aforementioned protection mechanisms, we be-
lieve a web site will seldom send its originID to a malicious
source by, for example, including third-party content through
iframes in a wrong way. It is the same as the fact that a web
site rarely includes a malicious script directly or carelessly
sends its session cookie to a malicious server.

What if originID is leaked through an HTTP connec-
tion? Let us discuss a scenario where a web site benign.com
is using HTTP and originID can be sniffed. We have the
following two arguments: (i) Overall small chance. (ii) Even
if it happens, there is no additional damages brought by COP.

First, the chance that the contents of benign.com can be
manipulated is small. Clients need to visit benign.com in an
open network such as coffee shop. Then, the attacker needs
to lure the client to visit malicious.com in the same browser
in order to join and manipulate benign.com’s principal.

Secondly, even if those two conditions are satisfied, the
damage an attacker could make is the same as what he could
do from sniffing the network and luring people to visit ma-
licious.com.

• Contents of benign.com can be directly sniffed or acquired
by a sniffed session cookie. Meanwhile, the attacker can
also make changes to user’s contents on benign.com by the
sniffed session cookie.

• If benign.com does not have session cookie, phishing by
altering contents in a merged principal is not different
from the one in pure malicious.com, because after merging,
malicious.com is in PSL, which is easily visible to users
in COF.

What is the security implication for Principal A to give
its originID to Principal B in order to configure Princi-
pal A? It means that Principal A totally trusts Principal B.
For example, ads.cnn.com completely trusts www.cnn.com,
however, they currently use document.domain = ’cnn.com’
to communicate with each other, which is error-prone, as
shown by Singh et al [1]. In COP, A (ads.cnn.com) can give
its originID to B (www.cnn.com).

2) Potential Attacks when Combining SOP and COP:
Interaction of web content following COP and web con-
tent following SOP may lead to attacks. In a web integrator
where all its isolated gadgets are from the same domain,
an attacker might modify a principal with originID back to
a principal with SOP origin by removing the originID, so
that the attacker can access another principal with the same
SOP origin but not the same COP origin. We resolve this
problem by always using COP when either of two principals
is using COP. The originID of a SOP site will be derived
from the SOP triple and hence will be different from every
COP originID. In this case, two principals need to use the
postMessage channel to communicate with each other.

Another attack is to integrate COP web sites with SOP
web sites. For example, an SOP web site is embedded inside
a COP web site using an iframe. COF can deal with this
case because SOP is a special case in COP. If we don’t
find originID specified, we will consider the <scheme, host,
port> to be a special originID which is different from any
other originID specified by COP web sites. COF will always
put contents in the iframe from SOP sites into a separate
principal. We can always differentiate COP and SOP web
sites because COP web sites will always have an originID
HTTP header.

3) Principal Hijacking Attack: Given the similarity be-
tween a session cookie and an originID, the attacks to session
cookies, such as session substitution/fixation [40], also need
to be considered here. Translated to originID attack, a session
substitution/fixation will be as follows.

An attacker M visits benign.com on his own and ac-
quire the originID OID1 for his principal A. The attacker
triggers the client to visit his own web page malicious.com
and set the originID of the malicious principal B to OID1.
The malicious principal B sends a request to benign.com.
Then, benign.com will consider the OID1 to be within the
attacker’s principal A and return contents. Client user will
see a web page from benign.com but controlled by M .

Defense. When the malicious principal B sends a request to
benign.com, since benign.com is not in the PSL of B, the
client browser will ask benign.com to join B with B’s orig-
inID and PSL (malicious.com). Benign.com can recognize
that B is controlled by malicious.com and thus decline the
request.

B. Mitigating Existing Attacks

Cross-Origin CSS Attacks. Cross-Origin CSS attacks were
described recently by Huang et al. [9]. The attacker may
inject some crafted content into example.com using blog posts
or wall posts and then use their site attack.com to import
example.com as a CSS stylesheet. When a user visits at-
tack.com, the confidential information of that user from exam-
ple.com will be stolen. If COF were adopted here, because the
server will check the originID of the principal that sends the
request, example.com will reject the request, thus preventing
attack.com from importing its contents as a stylesheet.

Document.domain Threat. Document.domain threat is de-
scribed by Singh et al [1]. For example, when a web page
from x.a.com sets its domain to a.com, a web page from
y.a.com, which is compromised by the attacker, can access
the resource of that web page of x.a.com by setting its domain
to a.com. This disobeys least privilege, as access control is
relaxed too broadly.

In COF, only web pages that know the originID belong to
the same principal. For the document.domain example above,
even if an attacker compromises y.a.com, he cannot access
any resource from x.a.com in a COP principal because he
doesn’t know the originID at client side.

Cross-Site Request Forgery (CSRF). CSRF is an attack
which forces execution of unwanted actions from an end user
on a web application in which s/he is currently authenticated
[8]. A typical example of CSRF is an img tag such as

<img src = ”http://bank.com/transfer.do?acct=A&amount=1000” width = ”1” height

= ”1” border = ”0”> .

When embedded inside a web page, it triggers browsers
to fetch this link, causing the server to execute the ”transfer”
action. As we can see, there are several steps in CSRF. First,
the link needs to be embedded on the web site. Second, the
browser needs to send the request. Third, the server (the bank
in this case) needs to allow this action. Defenses involve
mitigation at any of the above steps.

Barth et al. [41] have analyzed CSRF and defenses against
it comprehensively. They propose the origin header, which is
similar to the referrer header but without the path and query
parameters so as to ensure user privacy.

In COF, the originID header can effectively play the role
of the origin header. In step three, the web server will use the
originID (sent in step two) to determine if the request orig-
inated from its own principal and thus avoid CSRF attacks
by declining the action from a different principal.

Origin Spoofing Attacks. As discussed in Section II-B, an
origin spoofing attack is launched by a merged or separated
principal using an old SOP origin to camouflage itself. In
COF, we define originID as the new principal’s label, which
can be checked by a client browser or a web server, thus
mitigating origin spoofing attacks.

C. Formal Security Analysis

Background. Akhawe et al. [11] abstract a formal web se-
curity model and build the model based on Alloy, “a model
finder: given a logical formula, it finds a model of the for-
mula” [10]. They apply the model upon five web security
mechanism (the Origin header, Cross-Origin Resource Shar-
ing, Referer Validation, HTML5 forms, and WebAuth), and
discover two known vulnerabilities and three unknown vul-
nerabilities. A recent paper [16] also adopts their model to
find design flaws.

Modeling. We modify their model to switch same-origin
policy to configurable origin policy. The owner property of
ScriptContext points to a COP origin instead of an SOP
origin. All the operations are introduced for COP origin. For
example, a create operation is as follows.

pred createCOPOrigin[aResp: HTTPResponse]{

one originID:COPOrigin |

originID !in

(univ.theReqCOPOrigin&univ.theRespCOPOrigin)

implies {

(aResp.headers&RespOriginIDHeader).theRespCOPOrigin=

originID

}

}

We check the COP origin in each HTTP response to let
the response fit into different principals.

fact COPOriginMatch{

all sc : ScriptContext, t:sc.transactions |

sc.owner =

(t.resp.headers&RespOriginIDHeader).theRespCOPOrigin

or

(t.resp.headers&RespOriginIDHeader).theRespCOPOrigin

= defaultOriginID

}

Experiment Setup. The attack model that we are using is the
web attacker model introduced by Akhawe et al. [11]. The
attacker controls malicious web sites and clients but does not
master the network. Therefore, he cannot sniff or alter the
contents on the network. The Alloy codes of the attacker
model are inherited from Akhawe et al [11].

check checkSessionIntegrity{

no t:HTTPTransaction | {

some t.resp

some (WEBATTACKER.servers & involvedServers[t])

}

} for 5 but 0 ACTIVEATTACKER, 1 WEBATTACKER,

1 COPAWARE, 0 GOOD, 0 SECURE, 0 Secret, 1 HTTPClient

Results. Alloy is not able to find any counterexample by
operations that are not considered by COF, implying that the
session integrity is ensured given the attack model and limited
scope.

VI. EVALUATION

First, we will discuss the practicality of deploying web
applications using COP in Section VI-A. Next, we will eval-
uate COF’s performance in Section VI-B. Then we discuss
the compatibility in Section VI-C. We use a client with a
2.5GHz CPU with 16GB memory, and a server with a dual-
core 1.6GHz CPU and 1GB memory, running Apache-PHP-
MySQL. Both of these machines are on the same local net-
work.

A. Deploying Web Applications

1) Migrating Existing Code: To fully deploy COF, we
need browser support and server-side support. For server-side
support, the server-side application code needs to be modified
to use COF. By modifying several popular web applications,
we demonstrate that such modifications are lightweight and
easy perform.

Proxy Assistance. Because we don’t have control over many
web servers, we designed a COF server-side proxy that me-
diates communication between servers and clients. The COF
proxy, which can be found at [35], adds COF support to
unmodified web sites to demonstrate our idea.

CNN is using document.domain to merge two of its do-
mains: www.cnn.com and ads.cnn.com. When we disallow
document.domain, an advertisement iframe is missing be-
cause the JavaScript access between the main page and the
iframe is denied. When deploying our proxy, and disallowing
document.domain in COF, the CNN web site can still display
its content correctly This demonstrates that COF can achieve
site collaboration without using document.domain.

Server-side Modification. We show how to adopt COF upon
server-side applications and demonstrate the relative ease of
modifying server-side code. We take web applications with
login sessions as an example. The login cookie or session
ID assigned by the server is mapped to a unique originID.
We can reuse the validation of session ID or login cookie
as the validation of originID. We changed one popular web
application − Magento, to demonstrate our approach.

Our example Magento [42] is a top eCommerce software
platform used by more than 60,000 online stores. It is written
in PHP and runs in the Apache, PHP and MySQL platform.
Magento adopts PHP built-in session management. As shown
in Figure 8, we just need to generate a unique originID for
each session ID.

protected function _validate() {

...

if (validation failed) return false;

if (checkPSL()) return false;

if (isEmptyOriginID()) createOriginID();

header(’originID:’.getOriginID(session_id()));

//get originID from sessionID-to-originID mapping

return true;

}

Fig. 8. Modification on Varien.php of Magento. Each originID is mapped
to a session ID. Session ID still takes its role in authenticating users, while
originID is used to differentiate and isolate principals.

0 0.5 1 1.5 2 2.5

x 10
5

0

0.2

0.4

0.6

0.8

1

Loading Time (ms)

F
(x

)

Normal WebKit
COF

Fig. 9. CDF of Loading Time with COF and with Normal WebKit.

2) Utilizing New Features in COP: As an example, we
create a mini web integrator using COP features below.

There are isolated mashups from the same domain in our
web integrator. We create different originIDs for different
gadgets.

<?php

function generateOriginID() { ...

}

header(’originID:’.generateOriginID());

if COPSupportedBrowser() { ?>

<iframe src="..." originID=

<?php echo generateOriginID(); ?> >

</iframe>

<iframe src="..." originID=

<?php echo generateOriginID(); ?> >

</iframe>

...

<?php } else {...} ?>

B. Performance Evaluation

The loading time of web pages under COP is measured
with WebKit modified to support COF and with a COF proxy.
The loading time of web pages under SOP is measured with
unmodified WebKit. We use the time when the request is
made as the starting time of loading a web page and the
time of firing of the JavaScript onload event as the end time
of loading a web page. Alexa top 200 web sites [43] are
evaluated.

Figure 9 shows the results. We compare the cumulative
distribution function (CDF) of loading time under COP to the
one under SOP. The curve is almost the same which means
COF brings little delay. The results are not surprising because
little time is spent in SecurityOrigin checks when compared
to other tasks like rendering, parsing, and JavaScript execu-
tion.

C. Compatibility Evaluation

We use Alexa top 100 web sites and visually compare
the sites rendered with a COP-enabled browser and with an
unmodified browser. For some web pages that require login
(like Facebook), we log in first. We also follow some of
the links on the web page to explore the functionality of
that web page. For example, we search with some keywords
on Google. We interact with many web sites like Facebook,
e.g., by clicking menus, posting messages on friends’ wall,
and looking at profiles of other people. As expected, all the
100 web sites show no difference when rendered with a
COP-enabled browser and when rendered with an unmodified
browser.

VII. CONCLUSIONS

In this paper, we propose COF, which uses configurable
origins that can be dynamically changed by the web server
and its client-side program. We change the traditional way
of content-to-principal mapping and give the client and the
server more freedom of configuring origins. At the same time,
we also face that fact that COF requires both client and server
side modification, which is actually very common among re-
cent and popular web proposals, such as postMessage channel
and new HTML5 iframe tag, due to the fast evolvement of
web applications. Therefore, we believe COF will be adopted
by the community in the future too.

ACKNOWLEDGMENTS

We give our special thanks to Shuo Chen at Microsoft Re-
search for his philosophical advices on the paper, Yi Yang at
Northwestern University for his efforts on the initial version
of the paper, Collin Jackson together with Zack Weinberg
at CMU Sillion Valley for commenting on the draft of the
paper, and all the anonymous reviewers for their thoughtful
comments.

REFERENCES

[1] K. Singh, A. Moshchuk, H. Wang, and W. Lee, “On the Incoherencies
in Web Browser Access Control Policies,” in SP: IEEE Symposium
on Security and Privacy, 2010.

[2] H. J. Wang, X. Fan, C. Jackson, and J. Howell, “Protection and
communication abstractions for web browsers in MashupOS,” in
SOSP: ACM Symposium on Operating Systems Principles, 2007.

[3] W3C Working Draft - Cross-Origin Resource Sharing. [Online].
Available: http://www.w3.org/TR/access-control/#origin

[4] XDomainRequest. http://msdn.microsoft.com/en-us/library/ie/
cc288060(v=vs.85).aspx.

[5] A. Barth, C. Jackson, and I. Hickson. The HTTP Origin
Header - IETF Draft. [Online]. Available: http://tools.ietf.org/html/
draft-abarth-origin-00#section-6

[6] D. Akhawe, P. Saxena, and D. Song, “Privilege separation in html5
applications,” in USENIX Security Symposium, 2012.

[7] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A
new facility for resource management in server systems,” in OSDI:
Symposium on Operating Systems Design and Implementation, 1999.

[8] Cross Site Request Forgery (CSRF) - OWASP. [Online]. Avail-
able: http://www.owasp.org/index.php/Cross-Site Request Forgery
%28CSRF%29

[9] L.-S. Huang, Z. Weinberg, C. Evans, and C. Jackson, “Protecting
browsers from cross-origin CSS attacks,” in CCS: Conference on
Computer and Communications Security, 2010.

[10] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
The MIT Press, 2006.

[11] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and D. Song,
“Towards a formal foundation of web security,” in CSF: the Computer
Security Foundations Symposium, 2010.

[12] L. Meyerovich, A. P. Felt, and M. Miller, “Object views: Fine-grained
sharing in browsers,” in WWW: Conference on World Wide Web, 2010.

[13] Private Browsing - Firefox. http://support.mozilla.com/en-us/kb/
private+browsing.

[14] Google. Using multiple accounts simultaneously. http://www.google.
com/support/accounts/bin/topic.py?hl=en&topic=28776.

[15] S. Crites, F. Hsu, and H. Chen, “OMash: Enabling secure web
mashups via object abstractions,” in CCS: Conference on Computer
and Communication Security, 2008.

[16] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson, “App
isolation: get the security of multiple browsers with just one,” in CCS:
conference on Computer and communications security, 2011.

[17] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama,
“SMash: Secure component model for cross-domain mashups on
unmodified browsers,” in WWW: Conference on World Wide Web,
2008.

[18] HTML5: A vocabulary and associated APIs for HTML and XHTML,
W3C Std. [Online]. Available: http://www.w3.org/TR/html5/

[19] Content Security Policy - Mozilla. http://people.mozilla.com/
∼bsterne/content-security-policy/index.html.

[20] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji, “SOMA:
Mutual approval for included content in web pages,” in CCS: Con-
ference on Computer and Communications Security, 2008.

[21] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter, “The multi-principal OS construction of the gazelle web
browser,” in 18th Usenix Security Symposium, 2009.

[22] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame communi-
cation in browsers,” in USENIX Security Symposium, 2008.

[23] Facebook. Facebook connect. http://developers.facebook.com/blog/
post/108/.

[24] Google Friend Connect - Google. http://code.google.com/apis/
friendconnect/.

[25] S. Hanna, R. Shin, D. Akhawe, P. Saxena, A. Boehm, and D. Song,
“The emperor’s new APIs: On the (in)secure usage of new client-side
primitives,” in W2SP: Web 2.0 Security and Privacy, 2010.

[26] S. Ioannidis and S. M. Bellovin, “Building a secure web browser,” in
USENIX Annual Technical Conference, 2001.

[27] S. Ioannidis, S. M. Bellovin, and J. M. Smith, “Sub-operating systems:
a new approach to application security,” in ACM SIGOPS European
workshop, 2002.

[28] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen, “A safety-
oriented platform for web applications,” in SP: IEEE Symposium on
Security and Privacy, 2006.

[29] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner, “Dynamic
pharming attacks and locked same-origin policies for web browsers,”
in CCS: Conference on Computer and Communication Security, 2007.

[30] C. Reis, S. D. Gribble, and H. M. Levy, “Abstract architectural
principles for safe web programs,” in HotNets: The Workshop on Hot
Topics in Networks, 2007.

[31] K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin, “Escudo:
A fine-grained protection model for web browsers,” in International
Conference on Distributed Computing Systems - ICDCS, 2010.

[32] T. Luo and W. Du, “Contego: Capability-based access control for web
browsers - (short paper),” in Trust and Trustworthy Computing - 4th
International Conference - TRUST, 2011.

[33] Session Definition - Wikipedia. http://en.wikipedia.org/wiki/Session
(computer science).

[34] Webkit source codes. http://webkit.org/building/checkout.html.

[35] Google code home page of configurable origin policy. http://code.
google.com/p/configurableoriginpolicy/.

[36] Cryptographically secure pseudo-random number generator. http:
//en.wikipedia.org/wiki/Cryptographically secure pseudorandom
numb%er generator.

[37] S. Tang, H. Mai, and S. T. King, “Trust and protection in the illinois
browser operating system,” in OSDI: Proceedings of the 9th USENIX
Symposium on Opearting Systems Design & Implementation, 2010.

[38] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: vulnerability-driven filtering of dynamic html,” in
OSDI: USENIX Symposium on Operating Systems Design and Im-
plementation, 2006.

[39] Channel bound cookies. http://www.browserauth.net/
channel-bound-cookies.

[40] A. Bortz, A. Barth, and A. Czeskis, “Origin cookies: Session integrity
for web applications,” in W2SP: Web 2.0 Security and Privacy, 2011.

[41] A. Barth, C. Jackson, and J. Mitchell, “Robust defenses for cross-site
request forgery,” in CCS: Conference on Computer and Communica-
tion Security, 2008.

[42] Magento Inc. Magento. http://www.magentocommerce.com/.

[43] Alexa Top Websites. http://www.alexa.com/topsites.

