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Rake: Semantics Assisted
Network-Based Tracing Framework
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Abstract—The ability to trace request execution paths is crit-
ical for diagnosing performance faults in large-scale distributed
systems. Previous black-box and white-box approaches are either
inaccurate or invasive. We present a novel semantics-assisted
gray-box tracing approach, called Rake, which can accurately
trace individual request by observing network traffic. Rake infers
the causality between messages by identifying polymorphic IDs
in messages according to application semantics. To make Rake
universally applicable, we design a Rake language so that users
can easily describe necessary semantics of their applications
while reusing the core Rake component. We evaluate Rake using
a few popular distributed applications, including web search,
distributed computing cluster, content provider network, and
online chatting. Our results demonstrate Rake is much more
accurate than the black-box approaches while requiring no
modification to OS/applications. In the CoralCDN (a content
distributed network) experiments, Rake links messages with
much higher accuracy than WAP5, a state-of-the-art black-
box approach. In the Hadoop (a distributed computing cluster
platform) experiments, Rake helps reveal several previously
unknown issues that may lead to performance degradation,
including a RPC (Remote Procedure Call) abusing problem.

Index Terms—Rake, tracing framework.

I. INTRODUCTION

LARGE-SCALE distributed system and cloud computing
have undergone unprecedented growth in recent years.

Parallel computing platforms, such as Hadoop [10], enable
Yahoo! to search through the entire Library of Congress in
less than 30 seconds [7]. Many of these systems employ load
balancing, caching, and replication to enhance capacity and
availability. On the positive side, if some nodes misbehave,
the whole system may still function properly. On the negative
side, debugging such systems becomes extremely challenging
because many performance problems are not only transient
but also unpredictable.

Traditional troubleshooting systems monitor individual ser-
vices and machines independently. For example, many com-
mercial network management products [4]–[6, 25] keep track
of resource usage, such as CPU and disk, and generate syslog
messages and various alerts. However, it is well known that
the performance of individual machines or network elements
may not directly correlate with user-perceived performance.
As a result, these commercial products often raise too many
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alerts. In fact, most of the alerts are simply ignored because
they do not affect users.

Recently there has been a plethora of research on debugging
performance problems that affect individual user requests.
Such work normally leverages the task tree1 to diagnose faults
either deterministically or statistically. A task tree encapsulates
the set of recursive messages that result from a particular task
or user request. For example, accessing a web page usually
involves DNS, HTTP, and database queries and responses. By
analyzing delays between messages, we can pinpoint the faulty
nodes or sometimes even the root causes. However, extracting
a task tree from a large number of messages has proven
to be extremely challenging, and hence has been intensively
studied [8, 9, 18, 19, 22].

We should consider the following factors when designing a
system to extract task tree:

• Accuracy. Accurately identifying the causality between
different messages is the key to diagnosing performance
problems.

• Non-invasiveness. Some approaches require modifications
to the OS, middleware, and/or applications. Generally, an
invasive approach may provide accurate tracing results, but
its invasiveness often hinders its wide adoption.

• Applicability. It is desirable to be applicable to any ap-
plications. Due to various practical issues such as model
limitation, accuracy requirement and instrumentation over-
head, no single approach can be applicable to all systems.
Our goal is actually to develop a tracing approach for a
wide range of distributed systems.

Most previous approaches for tracing task trees can be
classified into either the black-box or white-box ones. Existing
white-box approaches insert some unique IDs into messages
by instrumenting the application, middleware, or OS [18, 19].
In contrast, a black-box approach does not require any in-
strumentation or understanding of application’s architecture
and/or semantics [8, 9, 22]. Instead, it only relies on temporal
correlation between messages. While a black-box approach is
non-invasive, it tends to have limited accuracy. This motivates
us to develop a novel, “gray-box” approach for task tree
extraction that is both non-invasive and accurate.

In this paper, we introduce Rake, a semantics assisted gray-
box approach to extract execution path of distributed systems
and further use this information to diagnose performance
problems and failures. The basic idea stands on the observation
that there exist polymorphic “IDs” in the messages of the same
task which can be utilized to infer the task tree. In designing

1Similar terms such as execution path or causality path are also used.
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TABLE I
CLASSIFICATION OF MANAGEMENT AND DIAGNOSIS SYSTEMS.

������������App Knowledge
Invasiveness Non-Invasive Invasive

Network sniffing Interposition Logs Source code modification
Black-box Project 5, Sherlock WAP5 Footprint
Grey-box Rake Magpie,SALSA
White-box X-Trace, Pinpoint

Rake as a generic tracing and diagnosis tool, we make the
following contributions:
• We propose a novel, non-invasive, grey-box tracing and

diagnosis approach and only requires limited application
semantics provided by application developers.

• We propose general guidelines to identify necessary seman-
tics of applications that can be used to link messages. Two
simple rules are demonstrated to be general and powerful
enough to allow Rake to be applied in plenty of popular
applications.

• We design an XML-based Rake language to allow users to
provide application semantics, which makes Rake a general
tool that can be quickly adopted to different applications
with different semantics. It is also easy to extend Rake to
a new or an updated application by just writing an XML
file with a few user libraries if necessary.

• We demonstrate the feasibility and accuracy of Rake using
some testbed experiments including a content distribution
network – CoralCDN [20] and Hadoop. We release our
source code online at [26]. In addition, we execute the
accuracy analysis based on real measurement data of one
major web search infrastructure. Evaluation results demon-
strate that the semantics based approach is much more
accurate than the black-box approaches while requiring no
modification to OS/applications or any logs.
The rest of this paper is organized as follows. We give

related work in Section II, problem definition in Section III
and introduce Rake in Sections IV. Diagnosis approaches
are discussed in Section V. We present evaluation results in
Section VI and conclude in Section VII.

II. RELATED WORK

Significant recent research has been done on debugging or
troubleshooting service problems in the view of the entire
distributed systems. Many of these systems model the depen-
dencies between components with a task tree [8, 13, 19, 22]. A
task tree embodies control flows, resources, and performance
characteristics associated with servicing a request.

A. Task Tree Extraction Approaches

Table I shows a classification of previous diagnosis and
workload extraction systems. We will present them as follows.

a) Black-box approaches: Project5 [8] attempts to iden-
tify execution paths of messages with no knowledge of ap-
plications. Two algorithms, the nesting algorithm and the
convolution algorithm, for inferring the dominant causal paths
are proposed in Project5. Reynolds et al. further proposes
WAP5 [22] to improve Project5. WAP5 also uses time cor-
relation between incoming and outgoing messages on a node
to link messages with probabilities. Anandkumar et al. studied

the linking of transaction footprints and reduced the maximum
likelihood rule to the minimum weight bipartite matching
problem [9].

Another research work, Sherlock [12], considers an ag-
gregated dependency graph instead of individual task trees.
A dependency graph models dependent relationships among
components in the network. The follow-up work of Sherlock,
Orion [15], uses the delay spike based analysis to further
increase the accuracy of discovered dependencies.

These black-box based approaches can be easily applied to
different applications; however, the accuracy heavily depends
on cross traffic and application properties because time corre-
lation is the only information to link messages.

b) White-box approaches: X-Trace [18] tags all network
operations resulting from a particular task with the same task
identifier. To do so, the TCP/IP stack is enhanced and applica-
tions must be instrumented to invoke X-Trace. However, for a
large distributed system using many softwares from different
vendors, some even on different platforms, X-Trace may be
limited to a certain part of the system where software source
codes are available and modifiable. Similarly, Pinpoint [19]
also instrument middleware to track the requests as the flow
through the system.

c) Gray-box approaches: A gray-box approach is some-
thing between the white-box approach and the black-box ap-
proach. It does use certain general application knowledge, but
does not require the detailed implementation of applications
such as data structures. Magpie [13] works with events gen-
erated by the operating system, middleware, and application
instrumentation. Instead of unique identifiers, Magpie relies
on experts with deep knowledge about the system to construct
a schema of how to correlate events in different components.
SALSA [24] is another log-based approach which relies on the
application logs to derive state-machine views of the system’s
execution. In comparison, Rake is on message level, while
Magpie and SALSA rely on the event logs generated by the
operating system and applications. Log based approaches may
suffer from the insufficient log content and coarse diagnosis
level.

d) Intrusiveness Classification: Table I shows a classifi-
cation of previous diagnosis and workload extraction systems.
Sherlock [12] and Project5 [8] only use network sniffed
traces, which have no modification to the OS and applications.
Reynolds et al. develop their own library to collect OS level
traces such as system calls [22], which can obtain richer
information than pure network sniffing, but is more invasive.
X-Trace [18], however, requires users to modify both the
OS and the application to inject unique IDs in all messages.
Apparently, this approach is extremely invasive. Interestingly,
the previous works usually are of two poles, either very
invasive white-box or non-invasive black-box. This motivates
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our research of semantic-based diagnosis system, Rake, which
is non-invasive and very accurate in terms of message linking.

B. Other Related Works

It is worth mentioning that the gray-box concept and
semantics are general and used in other research areas as
well. For example, in [11], Arpaci-Dusseau et al. studied
how to treat an OS as a gray box, and then disseminate OS
research ideas without requiring any changes to the underlying
OS. Also protocol semantics are widely used in the security
arena, such as in network intrusion system [17] for packet
classification.

III. PROBLEM DEFINITION

Unlike X-Trace [18] that injects IDs into messages, we
argue that such IDs already exist in messages and can be
dug out. We designed Rake based on the following key
observation:

Generally, in distributed system implementations, there are
no explicit unique IDs between all the messages in a given task
tree; there are, however, polymorphic IDs along the paths of
the task tree. Further, the polymorphic IDs can be extracted
with proper semantic knowledge of the system implementation.

A. How Does Rake Work?

In this paper, we assume the tree model, i.e., a child message
is triggered by only one parent message. This simple model
works for many applications and adopted by most diagnosis
approaches [8, 12, 22].

Basically, Rake takes four steps to identify task trees: 1)
Identify message types based on signatures; 2) Extract ID set
of messages based on their type; 3) Given a message, deduce
the ID set of its triggered messages; 4) Construct task trees
by matching IDs.

For example, consider the recursive DNS query process.
DNS packets can be identified by port number. One can take
the DNS query target as the ID of the query and its triggered
response messages. Hence all the DNS messages for the same
query task can be easily connected.

B. Why Does Rake Work?

Generally, if one message triggers another, they must have
causality relationship and the causality is also reflected in the
contents. In reality, a portion of the messages (so-called IDs)
are often enough to uniquely identify the causality. We can
find a function to map contents of a message to the IDs of
triggered messages. On the other hand, there are so many
different distributed systems running different software and
protocols. Hence the challenge of this research is to find as
universal solutions as possible, and to demonstrate the wide
application of the Rake framework.

When will Rake fail? In theory, if Rake can reproduce
all states of the monitored system, Rake can always derive
exactly the output messages triggered by one input message.
In practice building such a system is too expensive if not
impossible, and we choose not to infer any internal states

Application
semantics

Traced data
(e.g., sniffed at

routers/switches)

User
library

Linked
messages

Diagnosis
output

Rake Core

Language parser

Message linker

Diagnosis module

Fig. 1. Architecture of Rake.

of systems. Therefore, if the discovery of the causality re-
lationship between two messages is impossible without some
internal states of the distributed system, Rake will fail. For
example, imagine in a distributed file system (DFS), the input
query is a file name and the output can be a number as the
file ID, which is generated based on an internal counter in the
server’s memory. However, often other part of the input and
output messages can disclose the causality as well, as we see
in the Hadoop DFS system.

C. How to Make Rake Work

While the high-level idea of Rake is very simple, we need to
answer the following key questions to build practical tracing
systems:

• There is no single universal mapping function. Therefore,
we leverage on the semantics of applications. How do we
utilize the abstract semantics concept in the real systems?

• Different applications have different semantics. How can we
design Rake to be general and easily adopted by different
applications with various semantics?

• What accuracy and efficiency can Rake achieve in real
applications?

IV. DESIGN OF RAKE

In this section, we describe our semantic assisted task
tree extraction scheme, Rake. We first describe the high-level
philosophy of Rake, and then describe, in detail, the design
of Rake, including selection and utilization of semantics.

A. System Architecture

Figure 1 shows the architecture of our Rake system. The
core components of Rake include three modules: a language
parser, a message linker and a diagnosis module. To decouple
Rake core from the various application semantics, Rake takes
unified semantics as the input, and the language parser reads
the application semantics in an XML based language (See
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Fig. 2. Example of message linking.

Section IV-C). The message linker then extracts message IDs
and links related messages according to the IDs. Finally, the
diagnosis module takes the task trees as the input and output
the diagnosis results.

B. Semantics Used in Rake

Given a new application, a natural question to ask is what
kind of knowledge in the application is needed? First of all,
we need the high-level flow information of the messages
through the system. For example, for the DNS system, we
need to know the recursive/iterative DNS query procedure.
Furthermore, to extract the IDs from messages, certain knowl-
edge of the message format is necessary. On the other hand,
we find that Rake does not require detailed implementation
knowledge. For example, it does not require the internal
data structures, multi-threading usage, queue maintenance or
others. Protocol specifications with complete state machines
and packet format are enough to find the causal relationship
of messages. Taking DNS as the example again, the knowledge
in the DNS RFC is sufficient.

Consider the triggered event of a message. A message may
trigger the node to communicate with other nodes, or trigger a
response back (See Figure 2). We elaborate on the two cases
as follows:
• Message ID transformation: This is for linking an outgoing

message to its triggering incoming message, when the
incoming message triggers further communication to other
nodes (e.g. linking messages B and C to A in Figure 2).
Often times, the incoming and outgoing messages are also
related in their content, as well as in logic. Especially in
many applications of query style, the query target usually
is embedded in the query messages, though probably in
different formats. For example, consider a chat message
going from the sender to the IRC server. The IRC server
simply forwards the chat message to another IRC server. In
this case, taking the chat content as the message ID, this
ID is kept in the incoming and outgoing messages.

• Communication protocol: This is for linking the query and
the response messages between two nodes (e.g. linking
message D to C in Figure 2). The query and response
style is prevalent and the communication protocol itself
guarantees that the sender can link its multiple queries
to the responses, even with reordering. For example, the
protocol can specify a query ID in the query and match
the response ID with the query ID. With the knowledge of
the communication protocol, Rake can link the query and

<Rake>
<Message name=”IRC PRIVMSG”>

<S i g n a t u r e>
<P r o t o c o l> TCP < / P r o t o c o l>
<P o r t> 6667 </ P o r t>
<Regex> PRIVMSG < / Regex>

</ S i g n a t u r e>
<Link ID>

<Type> R e g u l a r e x p r e s s i o n </ Type>
<P a t t e r n> PRIVMSG\ s + ( . ∗ ) </ P a t t e r n>

</ Link ID>
<Chi ld ID>

<Type> Link ID < / Type>
</ Chi ld ID>
<Query ID>

<Type> None </ Type>
</ Query ID>

< / Message>
< / Rake>

Fig. 3. Example of IRC XML description.

response as the sender does. For example, Hadoop RPC [10]
uses a unique ID to match every pair of calls and returns
in one communication channel (or socket).

C. Rake Language to Utilize Semantics

Different application and distributed systems have differ-
ent semantics. Implementing separate codes using different
semantics for each application will waste much programming
time on similar or identical components. Therefore, we attempt
to design a unified Rake infrastructure, to which users can
supply the semantics of their applications easily. We provide a
simple language to allow users to present their semantics, and
the Rake infrastructure works as an interpreter, understanding
user provided semantics and using it to link messages.

1) Basic Rake Language: We choose XML to present the
Rake language, which is widely used for creating custom
markup languages. The Rake language is message driven, and
it mainly defines properties of the messages. Take IRC as
an example; assume we are interested in tracking the chat
messages. We define a message named “IRC PRIVMSG”
with the XML tag <Message name=”IRC PRIVMSG”> (See
Figure 3). There are five basic properties for a message to
specify:
• Signature: The signature property is used to identify the

message type. Usually different messages have different for-
mat, different IDs carried and different following messages
triggered. Therefore, it is necessary to provide accurate
signatures to classify messages correctly. We provide a
simple content-based matching mechanism.

• Link ID: Link ID is the ID that this message carries and
is used to match with the parent message triggering this
message. For example, in IRC chat messages, the chat
content (including channel, sender and the chat words) can
be used as the Link ID, and the regular expression extracts
the content out (See Figure 3).

• Child ID: The Child ID specifies the IDs that will be in
the future messages triggered by this message. Note, one
message may trigger several messages and the Child ID
may be a set of IDs. The Child ID is used to match the
aforementioned Link ID. For example, when an IRC server
first receives a chat message from the client, the Child ID is
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<Message name=”DNS Response ”>
. . . . . .
<Link ID>

<Type> U s e r F u n c t i o n < / Type>
<L i b r a y> dns . so < / L i b r a y>
<F u n c t i o n> Get DNS Dest </ F u n c t i o n>

</ Link ID>
. . . . . .

< / Message>

Fig. 4. Example of DNS XML description.

the chat content. When the IRC server delivers the message
to another server, the second message’s Link ID is also
the chat content. Hence the two messages can be linked
together because the first one’s (one of) Child ID matches
the second one’s Link ID. If the Child ID is the same as
the Link ID of the same message, the type of Child ID
can be set to some particular value indicating the equality
(e.g. in IRC case in Figure 3).

• Query ID and Response ID: The Query ID and Re-
sponse ID pair is similar to the Link ID and Child ID
pair. But these IDs are for the query/response or RPC
style communication. Usually, based on the programming
habit, the query and response can be matched by five
tuple (source IP, source port, destination IP, destination
port, protocol), and some user-defined query/response ID.
In the IRC example, Query ID and Response ID are not
applicable, and hence these IDs can be set to the “None”
type in the XML file.

2) Signatures: We provide a content-based signature
matching to classify messages. Currently, Rake supports four
types of signatures: packet header field matching, expression
testing, regular expression matching and user defined function.
The first two types are borrowed from TCPDUMP filters.

For the packet header field matching, the user can specify
some fields in IP, UDP and TCP headers. For example, the IP
protocol field specifies whether the payload is UDP or TCP.
The port in UDP and TCP header is also useful.

The expression matching allows users to specify some com-
plex signature matching. For example, as shown in Figure 4,
to differentiate the DNS query and response messages, we
check if expression udp[10]&128 is 0 or not. The eleventh
byte since the UDP header 2 is the flag byte for DNS packets.
The expression format is similar to that in TCPDUMP.

The regular expression matching is useful for messages with
text format, e.g., IRC and HTTP messages. Users can write
regular expression to classify messages. In the IRC example,
we simply use the regular expression “PRIVMSG” which
checks if the message contains the string or not.

While we believe most signature can be expressed in the
previous three pre-defined ways, there may be some special,
complex signature patterns. Hence, as the last resolve, we
allow users to provide their functions. The details of the user
specified function will be introduced in the Section IV-C3.

Note, all the matching rules defined in the same signature
tag are combined using the “And” operation, which means the
message classified as this type should satisfy all the rules. If

2Actually this is the 3rd byte of the UDP payload.

the users need to specify some alternative matching rules, they
just need to write multiple Signature definitions.

3) Matching IDs: We define four types of IDs in Rake:
Link ID, Child ID, Query ID and Response ID. We first
describe the common properties they share, and then describe
the unique properties of some of them.

a) Common properties: The common properties specify
how to get the IDs from the message. The first property is
TYPE, specifying the method to extract the ID. Currently, we
define the following types:
• Regular expression: For some applications with payloads

in text format, the IDs of messages can be extracted out by
regular expressions. For example, a simple expression can
extract the URL in the HTTP packets as the ID.

• Block: User can specify some blocks in the message as the
ID. This may be useful for some messages with binary
format. For example, for the DHT query and response
messages in CoralCDN [20], the first four bytes (actually
an integer) are the query and response ID.

• User defined functions: In some application, the IDs in a
message may not be extracted from the packet payload
using simple methods, e.g. hash functions. In Rake im-
plementation, we utilize the dynamic (or shared) library
techniques to allow user to define their own functions.
Rake specifies the interfaces, and defines their input and
output. The user implements the interface accordingly. In
the current Rake implementation on Linux platform, we
utilize the libtool [3] to call the functions in the shared
library written by users. For the DNS example (See Fig-
ure 4), for the Link ID of DNS Query messages, the type
is User Function, the user provided library is dns.so and
the function is Get DNS Dest.

• Special types: One special type is NONE, which means
some ID (usually Query ID or Response ID) may not exist.
Another type is to reuse another ID, e.g., when the Child ID
is the same as the Link ID.

b) Special matching of Query ID and Response ID:
As we described, the Query ID and Response ID matching
is usually for the query/response or RPC style protocols. So
implicitly, the query and the response are in the same network
connection (or socket).

c) ID inheritance: In some cases, a message may need
to inherit some IDs from its parent message to link its own
triggered messages. This may happen in the query/response
style communication. For example, in Hadoop distributed file
system (Hadoop DFS), to download a file, the client will
submit two sequential RPC “getFileInfo” (with the query QA

and the response RA) and “getBlockLocations” (with the
query QB and the response RB). In the two queries, the
target filename can be extracted as the ID, and we can link
the two queries (QA and QB). Meanwhile, the query and its
response (e.g. QA and RA) can be linked using the RPC ID
in the messages. However, the correct linking should link the
response of the first “getFileInfo“ call (RA) to the second
query (QB). Unfortunately, RA contains some file properties,
but not filename. Therefore, it is desirable to let the response
RA to inherit the ID (i.e. filename) from its parent message,
the query QA. In the semantics description of the response
RA, we can use the following tags to specify the inheritance:
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<I n h e r i t I D name=” F i lenam e ”>
P a r e n t . Link ID

< / I n h e r i t I D>
<Follow ID>

<Type> I n h e r i t < / Type>
<Value> I n h e r i t I D . F i lenam e </ Value>

< / Fol low ID>

In this example, the message inherits its parent message’s
Link ID and renamed it to be “Filename”. Then the Child ID
of the message is specified to be the “Filename” inherited.

D. Practical Issues and Diagnosis

1) Software Evolution: When the application evolves, some
semantics in the application may change. For example, we
noticed the quick update of Hadoop, which comes up with a
new version nearly every month.

To Rake, the evolution of some applications is easy to deal
with. Often time the overall protocol and the basic message
format does not change much, although the software imple-
mentation may update significantly. For example, Hadoop took
about one year to evolve from v0.14.0 to v0.18.0, but there are
no major changes in its network protocol. So the user function
for parsing Hadoop messages only need to change a couple
of lines. On the other side, X-Trace is not built in Hadoop’s
development so far. It is painful to patch X-Trace manually
for the new Hadoop version, even if the new changes are not
related to the network component at all. When we ask the
authors for the latest source of X-Trace on Hadoop, we were
told “[Hadoop] changes too quickly for us [X-Trace] to be
able to migrate the current patch forward.”.

2) Trace Collection: Rake takes the sniffed network traffic
as the input trace. Although sniffing is a mature and widely
used technique, sniffing and collecting data from a large
network can still be a challenging problem.

Sniffers can be put on hosts and/or on the routers/switches.
Sniffing every host seems to be lots of work, but it is actually
very easy in some systems. For example, in our evaluation of
CoralCDN over PlanetLab, simple scripts can start Tcpdump
on every server and download all sniffed data.

a) Partial Sniffer Deployment: For various reasons, fully
sniffing the whole network may be infeasible or too costly.
Partial sniffer deployment degrades the power of Rake by
causing the diagnosis granularity to be coarser. Fortunately,
Rake deployer or administrator is able to evaluate and select
a good trade-off between deployment cost and diagnosis
power. A general approach to evaluate different trade-offs is
to analyze the semantics graph (e.g. Figure 10). By deleting
nodes (servers) and edges (network communications), one can
evaluate the cost reduction on sniffing (e.g. number of sniffers
saved), as well as the change on task trees and diagnosis
granularity (e.g. completeness of partial task tree compared to
full task tree with complete sniffer deployment). For example,
in our Hadoop experiment (See Section VI-E), we usually
adopt partial sniffer deployment. We noticed a few master
servers control relatively large number of the slave nodes,
and generally the slave nodes rarely talk between each other.
Therefore, we choose sniffing on the few master nodes only,
which covers most part of the task tree. Rake may only
miss the latest layer of the tree involving the communication
between slave nodes in rare cases.

b) Time synchronization: With multiple sniffing points,
time synchronization is a practical problem to consider. If
different nodes are not synchronized, calculated latency also
includes clock offset. What’s more, packet reordering may
happen after merging traces from different sniffers, causing
message linking algorithm to fail. Synchronization itself is a
challenging research problem, and there exist lots of solutions
for it. Particularly, we leverage on Paxson’s technique [21]
in Rake to adjust time in captured traces before merging
them together. Paxson’s technique [21] is simple and fast,
however it assumes symmetric network delay. This assumption
may work well in enterprise networks which usually are built
on LANs and have very small network delay. Internet-scale
deployment may violate the assumption, but packet reordering
can be avoided by Paxson’s technique generally. Also Rake
can freely adopt more sophisticated synchronization algorithm
if necessary.

c) Preprocessing Collection Data: Sniffing and sending
all data packet back to a central machine may not be practical.
Rake mainly use the IDs extracted from a few packets.
Therefore, simple preprocessing after sniffing, and sending
back only a summary of the packets is desirable. This way,
the network overhead of collecting traces is negligible. For
example, in CoralCDN, we only need to extract 20 bytes from
one large packet.

d) Encryption and Compression of Packets: Encryption
and compression may prevent Rake from understanding the
semantics of the communication. This is the common problem
of many security applications such as deep packet inspection.
While this is true, we would not worry about it much due to
the following reasons:

• Many popular distributed systems such as DNS systems,
MSN and the search system do not encrypt or compress
their communication. The reasons for not using encryption
are diverse. For example, the data communications need
not be secure (e.g. DNS and IRC), or the system is isolated
from the external Internet, and encryption adds additional
overhead costs (e.g. Search system, MSN core network).

• There may still be approaches to overcome the encryption
problem. For example, if the communication is encrypted
using IPSec, it is possible to interposition between the
application and the dynamic library of IPSec to extract the
raw data.

V. DIAGNOSIS WITH TASK TREES

Diagnosing large distributed systems is non-trivial even if
accurate task trees are at hand. Since diagnosis is not the
focus of this paper, we only describe some simple diagnosis
algorithms that are used in our evaluations.

A. Diagnosis Using Processing Time

In many times sensitive applications such as web search,
IRC and CDN, the processing time may be a good indication
of the performance of the nodes. For example, if an index
server in a search system has an elevated processing time for
search queries on average, it is quite likely that this server has
performance problems and needs detailed diagnosis, such as
CPU/disk load investigation.
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When the messages in a task tree are linked together, it
is easy to calculate the time interval between linked messages
using the timestamp in the messages. These time intervals can
be viewed as the processing time. Therefore, task trees are very
helpful for such time sensitive applications. In our evaluation
on CoralCDN, we use the processing time for diagnosis.

B. Diagnosis with User Knowledge

In parallel computing systems such as Hadoop, it is not
appropriate to simply use the processing time to diagnose the
system. The normal interval between two linked messages can
be quite volatile, e.g., varying from seconds to minutes. For
such applications, it is challenging to find a single diagnosis
algorithm for all applications even if sophisticated machine
learning approaches are used. Instead of struggling with the
challenging diagnosis algorithm design, we apply user knowl-
edge in the Rake system to make the diagnosis job much
easier.

While users provide the semantics of the system, the user
can also provide the expected processing time or maximum
normal processing time as well. In Rake language, for some
time sensitive messages, the user may use the “Diagnose”
tag to specify the expected maximum processing time (an
example of Hadoop is shown below). While generating task
trees, Rake also checks if the processing time of the messages
is over the maximum processing time or not. If it is true, Rake
generates warnings for the unexpectedly long processing time.
In the evaluation of Hadoop (See Section VI-E), this simple
diagnosis approach actually helps us identify the Slow master
node problem.

<Message name=” Hadoop H e a r t b e a t R e s p o n s e ”>
. . . . . .
<Diagnose>

<MaxProcessTime> 1 </ MaxProcessTime>
</ D iagnose>

< / Message>

VI. EVALUATION

In this section, we first talk about our implementation
experience of Rake on different applications. Then we describe
the extensive experiments on some distributed systems.

A. Implementation

We implemented Rake in C++ on the Linux platform. The
Rake framework requires about 3000 lines of code. The XML
configuration files for applications usually have hundreds of
lines. For Hadoop, the message parsing and ID extracting rely
on the dynamic library, which are implemented in around 2000
C++ lines and can be found at [26]. For CoralCDN, DNS and
IRC, usually less than 300 lines are enough for user provided
library.

1) Interface between Rake and User Defined Functions:
In our Rake implementation, we utilize the libtool [3] to
call the functions in the dynamic library written by users.
Users can write functions in any language and compile it into
standard Linux shared library. Rake defines two interfaces,
one for determining the type of the message and the other
for extracting ID sets (Pm or Fm). For example, the interface

for message type takes the packet payload as the input and
then outputs a boolean to tell if the message is of a particular
type or not. The XML configuration files specify the name of
the user library and the function names, and hence Rake can
dynamically load the library and call them.

B. Experience of Applying Rake to Applications

Ideally the Rake users are the application designer but this
may not always be the case. Next, we describe our experiences
on applying Rake to IRC, DNS, CoralCDN and Hadoop, as
only non-designers.

1) Task Trees Discovery: For network protocols such as
DNS and IRC, we find that it is very convenient to simply
study the RFCs of them. The RFCs usually clearly describe
the task trees of the protocols and defines the message format.
The level of details of RFCs is just what Rake needs. No
software programming details are required.

For CoralCDN and Hadoop that are not well documented,
the semantics study is a little bit more troublesome. For Coral-
CDN, we mainly rely on source code reading to understand
its potential task trees. But we only focus on the network
module of CoralCDN, ignoring other modules such as cache
management. On the other hand, for Hadoop, because most
packets are in plain text, we find it is very helpful to learn the
message flows from the network traffic dump.

2) Task Trees Construction: In our real experience, we find
it is quite straightforward to find out the IDs used to link
messages. This may be because applications we studied are
mostly query or task driven applications. The query target
(e.g. query host name in DNS and URL in CoralCDN) or
its transformation (e.g. hashed value) is embedded in most
messages of the task tree. For the task based applications (such
as Hadoop), there is a built-in task ID that is contained in most
of the messages in the same task to differentiate concurrent
jobs. Therefore, finding the IDs to link messages becomes a
simple job of learning the packet format of the messages.

C. Evaluation Methodology

We evaluated two large distributed systems to show the
feasibility and accuracy of our Rake: (i) CoralCDN – Coral
content distribution network, and (ii) Hadoop – an open source
distributed cluster computing platform. Meanwhile, we also
analyzed the accuracy of task tree extraction of Rake on the
web search system of a top search provider. Similar accuracy
analysis of the IRC system is omitted due to space limit.

With the ground truth provided by a log-based approach,
we compared our Rake algorithm to previous studies using
the black-box approach WAP5 [22]. Since WAP5 does not
work for computation intensive applications such Hadoop, as
the gap between messages are general very large and the
time correlation fades quickly, we mainly compare WAP5
with Rake in the evaluation of CoralCDN. For Hadoop, we
show how we can use Rake to find out some design problems
and performance problems, which cannot be identified by
Hadoop’s own tools or logs.
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D. Evaluation on CoralCDN

1) CoralCDN Background: CoralCDN is a decentralized
peer-to-peer web-content distribution network. Figure 5 shows
a detailed example of execution path of messages in Coral-
CDN. The numbers in the path represent the sequence number
of messages linked by Rake algorithm.

2) Semantics used in Diagnosis of CoralCDN: Figure 6
shows the semantic information flowing through the coral
system. The URL requested by client in HTTP request serves
as the intrinsic ID to link all the related messages in a task tree.
Coral hashes the URL requested and converts it into a 20 byte
sha1 hash ID called KeyID. This KeyID serves as the ID (both
Link ID and Child ID) for all the later DHT communication,
and it is used to link the HTTP and DHT query messages.
Each pair of DHT query and response messages share a unique
MsgID, serving as a linking point.

3) Experiment Setup: We deployed CoralCDN on Planet-
Lab, using the public CoralCDN source code [20]. In our
current deployment, 25 PlanetLab nodes are installed with
Coral daemons and web server daemons. However, because
PlanetLab nodes are not always available and sometimes
heavily overloaded, usually we have about 18 Coral nodes
in our experiments. One of our university server acts as the
DNS server, handling all the customized DNS requests. The
source code of Rake in CoralCDN can be found at [26].

We replayed two different datasets of about half an hour’s
duration on CoralCDN. These two different data-sets are:

• URLSet1 – The sniffed network traffic of Tsinghua Univer-
sity in China. We replayed a total of 21 GB HTTP traces
collected from the university on coral CDN.

• URLSet2 – The sanitized access log from [23]. The logs
are sanitized and each line contains information of a HTTP
connection. We replayed a total of about 20,000 HTTP
connections.

4) Message Linking Accuracy: Due to the lack of ground
truth for CoralCDN task trees, we rely on a log-based ap-
proach which uses the CoralCDN logs to estimate the accuracy
of task tree extraction of both Rake and WAP5. CoralCDN
writes logs when some important events occur, e.g., receiving
a HTTP request, making a DHT query and starting download
from the real web servers. CoralCDN does not log any DHT
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Fig. 7. False rate of WAP5 vs. Rake.

message at all, making it impossible to diagnose CoralCDN
solely using the logs.

By modifying the CoralCDN source code (for CoralCDN,
this approach is invasive), we enhance the CoralCDN logs
so that we can link the events for the same HTTP requests
in the log into event trees. An event tree is simpler than
the corresponding message-level task tree. Typically an event
tree has four nodes, receiving HTTP request, starting DHT
query, start downloading from real web server and sending the
webpage to the client. To evaluate the accuracy of Rake and
WAP5, we compare the tree structures from Rake and WAP5
with the event trees generated from logs. Basically, using the
timestamp and URLs in the HTTP request, we first identify
the event trees and their corresponding task trees (from Rake
or WAP5). Next, given an event tree and its corresponding
task tree, for each node in the event tree, we check if we can
find a corresponding node in the task tree. For example, for
the “starting DHT query” message in an event tree, we check
if there are DHT query messages and response messages with
the same DHT ID in the task tree. If any node in the event tree
is missing a corresponding node in the task tree, the match of
the event tree and the task tree is false. Finally, we count all
the false cases and use the false rate to evaluate the accuracy
of task tree extraction for both Rake and WAP5.

Figure 7 shows the false rate of Rake and WAP5. Generally,
Rake is very accurate even when the HTTP request load is
very high, e.g., 160 requests/second. The higher request load
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causes the higher ambiguity, which hence affect the accuracy
of Rake. On the other hand, WAP5 has very low accuracy,
and the false rate is around 90%. Actually given certain high
HTTP request load (e.g. 40 requests/second), the messages of
different task trees interleave and time correlation is really not
a good way to link messages in task trees. This suggests that
WAP5 is better used in low load scenarios such as finding
performance bugs due to design or coding errors [22].

5) Diagnosis Ability: We calculate the processing time of
each coral node using both algorithms, WAP5 and Rake. We
take the difference of receiving and sending time for each pair
of linked messages as the processing time. Since both sending
and receiving timestamps are local to the node, we do not
have synchronization problem. For both Rake and WAP5, we
calculate the mean processing time for the HTTP and DHT
request seen under the HTTP request tree. We compare only
the processing time of the linked messages so that we can
have fair comparison between WAP5 and Rake.

We run CoralCDN on multiple PlanetLab nodes and log the
CPU load of these nodes. We conjecture that the CPU load
may correlate with the real processing time, because naturally
one may think a busy machine should be slow. However, we
find that processing time calculated from neither Rake nor
WAP5 correlate with the CPU load. One reason can be the
heterogeneity of PlanetLab nodes and load. Therefore, we
further conducted a controlled experiments on a single Coral
node installed in one of our own server which we have full
control on.

The controlled node runs Coral server daemon solely at
first. Then we use Lookbusy [14] to keep the CPU(s) at
the chosen utilization level. Figure 8 shows the processing
time calculated by Rake and WAP5 under different CPU
loads. As for Rake, we can see the processing time increases
significantly when the CPU load increases from 10% to 30%,
and then the line becomes quite flat. This phenomenon is
probably because Coral itself is not a computational intensive
program. The increase of processing time may be mainly
caused by the process scheduling of the operating system.
When the CPU load increases while it is still low, the Coral
program needs more and more time to get back CPU. To
make CPU busier and busier, Lookbusy does not increase
the number of processes, but reduces the sleeping time of
its processes. Therefore, when the CPU utilization is high
(e.g. over 40%), Coral process should have high priority and

switch back to running status quickly and this is not quite
affected by the CPU load.

On the other hand, the processing time calculated by WAP5
increases slowly and then drops a little bit as the CPU load
increases. And obviously, the processing time from WAP5
is much smaller than that of Rake. WAP5 underestimate
the processing time because it always attempts to link the
closest messages which might not be related. Actually lots
of unrelated control messages are also linked in the HTTP
request tree by WAP5. Since these messages are close in time
with other messages, the overall processing time in WAP5 is
lower than the actual time.

E. Evaluation on Hadoop

In this section, we present an example to use Rake to
diagnose Hadoop [10], an open-source parallel computing
framework, which is widely used by many companies such
as Yahoo! and Amazon.

1) Hadoop Background: Hadoop [10] is an open-source
implementation of Google’s MapReduce [16].

Hadoop enables distributed and parallel computation by
decomposing a massive job into smaller tasks and a massive
data-set into smaller partitions. Each task processes a different
partition of data in parallel on different machines. Hadoop
abstracts two types of tasks, Map task and Reduce tasks.
Hadoop uses the Hadoop Distributed File System (HDFS), an
implementation of Google Filesystem, to share data amongst
the distributed tasks in the system. HDFS splits and stores
files as fixed-size blocks (except for the last block).

Hadoop has a master-slave architecture for both HDFS and
the job computing. Usually there are a couple of master hosts
and multiple slave hosts. For HDFS, a NameNode (with a
backup) manages the HDFS file indexing and processes the
file access from clients, and the slave nodes act as DataNode
to store the file contents. For computing, the JobTracker
schedules and manages all of the tasks belonging to a running
job and the tasks are executed finally on the slave nodes,
tracked by TaskTrackers on each slave node. Note a Hadoop
job involves data file uploading and downloading as well as
long time computation on data. Usually there are a large
number of data packets for file transferring but infrequent
job status report messages. We find WAP5 generally cannot
find meaningful task trees and hence do not report WAP5’s
diagnosis results in the following evaluation.

Hadoop use log4j to log useful information. There are
different levels of log, such as ERROR, WARNING, INFO and
DEBUG. To save the log data size, DEBUG level logs are not
enabled by default, and Hadoop only logs some significant
events related to job progress. Even in the DEBUG level,
the log is far from the granularity of packet level. Therefore,
Hadoop logs are generally data-mined in the event or state
level (e.g. [24]).

2) Semantics used in Diagnosis of Hadoop: In this section,
we use two examples to show the semantics of Hadoop utilized
to link messages into task trees. Hadoop uses a general term
IPC (Inter-Process Communication) call to denote their remote
procedure call. In this paper, we will use IPC call and RPC
interchangeably.
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Fig. 9. Semantics of Hadoop DFS - Get operation.

a) Hadoop DFS - Get Operation: Figure 9 shows the
message flow as well as the semantics that can be used to
link the messages together. First, the client will send a IPC
call “getFileInfo” to the NameNode to get the status of the
files, e.g., existence, its owner and group information. Note
the file name of the target file can be used as the ID to link
following messages. File name is not a unique ID in some
cases, as different clients may get the same file from DFS
at the same time. To further reduce the ambiguity, we also
add socket information (client IP and port) to make the ID
to be unique. The NameNode returns the status of the file
status via the IPC mechanism. As we described above, remote
procedure calls and returns are matched via the unique IPC
IDs, and the IPC ID is used to link messages in this case.
Next, the client uses a second IPC call “getBlockLocations”
to get the location of the blocks of the target file, including
the inode IDs and the hostname of the datanodes storing
the blocks. In the IPC call of “getBlockLocations”, it also
contains the file name which is used to link with the previous
“getFileInfo” IPC call. Then the NameNode replies with the
block information. This time, the Link IDs generated are the
inode IDs, which should be unique in the DFS system. Last,
the client sends the “Copy” command to the DataNode to
download the file blocks, presenting the inode IDs. When the
TCP session of downloading ends (normally or exceptionally),
the last message (with TCP FIN or RST flag) is linked to the
beginning of the downloading. In a word, to link the messages
in the Get operation, the polymorphic IDs are first the file
name, then the IPC IDs and inode IDs, and finally the socket
tuples.

b) Hadoop Job Running Operation: Running a job in
Hadoop is much more complex than simple DFS operations.
Actually, during the running of a job, many files are created
and read. Due to space limit, we only briefly introduce the
semantics Rake can utilize to link the whole job running
process, omitting many details.

Figure 10 shows the general steps of a job running. Note
each step in the graph may contain multiple sub-steps and
Rake does link the messages in these detailed sub-steps. First,
the client requests a new job via the “getNewJobID” IPC
call (Step 1). In the reply from the JobTracker, a JOB ID
is returned, which is one of the basic ID that Rake uses to
link the whole task tree (Step 2). Then the client uploads
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a couple of files using DFS operations, e.g., the user code
and configuration files (Steps 3∼6). Note the file names of
these files all have the fixed format and contain the JOB ID
as part of the file names. This is how Rake link the DFS
uploading operations into this task. After uploading the job
files, the client submits the job to the JobTracker, including the
JOB ID in the message. Then the JobTracker assigns different
Map and Reduce tasks to several different slave nodes. In
each assignment, there is a TASK ID, which contains the
JOB ID and some additional information, such as the ID to
differentiate this task to others of the same job and the type
of the task (Map or Reduce). The JOB ID is used to link the
assignments to the job (e.g. linking Step 8 to step 7), and
the longer TASK ID is used to link the actions in the task
(e.g. linking Step 9 to step 8).

3) Experiment Setup: We deployed the Hadoop v0.18.1
on a small cluster of four machines in our department as
well as 10 PlanetLab hosts. One of our machine acts as the
master (both NameNode and JobTracker) and the other nodes
act as slaves (DataNode and TaskTracker). We generate two
candidate workloads, which are commonly used to benchmark
Hadoop:

• Reader: read different size of files from Hadoop DFS
• Grep: grep target strings from files in Hadoop DFS

In the controlled experiments, we manually inject some
failures to some nodes to cause the node to be very slow,
as we did in CoralCDN experiments.

4) Evaluation Results:
a) Accuracy: We manually checked message linking

results of Rake and found that Rake can link the messages
without any error. The socket information helps to solve the
ambiguity that may potentially caused by downloading the
same file simultaneously.

b) Problem Diagnosed with Linked Message: In this
section, we will discuss how to diagnose the problems using
our linked messages. We find an existing problem, an abused
RPC problem in Hadoop DFS reader. Meanwhile we inject
some problems in Hadoop MapReduce system and use Rake
to find the problems we injected.

Abused RPCs in DFS Reader: In this experiment, we use
Rake to inspect the Get operation of Hadoop DFS. In each
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single run of the experiment, two Hadoop clients download
the same file from the DFS system simultaneously and we
conducted the experiments five times.

Figure 11 shows the messages linked by Rake. Surprisingly,
it shows that the RPC “getFileInfo” is called four times with
the same parameter (i.e. the file name). By inspecting the
source code of Hadoop, we find that the problem indeed
exists and Hadoop redundantly call the same function four
times. The reason may lie in the convenience of the RPCs,
and the programmer may not realize that he makes some
RPCs. In this case, the RPC “getFileInfo” is called in function
“getFileStatus”, which is further called in other functions
such as “isDirectory” or “isFile”. For example, in Hadoop
implementation, both “isDirectory” and “isFile” are called to
determine the file type and hence cause two RPCs. To the best
of our knowledge, we are the first one to find this problem.

Injected Problem in Hadoop MapReduce Grep Job: In these
experiments, we run the general Grep application on some
middle size files of about 200MB. The data file is partitioned
into three blocks and hence the job has three Map tasks and
one Reduce tasks. We specifically make one of the nodes
(either the master node or slave node) to be slow and check
if Rake can help on diagnosing the slow nodes.

Figure 12 shows an example that Rake outputs the general
running time of each steps as well as some substeps zoomed
in. Note Hadoop itself has a web based visualization which
shows the running time of each Map and Reduce task, which
is in very coarse level.

Case 1: Slow slave node. In this case, some Map or Reduce
task runs slowly. Both Rake and Hadoop web visualization can
clearly show the running time of the tasks, but the running
time cannot directly reflect the status of the slave nodes, slow
or fast. For example, a Map task can be fast simply because
it processes a small block (e.g.the last block of a data file).
Further data-mining approaches such as the distMatrix [24]
can be used to diagnose more accurately, but this is not our
focus in this paper.

Case 2: Slow master node. The problem is more interesting
when the master node is made slow. Unlike the slow slave
node case, Hadoop’s native web visualization cannot really
give implication on the problem, while Rake can potentially
show some symptoms of the slowness of the master node.

When the master node is slow, the RPCs may become very
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slow and hence cause the whole job to be slow. For example,
in the experiment without injected failures, a Map task takes
about 20 seconds. In one controlled experiment, we found all
three Map tasks took about 50 seconds. However, we only
injected fault into the master node in the experiment, while
the results from Hadoop web tool might imply that the slave
nodes are slow. By looking into the time consumption in the
message layer via Rake, we can clearly see that when the
slave nodes reported the running status of the Map tasks to the
master node, master node took about 20 seconds to reply back.
The slave node reports the different stage of the Map task to
the master node,e.g. BEGINNING stage, multiple RUNNING
stage and SUCCEEDED stage. The RPCs are blocked due
to the master’s slow response and finally it seemed the Map
task was finished slowly. Rake can clearly identify the time
between the RPCs and responses and hence is able to disclose
the problem in the master node. It is worth mentioning that
it is hard to identify the problem with Hadoop’s own logs
because Hadoop does not log every heatbeat or their response
messages.

F. Internet Relay Chat (IRC) System

Internet Relay Chat (IRC) is a form of real-time Internet
chat or synchronous conferencing. It is mainly designed for
group communication in discussion forums called channels,
but also allows one-to-one communication via private mes-
sage. Generally, in IRC, a group of servers cooperatively serve
a large number of clients, and an IRC chat message may
cross multiple servers and paths to the other users in the same
channel.

1) Semantic used in Diagnosis of IRC Servers: The mes-
sages in IRC servers are relayed in plain-text in client-to-server
or server-to-server communication. While there are extended
IRC to support encrypted communication, we find in most
famous IRC networks such as EFnet [2] and DALnet [1]
still relay messages of plain-tex between the server. Therefore,
the chat content itself is a non-transforming ID which can
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mark the message flow through the IRC system. Actually
we previously use IRC as the example to describe Rake and
Figure 3 shows the Rake configuration file for IRC to submit
its semantics.

2) Message Linking Accuracy: Similarly, we did the the-
oretical analysis on the ambiguity of Rake on IRC system
because of lack of real traces. We collected and analyzed one
day of data from a channel in a IRC server of EFnet [2].
We connected server irc.servercentral.net and collected 40,222
lines of messages passed between the clients and servers on
channel “fw”. We filtered the control messages (e.g. someone
joins or leaves the channel) from the messages. Two identical
chat messages are ambiguous if they come within the time
less than the processing time of message. We find that only
20 (.047%) requests out of 40,222 are duplicate. Thus IRC
system has very low ambiguity.

VII. CONCLUSIONS

In this paper, we propose Rake, a semantics assisted gray-
box tracing framework for distributed system diagnosis. The
key idea is that in most cases, related messages can be
linked together by extracting some (transformed) IDs based on
application semantics. We achieve aforementioned three goals.
1. non-invasiveness: we do not need changing any client/server
applications/OSes; 2. applicability: we use several popular
distributed systems to demonstrate why Rake is widely ap-
plicable ; and 3. accuracy: we designed and implemented
Rake, evaluate it over CoralCDN and Hadoop. The results
showed that the accuracy is much better that of the black-box
approaches and comparable to those of the white-box schemes.
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