
TECHNICAL REPORT TR-UCSB-2014-05 1

EdgeMiner: Automatically Detecting Implicit
Control Flow Transitions through the Android

Framework

Abstract—A wealth of recent research proposes static data
flow analysis for the security analysis of Android applications.
One of the building blocks that these analysis systems rely upon
is the computation of a precise control flow graph. The callback
mechanism provided and orchestrated by the Android framework
makes the correct generation of the control flow graph a chal-
lenging endeavor. From the analysis’ point of view, the invocation
of a callback is an implicit control flow transition facilitated
by the framework. Existing static analysis tools model callbacks
either through manually-curated lists or ad-hoc heuristics. This
work demonstrates that both approaches are insufficient, and
allow malicious applications to evade detection by state-of-the-
art analysis systems.

To address the challenge of implicit control flow transitions
(i.e., callbacks) through the Android framework, we are the first
to propose, implement, and evaluate a systematic treatment of
this aspect. Our implementation, called EDGEMINER, statically
analyzes the entire Android framework to automatically generate
API summaries that describe implicit control flow transitions
through the Android framework. We use EDGEMINER to analyze
three major versions of the Android framework. EDGEMINER
identified 19,647 callbacks in Android 4.2, suggesting that a
manual treatment of this challenge is likely infeasible. Our
evaluation demonstrates that the current insufficient treatment of
callbacks in state-of-the-art analysis tools results in unnecessary
imprecision. For example, FlowDroid misses a variety of leaks
of privacy sensitive data from benign off-the-shelf Android
applications because of its inaccurate handling of callbacks. Of
course, malicious applications can also leverage this blind spot
in current analysis systems to evade detection at will. The results
of our work allow existing tools to comprehensively address the
challenge of callbacks and identify previously undetected leakage
of privacy sensitive data.

I. INTRODUCTION

Mobile smart devices, such as smart phones, media players,
and tablets, have become ubiquitous. Industry reports the
total number of sales of Android-powered smart phones at
over six hundred million in 2013 alone [6]. The application
ecosystem that developed around the mobile platform is a
key contributing factor to the huge success of mobile smart
devices. Android users can choose from over one million
applications (apps) offered through the official Google Play
marketplace. Furthermore, a wealth of alternative sources for
Android applications is available for users to choose from.
These range from curated stores, such as Amazon’s Appstore
to less legitimate sources that offer pirated content. The sheer
number of mobile applications prompted researchers from
academia and industry to develop static analysis techniques
that scrutinize these applications for vulnerabilities and mali-
cious functionality.

Android applications always execute in the context of
the Android framework — a comprehensive collection of
functionality that developers can conveniently use from their
applications. The prolific use of the framework poses unique
challenges for the analysis of Android applications.

State-of-the-art static analysis systems for Android applica-
tions (e.g., [9, 11, 17, 18, 23]) reconstruct an application’s con-
trol flow graph as part of their analysis. However, imprecision
in the control flow graph (CFG) permeates throughout the
analysis and can cause false alarms as well as missed detec-
tions for malware and vulnerability scanners. One common,
but insufficiently addressed cause of such imprecision are call-
backs. A callback is a method implemented by the application
but invoked by the Android framework. This implies that the
callback method does not have an incoming control flow edge
contained in the application itself. Instead, control is implicitly
transferred to the callback by the framework.

Intuitively, the existence of a callback must be commu-
nicated to the framework before an invocation can happen.
In Android, this can be accomplished in two different ways.
The first one consists in defining and implementing a well-
known Android component, such as an Activity. The callbacks
associated with these components are strictly related to their
life-cycles, as described in the Android documentation. In
this case, the developer would communicate to the Android
framework the existence of the component by specifying it in
the so-called manifest, an application’s main configuration file.
Then, when the application is started, the framework parses the
manifest and becomes aware of the component, and it can thus
properly invoke all the defined callbacks.

The second way through which the existence of a callback
can be communicated to the framework is by using a so-called
registration method. A classic example is the onClick call-
back method that applications bind to a user interface element
(e.g., a button) with the setOnClickListener registration
method. Once the user taps the button, the framework auto-
matically invokes the specified onClick callback. Similarly,
a call to the sort registration method of a Collection
will result in multiple calls to the compare callback method
implemented by the Comparator class (see Section II).1

Because these interactions are entirely provided by the
framework, an analysis that solely considers the application’s
code cannot identify these implicit control flow transitions
(ICFTs). That is, systems that analyze applications in isolation

1As we will discuss later in the paper, certain callbacks (e.g., onClick)
can be implicitly registered through an XML configuration file. However, this
is only possible for a very limited set of callbacks.

TECHNICAL REPORT TR-UCSB-2014-05 2

from the framework necessarily generate incomplete control
flow graphs. As we will show in Section VII, this omission
allows malicious applications to evade detection and moreover
jeopardizes the correct analysis of benign applications.

The prolific use of these callback mechanisms in real-world
Android applications mandates that analysis systems model
the corresponding ICFTs accordingly. Existing systems use a
variety of techniques in an attempt to address ICFTs. Callbacks
related to the application’s life-cycle are well documented
and understood. Thus, current analysis systems model such
callbacks by means of a manually-curated list of configuration
entries. For example, the authors of FlowDroid describe how
they were able to properly model the life-cycle of the main
components after Android’s documentation. As these are well-
known and well-documented methods, we believe that this
manual effort is sufficient to correctly handle such life-cycle
related callbacks.

Where existing systems fall short, is in modeling callbacks
that are not as well documented as those related to the appli-
cation life-cycle. These callbacks are modeled either based on
manually-curated lists [9, 18] or heuristics [23]. Unfortunately,
in this case, neither approach is a sufficient treatment of ICFTs
as the resulting control flow graphs lack edges that are not
explicitly modeled or captured by the heuristics. In the next
section, we provide two concrete examples of this concept,
while in Section VII-F we demonstrate how this imprecision
directly leads to undetected malicious functionality.

The main goal of our work is to remove the unnecessary
imprecision that this second category of callbacks introduce in
current analysis systems. We propose a novel static analysis
approach and its implementation − EDGEMINER − as the
first work to systematically address the challenge of ICFTs.
EDGEMINER applies automated program analysis techniques
to identify the complete set of callbacks and their registration
methods in the Android framework. To this end, we implement
a scalable inter-procedural backward data flow analysis that
first identifies callbacks and then links these callbacks with
their corresponding registration functions. In Section VII-F,
we show how the results produced by EDGEMINER (i.e., pairs
of registrations and callbacks) can be used to significantly
improve state-of-the-art Android analysis systems, such as
FlowDroid [9]. In particular, we show that before the inte-
gration of our results, FlowDroid fails to detect privacy leaks
in applications that use ICFTs (i.e., false negatives).

We used EDGEMINER to analyze the codebase of three
major Android versions. Note that EDGEMINER only needs
to run once per framework version, as the extracted infor-
mation pertaining to callbacks and registrations is invariant
for all applications executing on a given framework version.
This observation also implies that the results of EDGEMINER
remain valid regardless of any obfuscation attempts made by
individual Android applications.

In summary, this paper makes the following novel contribu-
tions:

• We identify the challenge of implicit control flow transfers
provided by the Android framework as a source for
imprecision in state-of-the-art static analysis systems.

• We design a novel automated analysis (§IV) and corre-
sponding implementation (EDGEMINER §V) to analyze

multiple versions of the Android framework for the com-
plete set of callbacks and their registrations. Our results
(§VII) indicate that modern Android versions feature
nearly 20,000 registration and callback methods.

• To demonstrate that our results can easily be incorporated
into existing analysis systems, we extend the popular
FlowDroid framework with support for the newly detected
ICFTs (§VII-F). This extension allows FlowDroid to
detect information leaks that previously eluded the tool’s
capabilities.

II. MOTIVATING EXAMPLES

In this section we present two examples (that we will use
throughout the paper) that illustrate the importance of implicit
control flow transitions for the static analysis of Android
applications. The main role of these examples is to show how
a malicious application could leak private information through
the usage of implicit control flow transitions. In particular, as
we discuss at the end of this section, these simple examples
are sufficient to evade detection from all existing static analysis
tools, including FlowDroid [9], the current state-of-the-art taint
analysis system.

Our first example (Figure 1) uses a synchronous ICFT. An
ICFT is synchronous if the callback method is synchronously
invoked as soon as its associated registration method is in-
voked. Our second example (Figure 2) uses an asynchronous
ICFT. An ICFT is asynchronous if the invocation of the
callback method is delayed to some time after its associated
registration method is invoked. Both our examples consist of
two parts: application space code (Figure 1a and Figure 2a),
which is written by the application developer, and framework
space code (Figure 1b and Figure 2b), which is defined within
the Android framework itself.

Let us first focus on the application space code in Fig-
ure 1a. At lines 10-17 the MalComparator class is de-
fined. This class implements the Comparator Java inter-
face and its mandated compare method. During execution,
this method stores the current GPS coordinates into the
MainClass.value static field (Line 14). Then, the main
method (of the MainClass class) is defined (Lines 3-8).
This method first creates an instance (mal) of the MalComp
object (Line 4) and then sets the MainClass.value static
field to an integer constant (Line 5). Subsequently, in Line 6
it invokes the Collections.sort method and passes the
mal instance as a second argument. Finally, main transmits
the value stored in the MainClass.value field to the
network (Line 7).

The implicit control flow transition in this example is
provided by the framework code illustrated in Figure 1b.
The sort method implemented in the Collections base
class (Line 6) implements a variety of sorting algorithms
(mergesort, quicksort, and insertion sort). Regardless of the
chosen implementation, each algorithm repeatedly invokes the
compare method (Line 10) of the provided Comparator
object to assess the ordering of two elements in the collection.
Thus, a call to the sort method implicitly invokes the
compare callback method implemented in the application.
Consequently, the value transmitted to the Internet at Line
7 of the main function corresponds to the sensitive GPS

TECHNICAL REPORT TR-UCSB-2014-05 3

1 class MainClass {
2 static int value = 0;
3 static void main(String[] args) {
4 MalComp mal = new MalComp();
5 MainClass.value = 42;
6 Collections.sort(list, mal);
7 sendToInternet(MainClass.value);
8 }
9 }

10 class MalComp implements Comparator {
11 int compare(
12 Object arg0,
13 Object arg1) {
14 MainClass.value = getGPSCoords();
15 return 0;
16 }
17 }

(a) Application Space

1 public interface Comparator<T> {
2 public int compare(T lhs, T rhs);
3 }
4
5 public class Collections {
6 public static <T> void sort(
7 List<T> list,
8 Comparator<? super T> comparator) {
9 ...

10 comparator.compare(element1, element2);
11 ...
12 }
13 }

(b) Framework Space

Fig. 1: An example that shows that without properly linking the sort method (invoked at (a) Line 6) to the compare method (defined at
(a) Line 11) and invoked at (b) Line 10, existing static analyzers would not detect the privacy leak. Note that the framework space code is
simplified for understanding.

1 class MainActivity extends Activity {
2 static int value = 0;
3 onCreate(Bundle bundle) {
4 MalListener mal = new MalListener();
5 MainActivity.value = 42;
6 // get a reference to a button GUI widget
7 Button b = [...]
8 b.setOnClickListener(mal);
9 }

10 }
11 class FinalActivity extends Activity {
12 // This activity is reached towards the
13 // end of the application’s execution.
14 onCreate(Bundle bundle) {
15 sendToInternet(MainActivity.value);
16 }
17 }
18 class MalListener implements OnClickListener {
19 int onClick(View v) {
20 MainActivity.value = getGPSCoords();
21 return 0;
22 }
23 }

(a) Application Space

1 public class ViewRootImpl extends Handler {
2 public void handleMessage (Message msg) {
3 switch (msg.what) {
4 case EVENT:
5 mView.mOnClickListener.onClick();
6 ...
7 }
8 }
9 }

10 public class View {
11 OnClickListener mOnClickListener;
12 public void setOnClickListener (EventListener

li) {
13 mEventListener = li;
14 }
15 interface OnClickListener {
16 void onClick(View v) {
17 }
18 }

(b) Framework Space

Fig. 2: An example that shows that without properly linking the setOnClickListener method (invoked at (a) Line 8) to the onClick
method (defined at (a) Line 19) and invoked at (b) Line 5, existing static analyzers would not detect the privacy leak. Note that the framework
space code is simplified for understanding.

information as opposed to the constant value. Note that the
ICFT in this example is synchronous: in fact, the callback
method (compare) is invoked as soon as its associated
registration method (sort) is invoked.

Similarly, the example provided in Figure 2 shows how
a malicious application could leak sensitive information
through an asynchronous ICFT. In particular, this appli-
cation registers an OnClickListener (by invoking the
setOnClickListener registration method, Line 8), and
it associates it to a specific GUI Button. Once the user
clicks on this button, the associated onClick method will
be invoked, and the current GPS coordinates are stored in
the MainActivity.value static field. Then, when the
FinalActivity activity is reached, the recorded GPS co-
ordinates will be leaked.

A static analysis that analyzes applications in isolation from
the framework will miss these implicit control flows. This
implies that systems that analyze applications for privacy leaks
will incorrectly label the examples in Figure 1 and Figure 2
as benign (i.e., false negatives).

To demonstrate that, indeed, these examples constitute false
negatives, we augmented the DroidBench [8] benchmark suite
with a variety of test cases similar to the presented example. In
Section VII-F, we show how the technique that we described in
these two examples can be used by a malicious application to
evade analysis. We also modified FlowDroid [9] to leverage
our results to correctly model ICFTs, and we show how
our improvement allows FlowDroid to identify previously-
undetected privacy leaks.

Existing Approaches. ICFTs are prolific and static analy-

TECHNICAL REPORT TR-UCSB-2014-05 4

sis systems cannot afford to ignore them entirely. Although
existing static analysis systems acknowledge [9, 18, 23] that
callbacks must be handled, they do not address the challenge
comprehensively. Instead, existing systems address this chal-
lenge with one of the following, incomplete techniques. The
majority of the approaches (e.g., [9, 18]) rely on manually
compiled lists for implicit control flow transfers. However,
the large number of ICFTs (i.e., EDGEMINER identified more
than five million) renders manual efforts to identify all ICFTs
intractable. Other approaches attempt to solve the ICFT prob-
lem based on heuristics. CHEX [23], for example, connects
all potential callbacks to the constructor of the containing
object. The example in Figure 1 would cause CHEX’s data
flow analysis to incorrectly conclude that the GPS information
is overwritten by the assignment of the constant value in Line
5.

Another approach would be to treat all the non-reached
methods (such as the compare and the onClick methods
in our examples) as top-level methods. However, this approach
would cause false negatives as well. In fact, if the compare or
the onClick methods are analyzed only after the analysis of
the main application’s codebase has been analyzed, the static
analyzers will miss the information leak.

The only way to properly address this issue is to analyze
such callbacks within the right execution context. In other
words, a static analyzer would need to analyze the compare
method just after the sort method, or analyze the onClick
method when the user could click on the button (i.e., poten-
tially before the final activity is reached). Clearly, a static
analyzer can perform this kind of precise analysis only if it
is aware of such registration-callbacks implicit control flow
transfers. The main goal of our work is to enable existing
static analyzers to perform more precise static analysis, and
to detect privacy leaks even in the scenarios presented in our
motivating examples.

A last, overly conservative, approach would be to add
control flow edges to all callbacks at any function callsite in the
application. To the best of our knowledge, no existing system
adopts this naı̈ve approach. While this heuristic would work
for our examples, the CFG of real-world applications would
explode in size and negatively impact the precision of any data
flow analysis performed on top of such an inflated CFG.

III. OVERVIEW & PROBLEM STATEMENT

Heuristic and manual approaches to tackle the challenge of
ICFTs either do not scale or are incomplete. Thus, we propose
a novel approach to automatically extract all registration func-
tions and their associated callbacks provided by the Android
framework. In this section, we first present an overview of our
system, we then provide a precise definition of registration
and callback methods, and, finally, we specify our problem
statement.

A. Overview

Figure 3 provides a schematic overview of our work. Our
approach takes as input the entire codebase of the Android
framework. The output is a list of ICFTs as pairs of registration
and callback methods along with their corresponding type
signatures. This list summarizes the implicit control flow

Android

Framework

EdgeMiner

Existing Static Analyzers

Framework

Summary

Pre-processing

Call Graph

Backward

Dataflow

Analysis

Potential

Callbacks

Callsites
...

Callback 1

Callback 2

Android

Application
Analysis

Results

IR Form

Metainfo

Class

Hierarchy

Fig. 3: Overview of EDGEMINER.

behavior of the Android framework and can be used to improve
the precision of existing Android analysis systems (lower part
of Figure 3). Our approach is based on conservative program
analysis techniques and produces only one-sided errors. That
is, while we are willing to tolerate false positive pairs of
registrations and callbacks, no false negative ICFTs can occur
from our analysis.

B. Problem Statement

In this section we first provide definitions of the termi-
nology we use throughout the paper. Then, we formulate the
problem we are trying to solve using this terminology.

Definition 1 An application callback is a method implemented
in application space that can be (implicitly) invoked by the
framework.

From a technical point of view, the callback mechanism
in Java and other object-oriented languages (e.g., Objective-
C) relies on method overriding and the dynamic dispatch
mechanism: First, an application space method overrides a
method defined in framework space. Subsequently, when the
framework invokes this method, the dynamic dispatch mech-
anism invokes the overridden (application-defined) method
corresponding to the dynamic (runtime) type of the object.
We refer to the framework method that is overridden as a
framework callback.

Definition 2 A framework callback is a method defined in the
framework space that can be overridden by an application
space method (i.e., an application callback), in a way that
the overriding method can be (implicitly) invoked by the
framework.

The two callback definitions correspond to two different
views (application and framework) on the same concept. The
difference is that application callbacks are dependent on the
concrete implementation of individual applications, whereas
framework callbacks encompass all possible callbacks any
application can use. As our goal is to identify all ICFTs in the
Android framework, we use the framework callback definition

TECHNICAL REPORT TR-UCSB-2014-05 5

as the working definition for this paper. In our example, the
definition of the Comparator interface’s compare method
is the framework callback, and the concrete implementation of
of the compare method in the MalComp class (Lines 11-16)
corresponds to the application callback.

Before an application callback can be invoked, the frame-
work must be made aware of the callback’s existence. This is
accomplished through a so-called registration method.

Definition 3 A registration method is a method implemented
in framework space that communicates the availability of an
application callback to the framework itself.

Intuitively, registration methods are the methods through
which an application space object implementing an applica-
tion callback flows to the framework space. Clearly, these
registration methods are necessary for the realization of the
callback mechanism. In our example, the sort method in
Figure 1a (Line 6) is a registration method, because it passes
the MalComparator instance with its compare appli-
cation callback to the framework. Another popular pair is
the setOnClickListener registration method (Figure 2a,
Line 8) and an object implementing the OnClickListener
interface with its onClick callback (Figure 2a, Lines 18–23).

Based on the above definitions we want to automatically
determine all pairs of registration and callback methods that
result in implicit control flow transfers. For an ICFT to
occur, the object on which a callback is invoked must be
the same object that is communicated to the framework in
a previous registration call. Thus, a final requirement is that
registrations and callbacks are connected through a data flow
of the corresponding object. Clearly such a data flow is present
in the examples in Figure 1 and Figure 2 facilitated by
the respective mal objects. However, passing an object that
implements a callback to the framework through a method
other than a registration, does not result in the required data
flow. For example, adding an object that implements the
OnClickListener interface to a container (e.g., a Vec-
tor, java.util.Vector.addElement(mal)) does not
result in an ICFT. The reason is that the Android framework
does not contain code that invokes the onClick method of
objects stored in a Vector.

IV. APPROACH

As explained in the previous section, our approach takes
as input the Android framework codebase, and it extracts all
implicit control flow transitions throughout its codebase. The
output of the system is a list of registration-callback pairs.

To identify these pairs of method calls, we first extract a list
of potential callbacks and identify all callsites in the framework
that can invoke these potential callbacks. Subsequently, for
each identified callsite, we perform an inter-procedural back-
ward data flow analysis to trace the origin of the object used
at the callsite. If this analysis reveals that the object is passed
to the framework as a parameter from the application space,
we successfully identified a registration-callback pair.

In the remainder of this section, we explain the details
of our approach. In particular, as Figure 3 shows, the analy-
sis needs to perform several preprocessing steps, before the

actual backward data flow analysis identifies the resulting
registration-callback pairs.

A. Preprocessing

Prior to performing the actual data flow analysis, our
approach performs a series of preprocessing steps. In a first
step, we transform each method of the framework into an
intermediate representation that is particularly well suited for
the data flow analysis at the core of our system. We also extract
the class hierarchy and interface definitions from the Android
framework. Subsequently, we extract an over-approximation
of the framework’s call graph. At the same time we label
all potential callbacks in the generated call graph. The final
preprocessing step collects meta-information pertaining to field
accesses (i.e., read and write) in the framework.

Intermediate Representation (IR). The first preprocessing
step consists of transforming the individual methods imple-
mented in the Android framework into Static Single Assign-
ment [12] (SSA) form. Code in SSA form has the property that
each variable is assigned exactly once. Different assignments
to the same variable are represented as distinct versions. Rep-
resenting the methods of the framework in SSA significantly
eases the implementation of the backward data flow analysis,
which we describe in detail in the next section.

Class Hierarchy. The class hierarchy is a tree data structure
that represents the inheritance relationships between individual
classes defined in the framework. Similar to the Java class
hierarchy, the Android framework class hierarchy is rooted at
the Object node. That is all classes defined and used by the
Android framework inherit from Object. The class hierarchy
also stores information about interfaces and attributes classes
to the interfaces they implement.

As this information is needed for generating an over-
approximation of the call graph, our approach reconstructs
the class hierarchy of all classes and interfaces defined in
the Android framework. This is done by retrieving, for each
class and interface, which class they directly extend and which
interfaces they directly implement, if any. Then, we compute
the transitive closure to have the complete information readily
available.

Call Graph Construction. The goal of this step is to construct
the framework’s call graph, which is necessary to implement
the data flow analysis inter-procedurally. We use the following
conservative approach to extract an over-approximation of
the framework’s call graph. For each invoke instruction (i.e.,
method call), the analysis determines all possible targets.
This is achieved by combining the information of the static
type of the receiving object and information available in the
class hierarchy. As common for object-oriented languages, the
target of a method call depends on the dynamic type of the
receiving object. At runtime, the dynamic dispatch mechanism
is responsible to identify and call the correct implementation
of a polymorphic method. Unfortunately, it is an undecidable
problem, in general, to identify the precise dynamic type at
a callsite statically. To address this problem, our analysis
conservatively identifies all potential methods (i.e., callees) that
can be invoked at a callsite as follows. We first retrieve the
static type T of the receiving object, which is available from
the framework’s code directly. Then, since polymorphism as

TECHNICAL REPORT TR-UCSB-2014-05 6

implemented by Dalvik mandates that the dynamic type S of
an object is equal to T or any of its subtype (i.e., S ≤: T), we
can process the subtree of the class hierarchy that is rooted at
T to identify all possible method implementations. For each
method defined in a non-abstract class in that subtree, we then
check whether it matches the name and type signature of the
method at the callsite. All methods that match these criteria
are connected to the callsite with an edge in the call graph.
Furthermore, if the static type of the receiving object at the
callsite (i.e., T) is an interface, we repeat the previous steps
for all classes in the framework that implement this interface.

This technique will result in an over-approximation of the
call graph for regular Dalvik code. Note that instead of using
this approach, a more sophisticated algorithm could be used
to generate a more precise call graph. However, the size of
the Android framework codebase (i.e., more than 8M LOC)
places stringent requirements on scalability and performance
of the employed algorithms. Thus, expensive fine-grained alias
analyses can quickly become prohibitively costly. Another
challenging point is that the Android framework codebase
mixes Dalvik code with components compiled to native (binary
executable) code. Also, the above-mentioned technique does
not take reflective method calls into account when constructing
the call graph. Imprecision due to native code or reflective calls
threatens the completeness of our approach. Thus, we analyzed
the prevalence of these techniques in the Android framework.
In particular, as we will discuss in Section V, we found that
the framework only contains a small number of reflective or
native method invocations (36 and 46 respectively). As we can
reliably enumerate these cases, we modeled the edges through
manual annotations in the resulting call graph.

The remaining mechanism that could render our over-
approximation incorrect is exceptions. It is well understood
that exceptions are notoriously hard to model correctly. While
we would expect malicious applications to use exceptions to
evade detection, we do not expect the Android framework to
use exceptions to implement the callback mechanism at the
focus of our analysis.

Potential Callback Callsites. Definition 2 defines framework
callbacks. However, to automatically identify callbacks, the
textual description must be translated into a description that
can be checked through automated analysis. Although we
cannot easily translate the precise definition, we can translate
Definition 2 into a sequence of automatically checkable nec-
essary (but not sufficient) properties. Thus, evaluating these
properties on all callsites in the framework will result in a
superset of all framework callbacks (i.e., the set of potential
callbacks).

Definition 4 A potential callback is a framework method that
can be overridden by an application space method. To this end,
a method must satisfy the following necessary conditions:

• The method is public or protected.

• The class in which the method is declared has a public
or protected modifier.

• The method is not final or static.

• The class in which the method is declared does not have
the final modifier.

• The class in which the method is declared is an interface
or has at least one explicitly or implicitly declared, public
or protected constructor.

The first four criteria are necessary so that the specified
method can be overridden. The fifth criterion states that a
class implementing the callback in application space can be
instantiated.

We perform the evaluation of the above five properties
during the generation of the call graph to avoid duplication
of effort (e.g., identifying invoke instructions, consulting the
class hierarchy). The resulting list of callsites constitutes all
possible locations in the framework where a callback can be
invoked. Thus, these are precisely the locations where we start
our backwards data flow analysis to confirm whether the object
at a given callsite is passed to the framework as an argument
to a registration method.

Metainformation Collection. To aid the subsequent data flow
analysis, this step extracts additional meta-information about
the framework. In particular, we extract accesses (read and
write) to fields and their corresponding classes. To this end,
we map each field to all its definition sites in the framework
(i.e., put_field instructions). Similarly, we map all fields to
get_field instructions which retrieve the value of a given
field. Because fields are defined in classes, we address the
challenge of dynamic subtype polymorphism analogously to
the above discussion in the call graph paragraph. In addition,
we leverage the insights that methods in an inner class can
access private fields in the outer class, and methods of a class
can access package private fields defined by other classes in
the same package.

B. Backward Data Flow Analysis

Based on the information extracted by the preprocessing
above, we can now describe how we use our inter-procedural
backward data flow analysis to identify registration-callback
pairs. We start the analysis at each callsite to a potential
callback. Intuitively, the analysis determines whether the object
used at the callsite could originate from application space
(i.e., whether the object is passed to the framework as a
method argument). To this end, the analysis leverages the
fact that use-def chains are explicitly captured in the SSA
representation of the framework. Thus, starting at a callsite to
a potential callback, the analysis recursively traverses the use-
def chains backwards until either of the stopping conditions
(discussed in the next paragraph) are met. While traversing
the use-def chains within a method (i.e., intra-procedurally),
four instruction types influence how the analysis proceeds.

• Method Parameter Passing. If the analysis reaches the
start of the current method (M) and the use-def chain
references a parameter (P) to M, the analysis consults
the call graph and recursively continues at all callsites
that can invoke M. When continuing at each callsite, the
analysis will track the argument that maps to parameter
P in method M.

• Method Call. If the analysis encounters an invoke in-
struction (i.e., a method call) while traversing the use-def
chain, it consults the call graph and recursively continues
at the return instruction for all possible callees.

TECHNICAL REPORT TR-UCSB-2014-05 7

• Field Access. If the analysis encounters a get_field
instruction, the meta-information is consulted. The anal-
ysis continues recursively from all put_field instruc-
tions that define the specified field (Section IV-A details
how we address the challenge of polymorphic subtyping
for field accesses).
Note how it would be possible, at least in principle,
to use a more precise analysis to handle data flows
through fields. However, scalability considerations dictate
a tradeoff between precision and analysis target size
(the Android framework codebase has over eight million
LOC). Furthermore, our results indicate that this con-
servative choice does not result in prohibitively many
false positives. More precisely, 90% of all fields ac-
cessed through get_field have at most three subtype-
compatible put_field statements in the entire frame-
work.

• Static Definitions. Two classes of instructions stop the
processing along the current branch of the recursion. The
first one is the new_instance, which creates a new
object of the given type. Similarly, the move_const
family of instructions stores a constant value in the target
operand. These instructions unconditionally overwrite any
previous values stored in the target operand with values
solely determined by the framework. Thus, a use-def
chain that includes such instructions can never link a
registration to a callback method.

Outputting Criteria. Our analysis outputs a registration-
callback pair if a flow is found from the receiving object at a
callback’s callsite to a parameter P of a potential registration.
A potential registration is a method implemented by the
framework that satisfies the following two conditions: 1) The
method can be invoked from application space; 2) The class of
parameter P defines a method that corresponds to a framework
callback (i.e., the method is signature and type compatible to
a framework callback and can be overridden).

Stopping Criteria. The recursive backward analysis stops
when one of the two following conditions is met: 1) The
analysis reaches the entry node of a method with no callers
(i.e., the call graph has no incoming edge); 2) As discussed
before, the receiving object of the callback is defined, within
the framework, by a new-instance or a move-const
instruction.

Handling Data Flow Loops. For our backward analysis we
unroll loops once. Note how this choice does not affect the
results of our analysis, as multiple iterations of the same loop
do not influence the presence of a data flow from a registration
to a callback.

Type Checking. At each step of the backward tracing, our
system checks that the occurring types are compatible. More
precisely, if the type of the object at the callsite where the
backward tracing started is not in a subtype relation with
the operand considered at the current step, this incompatible
operand does not need to be traced further.

C. Completeness

All analyses presented above, including method calls
through the reflective and native API, are conservative. Thus,
we expect that our results exclusively contain one-sided errors,

where we anticipate false positives due to the conservative
analysis. However, we do not expect any false negatives. This
expectation is supported by a large-scale empirical evaluation
presented in Section VII.

D. Results Utility

In this section we discuss how the results of our analysis
can be used by existing static analyzers. Our results (i.e.,
the pairs of registration and callback methods) are directly
applicable to improve the generation of Android application
control flow graphs. Note, however, that our definition of
registration method does not specify how this information
should be included in an application’s control flow graph.
In particular, our definition does not specify if a callback
associated with a given registration method is invoked immedi-
ately (i.e., synchronously), or in a delayed (i.e., asynchronous)
manner.

For example, the aforementioned Collections.sort
example synchronously invokes the Comparator.compare
method. In this (and similar cases), a static analyzer
can directly link the registration to its associated call-
back in the control flow graph. However, in the popular
setOnClickListener – onClick registration-callback
pair the onClick callback is only invoked once the user
taps the corresponding user interface element (e.g., button).
Existing Android application analysis systems (e.g., [9]) model
asynchronous callbacks by randomly invoking the callbacks
from their manually curated lists whenever the application is
in idle state. While this approach is intuitive, we acknowledge
that application analysis systems can leverage our results in a
variety of different ways.

To allow consumers of our results to handle the identified
callbacks as precisely as possible, our analysis differentiates
between synchronous and asynchronous ICFTs. To this end,
each registration-callback pair in our results is annotated with
the category for that pair. In Section VII-F we demonstrate
that our results can be readily used to improve the precision of
the FlowDroid [9] state-of-the-art Android application analysis
framework with minimal code changes and minimal perfor-
mance impact.

V. IMPLEMENTATION

We implemented the approach presented in the previous
section in a system called EDGEMINER. All analysis steps
implemented in EDGEMINER operate on the ROP intermediate
representation (IR). ROP is the IR that Google’s dx compiler
uses internally. dx is developed by Google as part of the
Android Open Source Project (AOSP) [2], and it forms one
of the core components of the Android SDK. In particular,
dx is responsible for translating Java bytecode to Dalvik
bytecode. Thus, every one of the thousands of Android devel-
opers who uses the Android SDK to compile her application
uses dx. Similarly, system images for Android, whether they
are provided by Google, phone manufacturers, or third party
after market versions, are all compiled with dx too. As a
consequence, we are confident that the dx compiler, and its
ROP intermediate representation are thoroughly battle-tested
and reliable. Moreover, as the dx tool performs optimization-
related analyses, its ROP IR, is well-suited to perform data

TECHNICAL REPORT TR-UCSB-2014-05 8

flow analysis. For example, ROP is in SSA form, and most of
the information required for our analysis (e.g., use-def registers
for each instruction), is readily available in the provided data
structures.

The backward data flow analysis is implemented as a
recursive procedure. The analysis proceeds backward from
each callsite of a potential callback, and traces the origin of
the object that receives the method call (i.e., the object that
actually provides a concrete implementation of the callback).
Intuitively, this step of the analysis aims to establish whether an
object can flow, through an invocation of a registration method,
from application space to the framework space. In other words,
it aims to understand whether an application can register code
within the framework, which is later called as a consequence.
The analysis works on top of the over-approximation of the
call graph built during preprocessing, and it consults the meta-
information related to the fields, as mentioned in the previous
section. While recursively traversing the over approximation
of the call graph backwards is straightforward, there are a
number of aspects that we needed to take into consideration to
guarantee the completeness of our results. We describe these
aspects in the remainder of this section.

Call Graph Construction. As a first step, we focus on
method invocations that are performed through the invoke
instruction. Similar to Dalvik, ROP provides an invoke
instruction with the same semantics (i.e., dispatch a method
call). As discussed previously, an over-approximation of the
call graph for regular (i.e., managed) code can be determined
with the help of the class hierarchy. However, the Android
framework codebase has several aspects that need to be taken
into account: reflective calls and native code components.
Although these mechanisms are rarely used in the Android
framework, they threaten to render the over-approximation
incorrect if not handled appropriately. We discuss these aspects
in the following two paragraphs.

Reflective Calls. Identically to Java, reflection in
Android is implemented by the reflection API.
Reflective method calls are exclusively handled by the
java.lang.reflect.Method.invoke API call. By
analyzing the Android framework source code we can reliably
detect all reflective method calls based on this method’s
signature. Note how all reflection-related calls that lead to a
method invocation must use this interface. Our analysis of the
Android framework codebase revealed 36 invocations of this
method. In all cases, it was possible to determine the target
method, as its class name and method name are hardcoded in
the source code. By adding the corresponding edges after the
automated call graph construction, but before the data flow
analysis, we preserve the call graph’s property of being an
over-approximation.

Native Code Components. We now describe how we handled
native code in the Android framework. The Android frame-
work consists of a mix of components authored in Java (which
are then compiled to Dalvik bytecode), and components au-
thored in a lower-level languages (such as C and C++), which
form the so-called native code components. In the context of
our work, the challenge is that a native code method can invoke
regular methods implemented in the Android framework. This,
in turn, can affect the completeness of the over-approximation
of the call graph. In fact, as the dx compiler, and thus our

analysis, solely considers Java code, our analysis would miss
native method calls which would render the generated call
graph incomplete.

To properly handle this aspect, we investigate how and
why native code invokes methods implemented in the managed
Dalvik environment. We found that native code can invoke
regular Android methods only through the dvmCallMethod
(and similar) C++ functions. We manually analyzed the native
code components of the Android framework, and identified 46
callsites where native code calls regular Android methods. We
took into considerations all these instances and we augmented
the generated call graph accordingly to preserve the over-
approximation. Furthermore, we perform an investigation to
categorize the functionality of these native-to-managed code
calls. Our findings are summarized by the following list.

• The <init> and finalize methods of a class are
implicitly invoked upon the execution of a new and
destroy operation, respectively. In particular, after the
native code allocates/releases memory for a new object,
the native code will call the object’s constructor/destructor
(i.e., its <init> and finalize methods).

• A custom implementation of the loadClass method (if
provided) is invoked during class loading.

• The Thread.start method invokes the Thread.run
method of a thread.

• Network packet arrival is signalled to a private
dispatch method.

• A customized implementation of the
printStateTrace, getMessage, and
incaughtException methods (if provided) can
be invoked when an exception is raised.

Note how two characteristic features of reflective calls
and native calls make this manual assessment possible. First,
the native and reflective APIs are coherent enough that all
occurrences can be easily enumerated. Second, the number of
calls (i.e., 36 and 46 respectively) is small enough to warrant
the one-time manual analysis effort. It is worth noting that,
for our analysis, the important aspect is not the number of
native code components in the Android framework. Instead we
only need to identify all transition points from native code to
managed code. These observations and findings give us strong
confidence that the call graph on top of which the data flow
analysis step operates is indeed an over-approximation.

VI. DISCUSSION

In this section, we discuss some aspects of the Android
framework that could threaten the completeness of our anal-
ysis. In particular, we discuss how we handle the fact that
callbacks can be (implicitly) registered through XML config-
uration files, and we discuss what is the role played by the
Android Looper and the Binder IPC mechanism, two aspects
that are known to be complicated to be handled correctly.

Callbacks registered through XML Resources. EDGEM-
INER detects pairs of registration and callback method calls.
So far, we discussed callbacks that are registered explicitly
through registration methods. However, Android applications
can also register callbacks through XML resource files. For
example, a developer could associate an OnClickListener
to a specific Button, by setting the android:onClick

TECHNICAL REPORT TR-UCSB-2014-05 9

attribute in the associated layout XML resource file. These
callbacks are implicitly attributed to their corresponding object
(e.g., a user interface button) when the framework renders
the element described by the resource file. As this tech-
nique of specifying a callback does not follow the traditional
registration-callback pattern, our data flow analysis would not
find these registration methods. For this reason, we conducted
a manual investigation on how this mechanism works, and
determined that this feature of specifying a callback method
through XML attributes is only available for a very limited set
of well-documented callbacks. Intuitively, this makes sense.
In fact, for each of these callbacks, the Android framework
codebase must explicitly implement support for parsing the
appropriate XML attribute and invoking, on behalf of the
application, the associated registration method. For this reason,
the developers of the Android framework are fully aware of
each of these special callbacks, and are therefore able to fully
and properly document the usage of each of these callbacks.
Furthermore, we note that existing analysis approaches, such
as FlowDroid [9] or CHEX [23] already handle callbacks
defined in resource files. In summary, resource files must
precisely define the involved callbacks, and, therefore, no
additional analysis of the framework is necessary to support
this functionality.

Android Looper. One of the well-known components that,
in principle, makes the analysis of the Android framework
challenging, is the Android Looper. This component is in
charge of processing all the asynchronous events received
by the framework. For example, when the user clicks on a
button, the OnClick event is generated by the framework,
and inserted in a queue. The Android Looper is implemented
as an infinite loop (hence, the term looper) that waits for
such events and processes them as soon as they arrive. The
main Looper’s method that implements this functionality is
the handleMessage method, which acts as a generic dis-
patcher of events. In particular, this method dispatches events
to their corresponding handlers according to the value of
their msg.what field. For the events for which a callback
is defined, the handleMessage method is in charge of
retrieving the correct object (which is stored in a field), and
invoking the method corresponding to the event. In these cases,
the object has previously been set (i.e., stored in the field) by
means of one of the registration method.

Clearly, the precise modeling of the Looper component is
a challenging task [20]. However, we found that our current
data flow analysis successfully determines registration-callback
pairs, even for those cases where the Android Looper is
involved (e.g., onClick). We now explain why this is the
case.

The event message that is received by the Android
Looper only contains information about the event’s type (e.g.,
OnClick). The Looper will then parse this message, and,
depending on the event, will retrieve a reference to the object
that implements the callback, which is then invoked. As no
code is specified in the event itself, the Looper retrieves the
reference to the appropriate object from a field (e.g., the
mOnClickListener field contains the listener for each
object that inherits from View). To make use of a click listener,
this field must be properly set by one of the registration
methods. The key observation is the following: the data flow

from the registration method to the callback invocation is
through a field. Since our analysis already conservatively
handles data flows through fields, a precise modeling of the
Looper class is not required to have complete results.

Binder IPC Mechanism. Another well-known aspect of the
Android framework that is known to be challenging to model is
the Binder IPC mechanism. The Binder is used both for com-
municating within the same application, and to communicate
between distinct apps.

To understand to which extent this component interferes
with our analysis, we manually investigated how Binder is
used by the Android framework. We determined that Binder
can cause a set of callbacks to be implicitly invoked. Unsur-
prisingly, these callbacks are all related to intra- and inter-
application communication, and are related to the life-cycle
of application components. For example, when an Activity A
invokes the startActivity method to start Activity B, a
Binder IPC transaction is generated and, as a consequence,
B’s methods related to its life-cycle (such as onCreate,
onStart, etc.) are implicitly invoked. Our data flow analysis
does not detect this kind of implicit control flow transfers. This
is because these flows do not follow the usual registration-
callback pattern.

However, while ideally a more sophisticated analysis could
be performed to detect this category of edges, we believe
this is not necessary. In fact, we found that these implicit
transfers are all related to the application’s life-cycle. State-
of-the-art static analysis tools, such as FlowDroid [9], already
model the application life cycle based on the thorough Android
documentation [4], which precisely defines the state machine
that prescribes an application’s life cycle and all involved
callbacks. In summary, we believe that this aspect of the
framework is already properly modeled by existing state-of-
the-art systems, and that a manual effort is enough, as the
number of these callbacks is limited and well-documented. In
other words, even if we do not model the inherently dynamic
parts of the Binder, we believe this aspect does not threaten
the completeness of the registration-callback pairs our analysis
discovers.

VII. EVALUATION

In this section we discuss and analyze the results we
obtained by evaluating our implementation of EDGEMINER.
First, in Section VII-A, we describe the experimental setup.
Then, in Section VII-B, we present an overview of the results
we obtained by running EDGEMINER on three different ver-
sions of the Android framework. In Section VII-C we present
several insights related to the registration-callback pairs we
found. Next, we evaluate EDGEMINER’s performance (Sec-
tion VII-D) and accuracy (Section VII-E). In Section VII-F,
we present a case study where we demonstrate how our
results can be used to improve FlowDroid [9], a state-of-the-art
static analyzer for Android applications. In particular, we first
show how incomplete support of ICFTs leads to undetected
malicious functionality (i.e., false negatives). Then, we show
how FlowDroid can be easily extended to incorporate the
results that EDGEMINER generates, to detect the malicious
functionality that leverages ICFTs. Finally, in Section VII-G,
we discuss how frequent ICFTs are used by real-world appli-
cations, and we show how the original version of FlowDroid

TECHNICAL REPORT TR-UCSB-2014-05 10

Android Version # Registrations # Callbacks # Pairs

2.3 (API 10) 10,998 11,044 1,926,543

3.0 (API 11) 12,019 13,391 2,606,763

4.2 (API 17) 21,388 19,647 5,125,472

TABLE I: Number of registrations, callbacks, and pairs extracted by
EDGEMINER in three Android framework version.

misses several privacy leaks. These leaks are detected as a
consequence of our modifications to FlowDroid that leverage
the results produced by EDGEMINER.

A. Experiment Setup

Before we can evaluate EDGEMINER, we have to precisely
define the input for the analysis, and answer the question: What
constitutes the Android framework? The Android Open Source
Project (AOSP) contains implementations for 53,094 classes.
However, not all of these classes are packaged up to form the
Android framework. Instead, the BOOTCLASSPATH variable
in the build environment specifies a set of 10 JAR archives
that contain the 24,089 classes which ultimately comprise the
Android framework.

Interestingly, we found that standard Android develop-
ment tools (e.g., Eclipse + Android SDK) rely on a mock
Android.jar, which does not export all the APIs defined in
the above-mentioned JAR archives. In particular, we found
that methods that are marked with the @hide attribute in the
Android source code are not included in the mock Android.jar.
One might assume that because applications cannot invoke
the hidden methods, this mock Android.jar is a suitable al-
ternative definition for the Android framework. Unfortunately,
this is incorrect, as applications can either use reflection or be
compiled with non-standard tool-chains (e.g., with a complete
Android.jar) to invoke the hidden methods.

For this evaluation, we thus adopt the correct definition of
the Android framework to comprise all archives, classes, and
methods that are specified by the BOOTCLASSPATH variable,
and evaluate EDGEMINER on all 24,089 classes.

B. Analysis Results

We evaluated EDGEMINER on three different versions (2.3,
3.0, and 4.2) of the Android framework. Table I summarizes
the results for each framework version. In particular, we report
the number of registrations, callbacks, and registration-callback
pairs that EDGEMINER identified for each version. In Android
4.2, for example, EDGEMINER found 21,388 registration and
19,647 callback methods, for a total of 5,125,472 registration-
callback pairs. Note how the number of detected pairs increases
in successive framework versions. This is not surprising, since
additional functionality introduced in newer Android versions
is frequently realized with additional packages, classes, and
methods. These results indicate that a manual annotation of
the ICFTs in the Android framework is likely an intractable
endeavor. Due to space limitations, the remainder of this eval-
uation focuses on the results for the Android 4.2 framework.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Registrations per Callback

F
(x

)

Fig. 4: Cumulative Distribution Function (CDF) of Number of Reg-
istrations per Callback (The CDF does not reach 1.0 because we trim
the x-axis at a value of 400).

C. Callbacks and Registrations

In this section we discuss our insights for the registration-
callback pairs that EDGEMINER extracted. Figure 4 shows
the cumulative distribution function (CDF) of the number of
registrations per callback. To better illustrate the curve for
smaller values along the x-axis, we cut off the long tail. As
the figure shows, most callbacks (>60%) have less than 20
registrations. A small number of registrations per callback is
intuitive. A large number of registrations could be an indicator
that the analysis is overly conservative. However, this is not
necessarily the case. Consider, for example, the onClick
callback mandated by the OnClickListener interface. One
of the classes that provides a setOnClickListener regis-
tration for this type of callback is the android.view.View
class. Virtually all user interface elements, such as buttons, text
fields, or check boxes, extend or inherit from this base class.
Android’s online documentation for the View class lists 75
direct and indirect subclasses2. EDGEMINER will output one
callback-registration pair for each of these subclasses of View.
Similarly, the toString or hashCode callbacks, both of
which are defined by java.lang.Object, are connected
with a variety of registration methods. Because these callbacks
are defined by the root node of the class hierarchy (i.e.,
Object) and overridden by dozens of subclasses they form
a large number of pairs with different registration methods.

To further analyze the pairs of registrations and callbacks,
we categorized the results according to their corresponding
method names.

set- and on-. The first cluster consists of registration-callback
pairs for which the registration method starts with set-, while
its associated callback method starts with on-. This is an inter-
esting cluster as the registration and callback methods’ names
correspond to the intuitive understanding of how callbacks are
used in Android applications. We use regular expression to
identify 77,982 pairs that match these patterns.

As an additional experiment, we identify another smaller
cluster where the registration and callback methods satisfy
the naming convention setOn-Listener and on-, respectively.
For example, the classic setOnClickListener registration and

2http://developer.android.com/reference/android/view/View.html

TECHNICAL REPORT TR-UCSB-2014-05 11

onClick callback methods falls into this category. In total,
our results contain 672 pairs that satisfy this naming conven-
tion. As expected, all setOn-Listener methods implemented in
the framework are detected by EDGEMINER as registration
methods. Note how existing approaches heuristically identify
callbacks based on such naming conventions. This experiment
shows that such heuristics lead to vastly incomplete results, as
the number of pairs that conform to this naming convention is
several orders of magnitude smaller than the number of pairs
found by EDGEMINER.

D. Performance Evaluation

We evaluated EDGEMINER on a quad core 2.80GHz In-
tel(R) Xeon(R) X5560 CPU and 36GB of memory. To analyze
Android 4.2, the system requires 8GB of memory to load the
intermediate representation of the whole Android framework,
and it then requires 4GB of additional memory to compute
the framework call graph and perform the backward data flow
analysis. In total this framework version contains 24,089
classes and 196,252 methods. Furthermore, the resulting call
graph contains 161,229 vertices and 4,519,965 edges. The
analysis of the entire Android framework completes in under 4
hours. Note that a specific version of the Android framework
remains invariant for all applications running on top of it. Thus,
EDGEMINER only needs to be run once per Android version,
as the generated results, too, remain valid for that framework
version.

E. Accuracy Evaluation

One key challenge of our work is to evaluate the correct-
ness of our findings. Since, to the best of our knowledge,
we are the first to systematically approach the challenge of
implicit control flow transitions in Android, we lack author-
itative ground truth to compare our results against. More-
over, the large number of registration-callback pairs found
by EDGEMINER renders the manual analysis of all results
impractical. Thus, we discuss in this section how we assessed
false positives and false negatives among our results.

False Positives. To estimate false positives, we performed
manual analysis of a random sample of 200 detected
registration-callback pairs. For each of these 200 pairs returned
by EDGEMINER, we manually verified whether it was possible
to register a given callback through an invocation of its
associated registration method. We found that 192 pairs out
of 200 are indeed true positives. That is, for the 96% of such
pairs, it was possible to register a given callback by invoking
its associated registration method. In the remaining eight cases
(i.e., 4%) manual analysis did not confirm the findings of
EDGEMINER. We consider these eight samples false positives.

To increase confidence in our manual assessment, we
chose 10 registration-callback pairs and embedded each in a
distinct toy Android application. Executing the application in
the Android emulator revealed that all callbacks are implicitly
invoked by the framework as expected. We limited this analysis
to 10 pairs, as the manual effort to satisfy all requirements to
trigger the callback can be significant. The reason is that many
classes that provide callbacks implement interfaces or extend
abstract classes. This implies that the developer must provide
implementations for additional methods that are not directly
related to the callback functionality.

We also manually investigated the source of the false
positives. We determined that all eight false positives are due
to the fact that our analysis is based on an over-approximation
of the call graph. This is expected, as the algorithms and
data structures used by EDGEMINER are designed conser-
vatively to strictly favor false positives over false negatives.
However, a more precise call graph that still maintains the
over-approximation property could help reduce false positives
further.

Originally, we anticipated containers (e.g., sets, maps, etc.)
to be a source for false positives. In fact, containers are
well-known to pose significant challenges for static analysis.
Interestingly, a detailed analysis of our results revealed that
no containers are used in any of the data flows that connect
registrations to callbacks. At first, this was surprising, as we
expected the Android framework to coalesce a variety of
callbacks in container data structures. However, an analysis
of the framework revealed that callbacks are rather directly
attributed to the specific element they operate on. For example,
the OnClickListener object implementing an onClick
callback is stored in a dedicated field for the View class.

False Negatives. In this section we describe how we evaluated
EDGEMINER for false negatives. In particular, we try to
answer the following question: Does EDGEMINER detect all
registration-callback pairs? As we lack authoritative ground
truth, answering this question conclusively is challenging.

Thus, for this evaluation, we designed an experiment based
on dynamic analysis. Dynamic analysis has the advantage that
the gained results are precise. That is, every ICFT identified
dynamically, is guaranteed to be correct and witnessed by
the application that produced it. However, the disadvantage of
limited coverage implies that dynamic analysis results are also
incomplete. Nonetheless, our confidence in EDGEMINER rises
if we can show that a large-scale dynamic analysis experiment
with real-world Android applications does not result in any
ICFTs that EDGEMINER did not detect.

To dynamically extract ICFTs used by an application, we
instrumented the Dalvik virtual machine to output a detailed
execution trace of all the methods that are invoked during the
execution of a given application. These traces contain infor-
mation about the called methods, as well as the arguments and
return values. Similar to our approach described in Section IV,
we label potential registrations and potential callbacks. Note
that in a dynamic analysis setting precisely labeling method
calls that cross the application-framework boundary is trivially
possible. We identify an ICFT in a dynamic trace iff: 1) A
potential callback (i.e., method implemented in application
space) is directly invoked by the framework, and 2) the object
implementing the callback was passed to the framework in a
previous registration call. We collected the execution traces for
8,195 randomly selected real-world Android applications by
running each in an Android emulator for 120 seconds. During
this time we simulated user interaction with the help of The
Monkey [5]. Analyzing the resulting execution traces revealed
6,906 distinct registration-callback pairs.

We then compared this dynamically-generated list of pairs
against the pairs extracted by EDGEMINER: All pairs that we
found dynamically were already included in EDGEMINER’s
output. In other words, according to this experiment, our

TECHNICAL REPORT TR-UCSB-2014-05 12

approach is not affected by false negatives. Although we
acknowledge that this is not a conclusive answer to the above
stated question, this experiment instills significant confidence
in EDGEMINER’s results, especially because this experiment
has been conducted completely independently from the back-
ward data flow analysis. Moreover, this is not surprising as
EDGEMINER is designed to produce one-sided errors (i.e.,
false positives) only.

An additional interesting aspect of this experiment is that
the 8,195 applications we dynamically made use of only 6,906
distinct registration-callback pairs, out of the more than five
million identified by EDGEMINER. This is due to the fact
the vast majority of ICFTs identified by our approach are not
documented, and, as a consequence, benign apps are likely not
to use them. However, such non-documented ICFTs could be
easily used by malicious applications for evasive purposes. For
this reason, it is important that static analysis tools take all the
ICFTs detected by EDGEMINER into account, even if only a
small subset of them is actually used by real-world, benign
applications.

F. Case Study - FlowDroid

EDGEMINER is motivated by the observation that existing
static Android application analysis systems do not address the
challenge of implicit control flow transitions systematically.
Thus, the success of our work can be judged by the suitability
of the results to improve existing analysis systems. To this end,
we conducted the following case study.

FlowDroid [9] is an open source, state-of-the-art, static
Android application analysis framework. The system performs
static taint analysis of off-the-shelf Android applications to
identify leaks of privacy sensitive information. The same
authors also release DroidBench [8], a suite of benchmark
applications to evaluate static Android analysis systems, es-
pecially those that perform data flow analysis.

In a first step of this case study, we extended the Droid-
Bench benchmark suite with six additional sample applica-
tions. Three applications use asynchronous pairs to leak pri-
vacy sensitive information (e.g., GPS positional information) to
the network, and three samples use synchronous registration-
callback pairs (e.g., the pair of Collection.sort and
Comparator.compare). Once we verified that the sample
applications correctly transmit the sensitive information, we
evaluated whether FlowDroid could detect the privacy leaks in
any of the samples. Unsurprisingly, FlowDroid did not detect
any privacy leaks.

As a second step of this case study, we show how ex-
isting static analysis tools would directly benefit from our
results. In particular, this study has two goals: we show that
FlowDroid fails to detect the privacy leak because of its
incomplete modeling of the callback mechanism; we show
how our results can be used from a practical point of view.
We first investigated how FlowDroid supports the callback
mechanism. In particular, FlowDroid ships with a configuration
file (called AndroidCallbacks.txt) that holds a list of
181 callbacks. We verified that EDGEMINER automatically
found all 181 callbacks. This further reinforces our belief that
EDGEMINER is not affected by false negatives.

Pattern # FlowDroid # EDGEMINER

Listener 155 576

Callback 19 319

On 3 509

None of the above 4 18,243

Total 181 19,647

TABLE II: Patterns of callbacks used by FlowDroid and identified by
EDGEMINER

Table II presents a breakdown of the 181 callbacks used in
FlowDroid with respect to common naming patterns. The table
also shows the number of callbacks identified by EDGEMINER
for the same patterns. This indicates, once again, that manual
or heuristic approaches to identify and handle callbacks are
insufficient. In the remainder of this section, we describe how
we integrated our findings with FlowDroid.

Integration of Asynchronous Callbacks. Augmenting Flow-
Droid with the information about asynchronous callbacks was
straightforward, as it did not require any source code modifica-
tion. We only needed to append the 19,647 callbacks identified
by EDGEMINER to FlowDroid’s configuration file. We then
analyze the three applications that leak sensitive information
through an asynchronous callback. With our modifications,
FlowDroid successfully identified privacy leaks in all three
applications. This clearly shows that the missing detection was
indeed caused by the incomplete modeling of the callback
mechanism.

Furthermore, we noticed two additional imprecisions in
FlowDroid’s modeling of the callback mechanism. First, Flow-
Droid invokes callbacks regardless of whether a previous
registration occurred or not. In other words, FlowDroid will
incorrectly analyze a callback (e.g., onClick), if it is imple-
mented by an application but never registered with the frame-
work. Second, FlowDroid exclusively relies on the method
name to match callbacks to entries in the configuration file.
These imprecisions can lead to false positives, as well as
false negatives. We note that EDGEMINER outputs the pairs
of registration and callback methods along with their type
signatures, making a more precise handling of the callback
mechanism possible. In summary, FlowDroid could prevent
false negatives resulting from ICFTs, and reduce false positives
by taking the additional information of the registration method
into account.

Integration of Synchronous Callbacks. Once synchronous
callbacks are identified with the help of EDGEMINER, inte-
grating them with FlowDroid is straight forward. It is sufficient
to augment the call graph of an application with a new edge
for each registration and callback pair detected by EDGEM-
INER. To this end, we modified FlowDroid’s source code in
two ways. First, we add a routine at the beginning of the
analysis that parses the registration-callback pairs extracted
by EDGEMINER into a map data structure. This function-
ality was implemented by adding 36 lines of code to the
FlowDroid codebase. The second modification augments the
call graph generated by FlowDroid with the corresponding
edges identified by EDGEMINER. More precisely, the call

TECHNICAL REPORT TR-UCSB-2014-05 13

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Callback and Registration Pairs per Application

F
(x

)

Fig. 5: CDF of the number of Callback and Registration pairs per
application. 50% of the applications use less than 393 pairs. 90% of
them use less than 2,000.

graph is traversed and for each callsite that type-checks (see
Section IV-A) with a registration call, we add an additional
edge to the corresponding callback method. This functionality
is implemented with 28 lines of code.

We then used this modified version of FlowDroid to
analyze our benchmark applications that evade detection by the
unmodified FlowDroid through the use of synchronous ICFTs.
In all cases, the modified version of FlowDroid successfully
detected the privacy leak. This clearly shows how the re-
sults from EDGEMINER improve state-of-the-art static analysis
frameworks by improving their precision and removing the
broad class of ICFT-related false negatives.

G. ICFTs in Real-World Android Apps

We envision that the results of EDGEMINER will be used
by existing static analysis systems. In the previous section
we showed, as an example, how this can be easily achieved
to improve FlowDroid. These systems would use our results
and augment the call graphs of the applications they analyze.
The large number of ICFTs identified by EDGEMINER begs
the question whether using our results would create unusually
dense call graphs for analyzed applications. Under the as-
sumption that a denser call graph negatively affects scalability
and precision of a static analysis system, we performed two
different experiments to study to what extent our results would
have that impact.

As the first experiment, we investigated to what extent
real-world Android applications make use of the registration-
callback pairs identified by EDGEMINER. In particular, we
analyzed 18,672 randomly selected real-world Android ap-
plications to check how many registration-callback pairs they
contain. To this end, we used apktool [1] to disassemble the
applications, and retrieve the method names and type signa-
tures for all invoke statements. Subsequently, we created
the intersection of the identified methods with EDGEMINER’s
results and counted the matching entries in all the registration-
callback pairs. Note that the intersection operation was not
merely a simple set intersection. Because of subtype poly-
morphism (see Section IV-A) we also matched methods if
any of their subtypes were contained in results obtained by
EDGEMINER.

Tool FlowDroid FlowDroid +
EDGEMINER

Apps with at least one privacy leak 285 294

Apps with no privacy leak 167 158

Apps timeout 48 48

Privacy leaks (in total) 46,586 51,418

TABLE III: Results obtained by analyzing 500 apps with both versions
of FlowDroid.

Figure 5 shows the results of this experiment. The figure
shows the CDF of the number of pairs used by the applications.
We found that the 3% of the applications do not make use of
any callbacks. A manual investigation revealed that all of these
applications only provide a WebView for user interactions,
and indeed do not make use of the callback mechanism.
Furthermore, the majority of applications only use a small
number of pairs. The figure shows how 50% of the applications
use less than 393 pairs, and 90% of them use less than 2,000
pairs. Moreover, no application in our dataset uses more than
9,178 pairs.

The second experiment we conducted illustrates how the
incomplete treatment of ICFTs in FlowDroid results in false
negatives when analyzing benign off-the-shelf applications.
To this end, we analyzed 500 randomly selected real-world
(i.e., from Google’s Play Store) Android applications with
the current development version of FlowDroid3. We compared
these results with the results of our modified version of Flow-
Droid that incorporates the additional information of ICFTs
(as described in Section VII-F). This comparison is especially
interesting along two different performance dimensions —
analysis speed and precision. Thus, we answer the following
two questions: 1) Does the large number of registration-
callback pairs identified by EDGEMINER negatively impact
the analysis’ execution speed? and 2) Does this systematic
approach to the ICFT challenge enhance the analysis’ precision
in terms of detecting privacy leaks?

Table III reports the results we obtained when conducting
this experiment on the same hardware that we used to evaluate
EDGEMINER on (see Section VII-D) with a five minute time-
out. In particular, the table reports the number of applications
for which at least one privacy leak was detected, for which
no privacy leak was detected, and for which the analysis
encountered a timeout. Moreover, the table also reports the
total number of privacy leaks detected for the entire dataset.

First, the number of applications for which the analysis
times out does not change. This indicates that the integration
of our results with existing tools does not introduce scalability
issues. Second, note how the improved version of FlowDroid
detects privacy leaks in 9 applications that were previously de-
termined to be free of privacy leaks. Of course, the applications
identified to leak sensitive information by the modified version
of FlowDroid are a strict superset of the original results. To
assess whether these newly detected leaks are true positives,
we performed an additional experiment: we executed these 9

3To ensure maximum comparability, we asked the developers of FlowDroid
for access to their original evaluation dataset. Legal reasons prevented them
from sharing their data.

TECHNICAL REPORT TR-UCSB-2014-05 14

applications within TaintDroid [13], a dynamic taint analysis
system designed to detect privacy leaks. The rationale is that
if TaintDroid can verify a privacy leak, we have a witness
execution and know for a fact that the leak exists (i.e., it is a
true positive). Out of the 9 applications, TaintDroid confirmed
a privacy leak in four (all these apps were leaking IMEI),
for three apps no privacy leak was detected, and TaintDroid
crashed for the remaining two. This confirms that, at least
for the four applications where TaintDroid found a leak, the
original version of FlowDroid is affected by false negatives.
Augmenting FlowDroid with the results from EDGEMINER
successfully identified these privacy leaks. Also, note that
the fact that TaintDroid did not identify any privacy leaks
in three apps, does not imply that the statically-identified
privacy leaks are false positives. Because of its dynamic nature,
TaintDroid also suffers from limited coverage. With advanced
dynamic testing based approaches achieving roughly 33% cov-
erage [26], it is possible and even likely that the corresponding
privacy leak was not triggered in this experiment. In summary,
we showed how the incomplete handling for ICFTs is the root
cause of false negatives when detecting privacy leaks in real-
world applications. As another interesting data point, note
how the absolute number of detected privacy leaks increased
by roughly 10% (from 46,586 to 51,418) after we integrated
EDGEMINER’s results.

Finally, we measured the impact of our work on the
performance of the FlowDroid. We found that, on average,
our modification requires 34.7 seconds to load EDGEMINER’s
results in the map data structure on startup. As this step simply
parses a configuration file (that is invariant from the application
to be analyzed), the cost of this step can be amortized by load-
ing the data only once when processing multiple applications.
We also measured how the analysis time changed as a result of
augmenting the call graph generated by FlowDroid. We found
that the modified version of FlowDroid is 1.85% (± 0.3%)
slower than the original unmodified version. This clearly shows
how the overhead introduced by augmenting FlowDroid with
information related to ICFTs is negligible. Furthermore, this
corroborates the intuition that, even if the number of pairs we
found is really high, real-world applications only use a small
number of them.

VIII. RELATED WORK

In this section we discuss scientific publications that are
related to our work. Most relevant are the works that aim to
summarize different aspects of the Android framework and
other platforms, such as the Java framework. Furthermore, we
discuss works that apply static analysis techniques to analyze
Android applications.

Automatic Extraction of Library Summaries. Recent works
in Android security proposed approaches to summarize certain
aspects of the Android framework. Felt et al. [16] develop
Stowaway, where the authors aim to extract a mapping between
Android APIs and the permissions they require to be executed.
In their work, the authors use an approach based on dynamic
analysis to extract these mappings, and they then use the results
to discover over privileged applications. Au et al. developed
PScout [10] to achieve the same goal, by applying static
analysis techniques (e.g., reachability analysis) to the Android
framework codebase. More recently, Rasthofer et al. developed

SuSi [25], a tool that analyzes the Android framework code-
base to automatically identify sources and sinks in the Android
framework. In particular, they use a combination of machine
learning and static analysis techniques.

Other works that relate to ours are those that applied similar
techniques to the codebase of other libraries, such as the JDK
library, or the Scala standard libraries. For example, Yan et
al. [27] use the SOOT [22] framework to analyze JDK library
for alias analysis, while Probst [24] developed a tool to extract
a summary of the control flow graphs of the JDK library.
Similarly to our work, Zhang et al. [28] perform static analysis
on the Java standard library to model callbacks. However,
their work is limited to handling synchronous callbacks, while
asynchronous callbacks are ignored. As shown in Figure 2 of
Section II, proper modeling of these callbacks is required: oth-
erwise, malware can evade the analysis. Furthermore, Zhang
et al. only match type signatures of callbacks and disregard
the data flow dependency between registration and callback.
First, this simple approach can lead to a significant number of
false positives. Second, as we already mentioned, this approach
is not sufficient to properly extract asynchronous registration-
callback pairs: in fact, such callbacks are often implemented
by storing an object in a specific field (through a registration
method), and by then retrieving it, later on, to invoke one of
its methods (i.e., a callback). Clearly, proper data flow analysis
is required to handle these cases.

Our work is complementary to all these works. In fact,
while we share the same goal of summarizing the Android
framework (or a different library) to allow existing static analy-
sis tools to perform a better analysis, we focused on a different
security-related problem – the complete modeling of implicit
control flow transitions through the Android framework.

Static Analysis on Android Applications. Enck et al. [14]
developed ded, a tool to re-target Android applications from
Dalvik to Java bytecode. Then, they used commercial off-
the-shelf control-flow and data flow analysis to find mis-use
of phone or personal identifiers and establish the prevalence
of advertising networks among Android applications. Several
other works apply a combination of techniques based on
static analysis, machine learning, and heuristics to detect
malicious Android applications [7, 15, 19, 30]. Jeon et al. [21]
propose RefineDroid, a static analysis to infer the fine-grained
permissions suitable for existing Android applications, and
then enforcing them without affecting the applications’ original
functionality. Others have applied static analysis techniques to
discover vulnerabilities in Android applications. For example,
Zhou et al. [29] developed ContentScope to automatically find
content leak vulnerabilities, while Grace et al. [18] developed
Woodpecker, to detect capability leaks. Dexter [3] is a static
analysis tool that can decompile and dissemble Android appli-
cations.

Finally, FlowDroid [9] leverages on-demand algorithms to
perform static taint analysis on Android applications. The goal
of FlowDroid is to identify applications that incidentally or
maliciously leak privacy sensitive information. FlowDroid’s
website states that FlowDroid “needs a complete modeling of
Android’s callbacks”. While the configuration distributed with
FlowDroid cannot claim to be comprehensive, the conservative
analysis employed by EDGEMINER identifies all callback and
registration pairs in the Android framework. The results of

TECHNICAL REPORT TR-UCSB-2014-05 15

EDGEMINER can directly be used by the above-mentioned
analysis systems to create more precise Android application
control flow graphs.

IX. CONCLUSION

In this paper, we designed and implemented a novel
analysis tool, called EDGEMINER, that automatically generates
API summaries that describe implicit control flow transi-
tions through the Android framework. Our approach works
by statically analyzing the Android framework codebase. In
particular, our approach performs inter-procedural backward
data flow analysis to extract a list of registration-callback pairs
throughout the framework.

We evaluated EDGEMINER on several versions of the
Android framework, and we automatically reconstructed sev-
eral million implicit control flow transitions. Moreover, we
show how these implicit transitions can be used by malicious
applications to evade static analysis tools, including FlowDroid
– a state-of-the-art static analysis tool for Android applications.
Our evaluation also demonstrates, how existing analysis tools
can easily take advantage of our results to increase their
precision and eradicate ICFTs as the root cause for a whole
class of false negatives.

REFERENCES

[1] Android-apktool: a tool for reverse engineering android apk files. https:
//code.google.com/p/android-apktool/.

[2] Android Open Source Project (AOSP). https://source.android.com/.
[3] Dexter is a static android application analysis tool. http://dexter.dexlabs.

org/.
[4] Documentation related to the Activity component. http://developer.

android.com/reference/android/app/Activity.html.
[5] UI/Application Exerciser Monkey. http://developer.android.com/tools/

help/monkey.html.
[6] Worldwide smartphone shipments top one billion units for the first time.

https://www.idc.com/getdoc.jsp?containerId=prUS24645514.
[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck.

Drebin: Effective and explainable detection of android malware in your
pocket. In NDSS: the Annual Symposium on Network and Distributed
System Security, 2014.

[8] S. Arzt. Droidbench. http://sseblog.ec-spride.de/tools/droidbench/.
[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps. In Annual ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), 2014.

[10] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: analyzing
the android permission specification. In CCS: the ACM conference on
Computer and communications security, 2012.

[11] P. P. Chan, L. C. Hui, and S. M. Yiu. Droidchecker: analyzing android
applications for capability leak. In WISEC: the ACM conference on
Security and Privacy in Wireless and Mobile Networks, 2012.

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490,
Oct. 1991.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In OSDI: the USENIX
conference on Operating systems design and implementation, 2010.

[14] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In USENIX Security Symposium, 2011.

[15] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight Mobile
Phone Application Certification. In ACM Conference on Computer and
Communication Security (CCS), 2009.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In CCS: the ACM conference on Computer
and communications security, 2011.

[17] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. SCanDroid: Automated
security certification of Android applications. Technical Report, Uni-
versity of Maryland, 2009.

[18] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of
capability leaks in stock android smartphones. In NDSS: the Annual
Symposium on Network and Distributed System Security, 2012.

[19] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker:
Scalable and Accurate Zero-day Android Malware Detection. In
International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2012.

[20] C.-H. Hsiao, C. L. Pereira, J. Yu, G. a. Pokam, S. Narayanasamy,
P. M. Chen, Z. Kong, and J. Flinn. Race Detection for Event-Driven
Mobile Applications. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2014.

[21] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein. Dr. android and mr. hide: fine-grained permissions in
android applications. In SPSM: the ACM workshop on Security and
privacy in smartphones and mobile devices, 2012.

[22] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot framework
for Java program analysis: a retrospective. In Cetus Users and Compiler
Infrastructure Workshop, 2011.

[23] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: statically vetting
android apps for component hijacking vulnerabilities. In CCS: ACM
conference on Computer and communications security, 2012.

[24] C. W. Probst. Modular control flow analysis for libraries. In SAS: the
International Symposium on Static Analysis, 2002.

[25] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning approach
for classifying and categorizing android sources and sinks. In NDSS:
Network and Distributed System Security Symposium, 2014.

[26] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: Automatic security
analysis of smartphone applications. In Proceedings of the Third ACM
Conference on Data and Application Security and Privacy, CODASPY
’13, pages 209–220, New York, NY, USA, 2013. ACM.

[27] D. Yan, G. Xu, and A. Rountev. Rethinking soot for summary-based
whole-program analysis. In SOAP: the ACM SIGPLAN International
Workshop on State of the Art in Java Program Analysis, 2012.

[28] W. Zhang and B. G. Ryder. Constructing Accurate Application Call
Graphs For Java To Model Library Callbacks. In SCAM: the IEEE
International Workshop on Source Code Analysis and Manipulation,
2006.

[29] Y. Zhou and X. Jiang. Detecting passive content leaks and pollution
in android applications. In NDSS: the Annual Symposium on Network
and Distributed System Security, 2013.

[30] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In NDSS: the Annual Symposium on Network and Distributed
System Security, 2012.

