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Abstract. Mobile devices are becoming increasingly popular. One rea-
son for their popularity is the availability of a wide range of third-party
applications, which enrich the environment and increase usability. There
are however privacy concerns centered around these applications – users
do not know what private data is leaked by the applications. Previous
works to detect privacy leakages are either not accurate enough or re-
quire operating system changes, which may not be possible due to users’
lack of skills or locked devices. We present Uranine1, a system that in-
struments Android applications to detect privacy leakages in real-time.
Uranine does not require any platform modification nor does it need the
application source code. We designed several mechanisms to overcome
the challenges of tracking information flow across framework code, han-
dling callback functions, and expressing all information-flow tracking at
the bytecode level. Our evaluation of Uranine shows that it is accurate
at detecting privacy leaks and has acceptable performance overhead.

1 Introduction

Privacy encompasses an individual’s or a party’s control of information con-
cerning themselves. With the advent of smartphones and tablets, third party
applications play an important role in the lives of individual consumers and
in enterprise businesses by providing enriched functionality and enhanced user
experience, but have simultaneously also led to privacy concerns. On the con-
sumers’ side, how third-party applications deal with the wealth of private data
stored on mobile devices is not quite clear. Enterprises, on the other hand, need
to protect sensitive business data. With the implementation of Bring Your Own
Device (BYOD) policies to better accommodate the needs of employees, the
issue is further aggravated, as the business data is stored on devices that are
not completely trusted. Leakage of business data to the Internet or from busi-
ness applications to personal applications is an important concern. Some leakage
of private data may be legitimate and even intended; yet, other leakages may
be questionable. We therefore believe that information about the privacy leaks

1 Uranine is a dye, which finds applications as a flow tracer in medicine and environ-
mental studies.
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Table 1: Uranine compared with dynamic approaches. + is better, − is worse.

TaintDroid [13] Phosphor [4] Uranine

Real Time Yes (+) Yes (+) Yes (+)
System Modification Yes (−) Yes (−) No (+)
Configurability Little (−) Little (−) High (+)
Accuracy Good (+) Good(+) Good (+)
Performance (runtime) Good (+) Good(+) Good (+)
Portable No (−) Yes(+) Yes (+)

should be completely transparent and accessible to the user (or the IT adminis-
trator in case of enterprises). The user may then choose to allow or disallow the
leaks either through real-time interaction with an on-device controller or through
preset policies. In particular, apart from good accuracy and performance, the de-
tection of privacy leaks should have the following requirements.

– Real-time. Real-time detection, or detection immediately when leaks happen,
enables situationally-aware decision making. The situation (condition) under
which a leak happens is important—a privacy leak may be user-intended,
and in that case legitimate. For example, upload of a user’s address book to
a social network under user’s consent is legitimate. Offline detection of leaks
may be helpful, but does not usually identify the complete situation under
which a leak happens.

– No system modification. Mobile devices typically come locked, and it is diffi-
cult for an average user to root or unlock them to install a custom firmware.

– Easily configurable. The user should be able to enable the privacy leak detec-
tion just for the apps she is concerned about. Other parts of the device such
as system server processes and trusted apps from the device vendor should
be able to run without overhead.

– Portability. The framework should work across different devices with poten-
tially different architectures, e.g. ARM and x86, and with different runtimes,
e.g. Dalvik and ART (a recently introduced Android runtime2), with little
or no code modification.

There have been many earlier systems targeted at detecting privacy leaks,
but all have some drawbacks with regards to the above characteristics. Taint-
Droid [13] detects privacy leaks in real-time, but requires the installation of a
custom Android firmware, which possibly limits its accessibility to expert users.
Furthermore, TaintDroid’s firmware code modifications must be adapted to dif-
ferent architectures and even different Android versions. Phosphor [4] is a dy-
namic taint tracking system for Java which can work on Android. It instruments
the application and library code to detect privacy leaks in real-time. However,
it requires modification of the bytecode of platform libraries, which again re-
quires custom firmware and hinders wide-scale deployment. Static analysis sys-
tems [14, 2] fail on the real-time requirement—inputs from the user or from the
remote server may affect what is sent out of the device and thus the leak may
or may not be considered legitimate.

In this paper we propose Uranine, a real-time system for monitoring privacy
leaks in Android applications without the need for platform modification. The
major challenge comes from the requirement of no platform modification, includ-

2 https://source.android.com/devices/tech/dalvik/art.html
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ing being unable to instrument framework code:3 we need to approximate flow
through the framework code and for callbacks, i.e. application code called by the
framework code. This is further complicated by the existence of heap objects,
which often point to other heap objects and whose effects may easily lead to
missing leaks if not handled carefully.

Uranine provides a framework for instrumenting stock Android applications
without the need for the application source code. It begins by converting the ap-
plication bytecode to an intermediate representation (IR), which it instruments
employing the techniques presented in this paper. The instrumented IR is as-
sembled back into a new application installable on an Android device. As the
instrumented application runs, privacy leakages are automatically tracked.

Apart from being real-time and requiring no system modification, our ap-
proach also brings the added benefit of instrumenting only apps that the user
is concerned about; the rest of the system, including the middleware and other
apps, run without overhead. Finally, since we do not touch the Android middle-
ware and the virtual machine runtime, our approach ensures portability. Table 1
summarizes the comparison between Uranine and other similar systems.

This paper makes the following contributions.

– We solve the problem of tracking private information through platform APIs
and libraries without modifying the platform, by developing appropriate data
structures and algorithms in Section 3.1.

– The Java language and especially the Android platform relies heavily on
callbacks, i.e. functions in app code that are called by the platform libraries.
We discuss the challenges of handling callbacks for real-time information flow
tracking, and propose the first solution for this problem in Section 3.1.

– Aspects of Java, including reference semantics for objects and garbage col-
lection, pose a problem with regards to developing a clean solution that does
not interfere with the Java model. Our solution, centered on hashtables with
weak references to hold necessary data-structures for different objects, solves
this problem (Section 3.1).

– We have developed a system prototype called Uranine for real-time detection
of privacy leakages in Android apps without system modification.

We evaluated (Section 5) a working prototype of Uranine on real-world ap-
plications from Google Play. The evaluation shows that Uranine is accurate in
tracking information flows. Our evaluation of performance overhead shows that
Uranine has acceptable overhead on real-world applications. We also note that it
is possible to further reduce the performance overhead of Uranine by performing
static analysis and instrumenting only paths along which private information
flows can take place.

The rest of this paper is organized as follows. Section 2 gives the background
and states our approach together with the challenges involved. A detailed de-
scription of the Uranine framework is covered in Section 3, while Section 4 covers
the implementation aspects. Section 5 gives our evaluation of Uranine. We then

3 Throughout the paper, app code refers to the code contained in the app; framework
code refers to the code defined in the Android platform and may be called through
Android APIs.
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present some relevant discussion in Section 6 and related work in Section 7. We
finally conclude in Section 8.

2 Background and Problem Statement

2.1 Android Background

Android is an operating system for mobile devices such as smartphones and
tablets. It is based on the Linux kernel and implements middleware for telephony,
application management, window management, etc. Applications are typically
written in Java and compiled to Dalvik bytecode, which can run on Android.
The bytecode and virtual machine mostly comply with the Java Virtual Machine
Specification.

Unlike the JVM, The Dalvik Virtual Machine is a register-based VM. Each
method has its own set of registers (not overlapping with other methods). In-
structions address these registers to perform operations on them.
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Fig. 1: Deployment by Vendor or Third-party Service

2.2 Problem Statement

Static analysis has its own advantages for information flow tracking, but a dy-
namic information flow tracking solution may also be desirable for the following
reasons: (a) Static analysis may only tell what may happen but cannot tell what
actually happens. Runtime conditions, including inputs from the user and the
server may influence what actually happens, meaning that any privacy leaks may
be classified as legitimate or illegitimate. Even if a static analysis can detect user
interaction, what exactly a user confirms is very difficult for it to capture. (b)
Private sources in Android, which are based on URIs, such as contacts, can-
not be soundly tracked by static analysis (unless it marks all database queries
as possible private sources). Databases such as contacts are accessed through
corresponding URIs, which are simply wrapped strings and may be obfuscated
or inaccessible statically. Lastly, (c) static analysis is often conservative due to
scalability reasons, and thus may have false positives. In the light of all these
points, we focus on dynamic information flow tracking in this paper.

Previous dynamic analysis approaches on Android for tracking information
flow have modified the Dalvik VM or the library code to propagate taints [13, 4].
As this requires platform modification and thus limits the usability, it is rea-
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sonable to ask whether dynamic information flow tracking is possible without
platform modification by rewriting the apps alone. Uranine answers this ques-
tion positively. It accepts stock apps from the user, and returns a ready-to-run
instrumented app enabled with information flow tracking.

Deployment Models Figure 1 shows the two possible deployment models of
our approach. The first model is suitable when there is no control on the source
of apps. It is suitable for enterprise, third-party subscription services, individual
users, and smartphone vendors and carriers. As the user downloads a third-party
app, the downloaded app is passed to our system for instrumentation. Such a
system would typically reside in the cloud as a service supported by the vendor
or a third-party. It is also possible to place this service on the users’ own personal
computers or enterprise’s servers. Once the app has been analyzed and instru-
mented by the system, the app is installed on the user’s device. The app is then
constantly monitored on-device as it runs. We note that the whole process may
be completely automated with the use of an on-device app so the user needs to
only confirm the removal of the original app and installation of the instrumented
app. Furthermore, entry-level users may be provided with preset information
flow tracking and enforcement policies. The second deployment model, which is
more suitable for app markets and enterprise app stores, is slightly different in
that the apps are instrumented before the user downloads and installs the app.
We note that other existing real-time taint-tracking systems do not have similar
deployment models.

Android apps are digitally signed by their developers, so instrumenting an
app would require an application to be re-signed. The current app update sys-
tem at Google Play (and possibly other Android markets) depends on apps’
signatures. Deployment by third party services will therefore need to provide
out-of-band mechanisms to notify users of available updates. This is however
not much of a concern: mobile app management and app wrapping products
such as Good [17] and MobileIron [22] already provide similar deployment mod-
els to enterprises in the context of API interposition similar to [35, 9].

Heap objects

Framework code

App code
Callbacks

Call path
Return path
Information flow tracking
possible along path
Points of information flow
approximation
Heap objects affect information
flow approximation

Fig. 2: A depiction of challenges C1 and C2 met in Uranine. There are paths between
app code and framework code depicted as meandering function call paths and return
paths, together with callbacks (the app code that is called by framework code). The left
path results from ordinary calls while the right path includes callbacks. Information flow
tracking can only be done for app code, requiring approximations for framework code.
Callbacks must be handled soundly. Objects on the heap point to each other and their
effect on information flow should be properly accounted for during approximations.

Challenges Following are the challenges that we solve in creating Uranine.
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C1 Framework code should not be modified, i.e. we cannot instrument frame-
work code. We summarize the effect of framework APIs according to a cus-
tom policy, combined with manual summarization for a few special cases.
Previous works on static or dynamic binary instrumentation [24, 41, 36]
have needed to summarize system calls or very simple functions in low-
level libraries like libc, which are much simpler. Static analysis works
also typically use summarization [21, 15] to achieve scalability. However,
we show by example that in our context of dynamic analysis and complex
framework with Java data structures in Android, summarization alone is
not sufficient. Heap objects can be particularly challenging to handle, and
we need additional techniques for effective taint propagation.

C2 The effect of callbacks should be accounted for. Callbacks are functions
in app code that may be invoked by the framework code. Since frame-
work code cannot be instrumented, we cannot do taint propagation when
callbacks are invoked. We propose a technique which uses over-tainting to
avoid false negatives.

C3 In the Java language model, objects follow reference semantics, so we must
have a way to taint the locations referenced. Furthermore, objects are
deallocated automatically by garbage collection, so our taint-tracking data
structures should not interfere with garbage collection.

As noted above, there are trade-offs between system modification and de-
tection accuracy. However, we note that even though we resort to over-tainting
to solve some of the above challenges, our results demonstrate that a carefully
conceived design may still have a low false positive rate in practice. We discuss
our solutions in detail in the next section.

3 Uranine Design

App to IR

Framework Code 
Summarization Rules

Instrumentation
(Taint Storage & Propagation)

to Bytecode
Instrumented 

App

Fig. 3: Instrumentation flow in Uranine

Uranine offers a general framework for instrumenting applications statically
and for providing information flow tracking, which may be used in a number of
applications, including tracking privacy leaks and hardening applications against
vulnerabilities. Figure 3 depicts the architecture of Uranine. When an app is
given to Uranine, the app code is first converted to a custom intermediate rep-
resentation (IR) that can be instrumented for taint propagation to happen at
runtime. The instrumented IR is then converted back to bytecode and a new
app is prepared. Since the framework code cannot be instrumented, we approx-
imate the effects of framework code through a few general but customizable
summarization rules. The rest of this section first describes our techniques for
taint storage/propagation and the instrumentation details. The latter part of
the section then describes our static analysis.

3.1 Taint Storage and Propagation

The techniques for taint storage and propagation influence the accuracy and
runtime performance of privacy leakage detection. Our techniques focus on pro-
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viding privacy leakage detection without false negatives under the constraint
that the platform not be modified. Much of the design for taint tracking here is
fairly routine and may be found in previous work [13, 30, 4]. We describe the
routine or obvious aspects very briefly and then discuss in detail the specific
challenges and corresponding solutions in our work.

Each entity that may be tainted is associated with a taint tag, which identifies
what kind of private information may be carried by the entity. In the Uranine
model, taints are stored and propagated for local variables (i.e. method registers),
fields, method parameters/returns, and objects. Different bytecode instructions
handle different storage types (i.e. local variables, fields, etc.) and accordingly
have different taint propagation rules. Additionally, in a complete system, IPC
(inter-process communication) taints and file taints may be handled at a coarser
granularity. For IPC, the entire message carries the same taint. Similarly, an
entire file is assigned a single taint tag. In our design, tracking IPC and file taints
requires communication with an on-phone Uranine app, which keeps track of all
file taints and IPC taints from instrumented applications. This paper focuses on
taint tracking within Java code (more specifically, Dalvik bytecode) and further
discussion on IPC and file taints is out of the scope of this paper.

We next describe the taint propagation rules for the different situations. We
begin our discussion by assuming that we can instrument all the code (including
the framework) and then introduce changes that would be required to leave the
framework code intact.
Method-local registers. For each register that may possibly be tainted, we
introduce a shadow register that stores the taint for this register. Any move op-
erations simply also move the shadow registers. The same also happens for unary
operations, while for binary operations, we combine the taints of the operands,
assigning this to the shadow register of the result. Instructions assigning con-
stants or new object instances cause the taint of the registers to be zeroed.
Heap objects. Heap objects include class objects containing fields, and arrays.
For each field that may possibly be tainted, we insert an additional shadow taint
field in the corresponding class. The load and store instructions for instance
fields and static fields are instrumented to assign to or load from these taint
fields to the local registers. We note that we may not insert additional fields into
framework classes. In this case, we taint the entire object. How this is done and
the effects of this will be discussed shortly.

In the case of arrays, each array is associated with only a single taint tag.
If anything tainted is inserted into an array, the entire array becomes tainted.
This policy is used for efficiency reasons, and has been also adopted by other
works such as TaintDroid. We also support index-based tainting so that if there
is an array-get (i.e. a load operation) with a tainted index, the retrieved value
is tainted. We will discuss shortly how we associate taint with Array objects.
Method parameters and returns. Methods may be called with tainted pa-
rameters. In this case, we need to pass on the tainted information from the
caller to the callee. We take a straightforward approach to achieve this—for
each method parameter that may be tainted, we add an additional shadow pa-
rameter that carries the taint of the parameter. These shadow parameters may
then convey the tainted information to the local registers. Method returns are
trickier. Since we can return only one value, we instead introduce an additional
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parameter to carry the taint of the return value. In Java, we have call-by-value
semantics only, so that making assignments to the parameter inside the callee
will not be visible to the caller. We therefore pass an object as the parameter,
which is intended to wrap the return taint. The caller can then use this object
to see the return taint set by the callee.

Our next part of discussion relates to specific challenges discussed in Section
2 and mostly relates to the requirement of not changing the framework code.

Calls into the framework (Challenge C1) Whereas the application code
may be instrumented for taint propagation, we may only approximate the effects
of calls into the framework code on taint propagation. We use a worst-case taint
policy to propagate taints in this case:

– Static methods. For static methods with void return, we combine the taints
of all the parameters and assign this to all the parameter taints. For static
methods with non-void returns, the taints of all the parameters are combined
and assigned to the taint of the register holding the return value.

– Non-static methods. Non-static methods often modify the receiver object
(the object on which the method is invoked) in some way. Therefore, we
combine the taints of all the non-receiver parameters; apart from its original
taint, the receiver object is now additionally tainted with this combined
taint. In case the method returns a value, the return taint is defined as the
receiver taint.

Note that these rules are not enough to summarize the effects of framework code.
Non-static methods often have arguments that are stored into some field of the
receiver. Consider the following piece of code.
1 List list = new ArrayList ();
2 StringBuffer sb = new StringBuffer ();
3 list.add(sb);
4 sb.append(taintedString);
5 String ret = list.toString ();

In this case, sb and list are untainted until line 4. Thereafter, sb is tainted
and ret should be tainted because it will include the contents of taintedString.
Our general solution is that when an object becomes tainted, any objects contain-
ing that should also become tainted. For every object o1 that may be contained
in another object o2, we maintain a set of the containing objects. If the taint
of o1 ever changes, we propagate this taint to all the containing objects. The
set of containing objects is updated whenever we have a framework method call
o2.meth(.., o1, ..), where meth is a method on o2 and possibly belongs to the
framework code. This is a worst case solution; in certain cases, such a method
would not lead o1 to be contained in o2. The update operation may be recursive,
so that an update to taint of o2 may lead to updating the taint of the objects
containing o2, and so on. Objects may point to (contain) each other and hence
there may be cycles; the update operation will however achieve a fixed point
eventually and then terminate.

Handling callbacks (Challenge C2) A callback is a piece of code that is
passed onto another code to be executed later on. In Java, these are represented
as methods of objects that are passed as arguments to some code, and the code
may later invoke methods on that object. These objects typically implement an
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interface (or extend a known class) so that code is aware which methods are
available on the object.

Android makes an extensive use of callbacks, which often serve as entry points
to the application. Examples of such callbacks are Activity.onCreate() and
View.onClick() when overridden by subclasses. Apart from these, callbacks
may be found at other places as well. For example, toString() and equals()
methods on objects are callbacks. Identifying callback methods correctly may
be done using class hierarchy analysis. A class hierarchy analysis analyzes the
inheritance relationships between different classes and, based on these results, the
overriding relationships between different methods. The class hierarchy analysis
acts as a guide to the rest of the instrumentation by defining how different
methods are dealt with during instrumentation.

Since callback methods override methods in the framework code, their
method signatures may not be changed to accommodate shadow taint param-
eters and returns, lest the overriding relationships are disturbed. For example,
consider the following class.
1 class DeviceIdKeeper {
2 private String id;
3 public DeviceIdKeeper(TelephonyManager m) {
4 id = m.getDeviceId ();
5 }
6 public toString () { return id; }
7 }

The app code may call toString() on a DeviceIdKeeper instance. Since the
return here may not be instrumented to propagate taint, we may lose the taint
here. Furthermore, it is also possible that this method is called at some point by
the framework code.
Our solution. In order to not lose taint in this case, our solution is to lift
the return taints of all callback methods to the receiver objects. That is, in
the instrumented callback method, the return taint is propagated to the receiver
object taint. In case a possible callback method is called by app code with tainted
parameters, we taint the receiver object with the taint of the parameters and
then inside the method definition taint the parameter registers with the taint
of the receiver. Since heap objects can carry taints in our model, such over-
tainting needs to be done only in case of parameters of primitive types. With
the parameter and return tainting in place, we may use the techniques described
for calls into the framework (Section3.1) to summarize the effect of this call. The
key to note here is that the receiver object of the callback serves as a convenient
taint carrier and thus taint is not lost in both the cases: when the callback is
called by an app method, and when it is called by the framework.

Weak reference 
to object

Global 
hash table

Object taint

Containing objects
(key)

(value)

Fig. 4: Associating taint data-structures with objects

Taint data-structures (Challenge C3) From the above, it is quite clear
that we need a way to taint objects. Java uses reference semantics to address
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objects. That is, object variables are pointers to object values on the heap and
assignment for objects is only a pointer copy. Thus, we may have two types of
tainting, either tainting the pointer, or tainting the object. Storing pointer taints
is simple and has been discussed as storing taints for method-locals and fields. In
addition, we also need to associate a set of containing objects with each object
(Section 3.1).
Our solution. In our solution, we use a global hashtable, in which the keys
are objects and the values are records containing their taints and the set of
containing objects. Any time the taints or containing objects needs to be accessed
or updated, we access these records through the hashtable. Our hashtable uses
weak references for keys to prevent interference with garbage collection. In Java,
heap memory management is automatic; so we cannot know when an object gets
garbage-collected. Weak references are references that do not prevent collection
of objects and so are ideally suited for our applications. We further note that
these data-structures should allow concurrent access as the instrumented app
may have multiple threads running simultaneously. A schematic of our global
hashtable is presented in Figure 4.

We considered but rejected an alternative method of keeping these data struc-
tures. With every object, we can possibly keep a shadow record, which is an
object that stores the object taint and the set of containing objects in its fields.
The instrumentation may then move this shadow record together with the main
object through method-local moves, function calls and returns, and heap loads
and stores. This technique however does not work well with the way we handle
calls into the framework. Consider the following code fragment.
1 // list is a List
2 // obj is an object
3 list.add(obj);
4 obj2 = list.get (0);

In the above code, obj and obj2 could be the same objects. However, since
the loads/stores and moves inside the List methods are not visible to us, we
cannot track the shadow record of obj there. The shadow record of obj2 may at
most depend on the record of list. Thus, there is no way to make the shadow
records of obj and obj2 the same, something that we achieve easily with our
approach of weak hashtables.

Fig. 5: Uranine implementation depicting the use of existing code (white boxes) and
the features we implemented (gray, discussed in detail in Section 3).
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4 Implementation

We have implemented a working prototype of Uranine. We use a library called
dexlib [32] to disassemble and assemble Dalvik bytecode. The disassembled
representation is converted to an intermediate representation (IR). In addition,
we also use apktool [1] to disassemble the binary Android XML format (needed
to discover entry points for static analysis) and other tools from the Android
SDK and elsewhere to prepare an instrumented app. Figure 5 provides these
details graphically.

We choose to work on an IR very close to the bytecode, and do not require
decompilation to either Java bytecode or the source code as some previous works
have required. Since decompilation is not always successful, this approach im-
proves the robustness of our system. The IR enables us to simplify the bytecode
instruction set to a smaller instruction set containing only the details relevant
to the rest of the analysis and instrumentation. Disregarding details like register
widths, the Dalvik bytecode instructions4 generally have a direct correspondence
with the instructions in the IR. Similar instructions (such as all binary operations
or all kinds of field accesses) are represented as variants of the same IR instruc-
tion. Range instructions (invoke-*/range and filled-new-array-*/range)
access a variable number of registers; these are converted to the simple rep-
resentations of invoke-* and filled-new-array-* instructions with a variable
number of register arguments in the IR. Even though we use this IR for instru-
mentation, it is also suitable for performing static control flow and data flow
analysis. In fact, the same IR is used as input to our class hierarchy analysis, the
results of which then guide the instrumentation. The instrumented IR is then
finally assembled back to Dalvik bytecode.

Most of our instrumentation code is written in Scala, with about a hundred
lines of Python code. The taint-tracking data structures and related code is
written in Java. The instrumentation adds a compiled version of this code to
every app for runtime execution. The total Uranine codebase sizes to over 6,000
lines of code. We note that Scala allows for writing terse code; the equivalent
Java or C++ code is usually two to three times as long.

5 Evaluation

We evaluate Uranine on two aspects: accuracy and performance overhead. To
perform accuracy evaluation, we configured Uranine to detect the leakage of
location, phone identifiers (like IMEI and phone number), and contacts (address
book). Our sinks include all APIs that send data to the network, write to the
file system, or send SMS messages. We note that even though we restrict to a
few relevant sources and sinks, we can easily extend the privacy leakage tracking
by adding other private information sources and sinks as well.

Our app dataset consists of 1,490 apps randomly selected from Google Play.
Apps are instrumented automatically and run with random inputs (fuzz test-
ing) provided by the Android Monkey tool5. For understanding privacy leakage
results, we also conducted manual tests for a smaller set of apps.

4 http://s.android.com/devices/tech/dalvik/dalvik-bytecode.html
5 http://developer.android.com/tools/help/monkey.html
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Table 2: Accuracy evaluation of Uranine and comparison with TaintDroid

App Uranine TaintDroid App Uranine TaintDroid

mobi.android-
cloud.app.ptt.client

Contact Contact com.ama.lovetest.cal-
culator

IMEI, Phone# IMEI

com.enlightened.An-
droidskyjewelsfree

IMEI None com.flashlight.tre-
film.coins

IMEI IMEI

com.magmamobile.ga-
me.Slots

IMEI None com.silkenmermaid.g-
au.dldic

IMEI IMEI

me.zed 0xff.android.al-
chemy

IMEI None com.gamevolution.Ma-
rbleMadnessPro

IMEI IMEI

com.magmamobile.ga-
me.BubbleBlast2

IMEI None com.reverie.game.toilet-
paper

IMEI IMEI

com.rhs.wordhero Loc Loc com.red.white.blue.free IMEI IMEI
com.rferl.almalence.st-
aringcat

IMEI IMEI com.gameloft.andro-
id.ANMP.GloftGTFM

IMEI IMEI

app.win.conforl1 ICCID, IMEI,
Phone#

None com.alloright.trib IMEI, Loc,
Phone#

IMEI,
Loc

com.anbgames.open-
thedoor.hoola2

IMEI IMEI com.euro2012.geekbea-
ch.acquariusoft

IMEI IMEI

com.aceviral.top-
truckfree

IMEI IMEI com.fjj24512014.korea IMEI None

com.flirtalike.android IMEI, ICCID IMEI, ICCID net.aaronsoft.poker.eva IMEI IMEI
com.keithe.lwp.aq-
uarium

IMEI IMEI com.mobizi.scratchers IMEI None

com.androiminigsm.fs-
cifree

Contact, IMEI Contact, IMEI sg.vinay.FourpicsOne-
wordcheatsanswers

IMEI, Phone# None

mobi.jackd.android Loc Loc com.electricpocket.rin-
go

Contact Contact

com.topface.topface IMEI IMEI com.keek IMEI, ICCID IMEI
com.pilotfishme-
diainc.happyfish

IMEI, Loc,
Phone#

Loc com.phantomefx.re-
eldeal

IMEI IMEI

5.1 Accuracy

In this section we evaluate how Uranine performs in detecting privacy leaks. We
use our dataset real-world applications from Google Play for the evaluation. We
use TaintDroid results to compare with our results. Our methodology involves
running Uranine-instrumented applications on a TaintDroid build, allowing us
to generate both TaintDroid’s and Uranine’s results together in one run, and
thus eliminating any differences that may arise because of random inputs or
non-determinism in multiple runs.
Manual tests. We conducted manual tests on a physical device (Samsung Nexus
S) over a small random subset of apps. These results enable us to carefully
study the differences between TaintDroid and Uranine. The results are depicted
in Table 2. The results, where neither TaintDroid nor Uranine detected any
leakage, are not shown in the table.

Our results show some disagreement with TaintDroid. We see that TaintDroid
does not detect any phone number leaks that we detect; a look into TaintDroid
code then revealed to us that TaintDroid has disabled tracking of phone numbers
with the comment “causes overflow in logcat, disable for now” in source code. In
all other cases of disagreement between Uranine and TaintDroid, we manually
confirmed the correctness of Uranine. It turns out that in the cases where Uranine
does detects an IMEI (or ICCID) leak while TaintDroid does not, there is some
kind of hashing of the identifier involved, such as the calculation of MD5 or SHA1
digests. It appears that TaintDroid does not propagate taint across the functions
that calculate these digests. This is also confirmed in AppsPlayground [26]. In
conclusion, our results are generally consistent with TaintDroid. Any apparent
inconsistencies result from implementation artifacts of taint tracking. It is worth
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emphasizing here that our contribution is not to show an improvement over
other systems in terms of detecting more privacy leaks, but to do the detection
without system modification.
Automatic tests. We further conducted automatic, random testing on a big-
ger dataset of 1,490 apps. The tests were conducted on the Android emulator
(provided with the Android SDK) running a TaintDroid image. Since the emu-
lator does not provide most of the device identifiers (such as IMEI and phone
number), we further added some code to our emulator image to provide real-
looking identifiers on the respective APIs for accessing these identifiers. Because
of these modifications, our emulator’s TaintDroid can also detect phone number
and IMSI leaks.

Our runs detected privacy leaks in a total of 360 apps; in the rest of the
apps, no leak was detected either by TaintDroid or Uranine. The results for
TaintDroid and Uranine differed for 177 apps. We have manually analyzed each
of these cases, and have found that Uranine was accurate in most cases. Below,
we detail our findings and bring out relevant insights.

For 92 apps where Uranine detected privacy leaks but TaintDroid did not—
we confirmed that these were TaintDroid’s false negatives. In all these cases, the
apps leak the device identifiers after hashing (with, for example, MD5). In most
cases, we were able to see the MD5 checksum of the device identifier being leaked
(IMEI leaks were most frequent) in plaintext. Further, in other cases, these leaks
were in ad libraries that are known to have the leaks flagged by Uranine. For
example, our analysis of an older version of the Admob library shows that it
leaks the MD5 of a string derived from the phone’s IMEI number.

Uranine’s detection of leakage in 4 apps is likely to be a false positive. In
two apps, our logs reveal Uranine flags leakage when an empty string is being
written to a file. In the other two cases, Uranine detects IMEI leakages on writing
strings that look like base64 codes. Decoding those codes however does not reveal
the IMEI number nor anything that looks like a hash of that. False positives
are actually expected in Uranine, due to overtainting as part of our design.
Considering this, 0.2% false positives are insignificant.

Table 3: Leaks detected in automatic tests

Leak type Apps leaking Leak type Apps leaking

IMEI 310 IMSI 18
ICCID 16 Phone # 79
Location 107 Contacts 5

There was another set of 13 apps where Uranine flagged leakage but Taint-
Droid did not. In all these cases, we can see strings looking like MD5 or SHA
hashes being leaked, but were unable to derive them from known identifiers
(perhaps they were mixed with some salt before hashing). Though we could not
classify these cases, we believe them to be TaintDroid false negatives. Finally,
we detected 14 cases that were false negatives for Uranine—we could however
correct them by adding additional sinks that we missed earlier.

In summary, we found Uranine to be fairly accurate in detecting privacy leaks
with few errors. Table 3 shows the privacy leaks detected by Uranine.
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5.2 Performance

Measuring the runtime overhead of applications instrumented by Uranine is not
trivial. First, there are no popular macrobenchmarks for Android. The DaCapo
benchmarks [6], which are popular Java benchmarks, are not easily ported to
Android (due to their use of Java-specific libraries and GUI) and moreover, may
also differ from real-world application workloads on Android. Second, conven-
tional microbenchmark suites for evaluating virtual machine performance may
also give skewed results as we are instrumenting applications here rather than
the virtual machine. A lot of the code for real applications runs in the frame-
work, is not instrumented, and runs without overhead—a microbenchmark will
thus misrepresent this situation.

We measure performance overhead using real-world Android applications.
However, most applications are GUI-intensive and interactive in nature. Thus,
one cannot simply run the benchmark application and obtain the results. We
devise our own methodology of evaluating performance of Android applications
in response to certain events. For our benchmarks, we select a total of six events
from three very popular applications: BBC News, Last.fm (a music application
with social networking features), and the stock Android application for managing
contacts. For each application, we evaluate the time to launch the main activity
of the application and the time to complete a click of a pre-selected feature
on the application. The time to launch the main activity is as reported by the
ActivityManager (part of the Android middleware). The time to complete a click
is measured by instrumenting the click handler function to report the interval
from its beginning to the point it returns.
Table 4: Macrobenchmark performance. The reported times (Original/Instrumented
columns) are medians over five independent runs.

Benchmark Event Original (ms) Instrumented (ms) Overhead

BBC News (version 2.5.2 WW) Launch 953 1418 49%
BBC News (version 2.5.2 WW) Click (“Live BBC World Service”) 450 434 -
Last.fm (version 1.9.9.2) Launch 523 567 10%
Last.fm (version 1.9.9.2) Click (“Sign up”) 132 140 6%
Contacts (from AOSP 4.0.4) Launch 580 645 11%
Contacts (from AOSP 4.0.4) Click (“Done” after contact creation) 23 59 156%

Table 4 presents the comparison of the original applications and those instru-
mented for information flow-tracking. As can be seen from the table performance
overhead is usually low, almost always within 50% and often around 10%. We
attribute this to the fact that the Android framework does most of the heavy-
lifting during runtime, from creating the UI to managing the data structures
and data stores. Thus, even though we may expect a huge performance over-
head because each instruction is instrumented, real-world application overhead
appears quite low in comparison. Anecdotally, in our runs, we have seen no-
ticeable performance overheads, but the overheads have never been intolerable.
Furthermore, the performance of Uranine compares favorably with the reported
performance of TaintDroid (15-30% overhead) and Phosphor (50% overhead).

Finally, we would like to reiterate that our approach is highly amenable
to static analysis. We expect that in production, a tool such as Uranine will be
guided by a static analysis, which will be able to identify that most paths cannot
propagate the relevant information and thus do not need instrumentation.
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6 Discussion

6.1 Static Analysis and Optimizations

We believe that Uranine has great potential for optimizations so that runtime
overhead can be minimized. First, it is possible to tune the instrumentation,
and perform constant propagation passes to reduce the instrumentation over-
head. Second and more importantly, it is possible to perform a static informa-
tion flow analysis that identifies the paths along which the relevant information
flow could take place. Such paths are usually small in number, and if Uranine
instruments those paths only, applications may run with negligible overhead. In
fact, the implementation of Uranine already includes hooks to attach a static
analysis, which can then guide the instrumentation. We have performed prelim-
inary studies testing the use of static analysis to guide the instrumentation and
a complete study is part of future work. Note that the use of static analysis does
not obviate the need for a dynamic analysis system (Section 2.2).

We note that the opportunity for static analysis is present in our approach
only, involving no platform modification. Previous works such as Phosphor [4]
modify the platform libraries to track information flow and will therefore not
benefit much from optimizing instrumentation by static analysis.

6.2 Limitations

We discuss here our limitations and avenues of future work. While Uranine is
good for detecting privacy leaks in legitimate applications, a truly malicious app
may be able to evade the system through some of these limitations.
Implicit flows. A fundamental limitation of dynamic taint tracking is the in-
ability to track implicit information flows via control flow [30]. Our work shares
this limitation. Static analysis may be used to track control flow. However, this
leads to the risk of severe over-tainting. Research is underway to make implicit
flow tracking practical [19].
Native code. We currently do not support taint tracking through native code,
which some Android applications include in addition to bytecode. Previous works
such as Phosphor and TaintDroid, as well as static analysis works on Android
which only analyze bytecodes, all have this limitation.
Dynamic aspects of Java. As a limitation of static instrumentation, the
dynamic aspects of JVM, such as reflection and dynamic class loading (using
DexClassLoader or similar features in Android) do not cleanly fit in. These
may however be supported by our approach in the future. We may apply worst-
case tainting for all method calls made by reflection as we do for other methods.
Furthermore, we can instrument calls by reflection and alert the user if they do
not pass certain security policies (such as restricting reflective calls to only cer-
tain APIs in the Android platform). Code loaded by dynamic class loading may
also not be available during static instrumentation. In a deployment, it may be
possible to prompt the user to allow re-analysis whenever dynamic code loading
is detected, so that an instrumented version of the code being loaded can be
created.
Incorrect summarization. Policy-based summarization of framework code,
as used in our work, not only has the problem of over-tainting, but could also
result in under-tainting of data passing through APIs that do not fit within
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those policies. For example, some classes may update a global state when their
methods are called. We are not aware of such a situation but such cases could be
used to bypass the system. Manual summarization of known cases is obviously
one solution. Automatic method summarization is an open research problem in
static analysis, and any progress there will benefit our cause as well.

7 Related Work

Information flow tracking. The closest to our work are TaintDroid [13] and
Phosphor [4]. The key advantage of our technique is that we do not require
modification of the Android platform as these do.

Dynamic taint analysis has been employed in a variety of applications from
vulnerability detection and preventing software attacks [24, 25, 33] and malware
analysis [31, 37] to preventing privacy exposures [41, 10]. We present a general
technique for taint tracking in this paper without modifying the Android plat-
form. Our technique may be used for the above applications, especially when
there is a constraint to run applications on an unmodified platform. There are
also works doing taint tracking by bytecode instrumentation. Haldar et al. [18]
implement taint tracking by instrumenting the Java String class. Chandra and
Franz [8] instrument the Java bytecode for taint tracking. These works share the
same limitation of Phosphor discussed earlier.

There are also a number of related works using static analysis. PiOS [11]
uses it to detect privacy leaks on iOS apps. Enck et al. [14] and Gibler et al. [16]
decompile Dalvik to Java bytecode and perform static analysis on that using
existing tools for Java. FlowDroid [2] also converts Dalvik back to Java byte-
code and builds on top of Soot6 while adding in Android-specific requirements
to the analysis. Chex converts Dalvik bytecode to the WALA7 IR and then
employs WALA for static analysis [21]. Cao et al. [7] automatically collected
implicit control flow transitions through the Android framework code to assist
static analysis tools. As discussed earlier, there are limitations of static analysis
over real-time dynamic analysis. Xia et al. [34] eliminate some limitations by
performing offline partial executions of apps after static analysis. However, they
are still unable to handle situations with external input from users or servers,
which is quite common.
Static instrumentation. Static instrumentation has been used earlier for An-
droid applications [35, 9]. These works have focused on API interposition rather
than tracking information flow; the latter is more challenging because of the need
to instrument many instructions and to encode the semantics of information-
flow tracking. AppSealer [38] statically instruments Android applications to re-
pair component hijacking vulnerabilities. Capper [39] is a follow-up work that
detects privacy leakages without platform modification. Both these works are
similar to Uranine; however, their taint tracking will have false negatives: they
try to address C1 but do not solve it adequately and do not even discuss C2 and
C3. Instrumentation has been used in other applications as well, some of which
even use static analysis to optimize it. Saxena et al. use static analysis to make

6 http://www.sable.mcgill.ca/soot/
7 http://wala.sourceforge.net
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their binary instrumentation efficient [28]. Xu et al. [36] instrument C sources
for taint tracking and further optimize it using static analysis.
Other related work in mobile device security. Kirin [12] defines security
policies based on Android permissions. A number of works additionally prevent
access of private information or supply fake data to apps [5, 40, 23]. The above
works enable access control while we provide information flow control. Another
line of works [20, 3] investigates user perceptions as related to mobile privacy.
They conclude that users are often not aware of privacy leakages, and that proper
awareness and usable controls can mitigate users’ concerns about privacy. Rosen
et al. [27] perform static analysis of Android applications and provide end-users
with information about privacy-related behaviors of these applications. Our tool
could easily supplement such works by providing real-time insights about the
behaviors of these applications to the users. Finally, researchers have developed
proof-of-concept malware utilizing side channels that cannot be detected by a
traditional information-flow analysis such as ours [29].

8 Conclusion

This paper describes Uranine, a framework for dynamic privacy-leakage detec-
tion in Android applications without modifying the Android platform. To achieve
this, Uranine statically instruments Android apps only, and does not need sup-
port for information flow tracking from the platform. We present a design and
implementation of Uranine and evaluate its performance and accuracy. Our re-
sults show that Uranine provides good accuracy and incurs acceptable perfor-
mance overhead compared to other approaches.
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