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Abstract
Mobile applications (apps) often delegate their own functions
to other parties, which makes them become a super ecosystem
hosting these parties. Therefore, such mobile apps are being
called super-apps, and the delegated parties are subsequently
called sub-apps, behaving like “app-in-app”. Sub-apps not
only load (third-party) resources like a normal app, but also
have access to the privileged APIs provided by the super-app.
This leads to an important research question—determining
who can access these privileged APIs.

Real-world super-apps, according to our study, adopt three
types of identities—namely web domains, sub-app IDs, and
capabilities—to determine privileged API access. However,
existing identity checks of these three types are often not well
designed, leading to a disobey of the least privilege principle.
That is, the granted recipient of a privileged API is broader
than intended, thus defined as an “identity confusion” in this
paper. To the best of our knowledge, no prior works have
studied this type of identity confusion vulnerability.

In this paper, we perform the first systematic study of iden-
tity confusion in real-world app-in-app ecosystems. We find
that confusions of the aforementioned three types of identities
are widespread among all 47 studied super-apps. More impor-
tantly, such confusions lead to severe consequences such as
manipulating users’ financial accounts and installing malware
on a smartphone. We responsibly reported all of our findings
to developers of affected super-apps, and helped them to fix
their vulnerabilities.

1 Introduction
Nowadays, mobile applications (apps) bring significant con-
venience to people’s work and daily lives with rich func-
tionalities. To better serve existing users and keep attract-
ing new users, these mobile apps—or called super- or host-
apps—often delegate some of their functions to other parties
for content and functionality enrichment. These parties with
delegated functions are thus defined as “sub-apps”, and the

community developing and maintaining sub-apps is called a
mobile “app-in-app” ecosystem. Some “app-in-app” ecosys-
tems are extremely popular, e.g., WeChat [1] is hosting >3.8
million sub-apps, which is even more than the number (3.04
million) of Android apps in Google Play [7].

Figure 1 illustrates a typical architecture of an app-in-app
ecosystem based on our study of 47 popular super-apps. When
a user clicks a Universal Resource Identifier (URI) specifying
the super-app protocol and a sub-app ID, the super-app loads
the sub-app from its server into a WebView instance. After
that, there are two important steps for a sub-app. First, a sub-
app may load third-party resources with different identities
into web frames of the WebView [11] instance. For example,
Pagoda [8], a fruit franchise with 4,000+ stores nationwide in
China, loads a cloud provider’s domain for remote backup and
an advertisement provider domain. Second, a sub-app may
access privileged APIs provided by the super-app with sensi-
tive and powerful functionalities. Examples of these APIs are
access to saved user data (e.g., account, friends, and phone
number used in registration) and utilization of OS-level re-
sources reserved for the super-app (e.g., location, camera, and
microphone).

One crucial security research question in an app-in-app
ecosystem is determining who can call specific privileged
APIs provided by the super-app, given the existence of multi-
party resources and the access to privileged APIs in one sub-
app. This “who” question is an access control issue or, more
specifically, an identity check problem. That is, the super-
app needs to check the identity of a runtime API invocation
and determine whether the invocation is legitimate. While
the problem is intuitively simple, the challenge is that many
different definitions of identities exist in a super-app. The
first is the domain name, one crucial element in the web
origin triple because WebView is used to render sub-apps.
The second type of identity is a sub-app ID assigned by the
super-app because the super-app loads sub-apps from their
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Figure 1: Simplified relationships of participants in the app-
in-app ecosystem.

servers hosting the sub-app code. The last is a secret, called a
capability, shared between a super-app and a sub-app.

Existing super-apps often adopt one of the aforementioned
three types of identities to check privileged API invocation.
However, none of these identities, at least those adopted by
existing super-apps, are atomic, thus disobeying the least priv-
ilege principle. For example, a privileged web domain may be
embedded in an unprivileged sub-app; a sub-app with a priv-
ileged sub-app ID as the identity may contain unprivileged,
third-party web domains; similarly, a privileged capability
may be obtained by an unprivileged sub-app as well. That is,
when a super-app grants a privilege to identity in an app-in-
app ecosystem, the intended recipient can be broader than, or
different from, the identity that actually represents. Therefore,
an adversary can often disguise her own identity to be one
with the granted permission, confusing the super-app that per-
forms the identity check. Such a vulnerability, if it exists in
an app-in-app ecosystem, is defined as identity confusion in
the paper.

To the best of our knowledge, no prior works have studied
identity confusion vulnerabilities in the app-in-app ecosys-
tem. There are two categories of prior works on WebView
vulnerabilities. The first category [21,31,33,36] assumes that
WebView as a whole is untrusted, which needs to be isolated
from the host app. In such a threat model, identities are clearly
defined and separated, i.e., WebView vs. the host app. The
second category [35, 45, 48, 52] explores vulnerabilities in
WebView itself, e.g., URL display of WebView content. In
this threat model, identities are clearly defined as web origins.
Fundamentally, our identity confusion vulnerability is due to
the introduction of sub-apps, which overlaps with the classic
origin identity introduced by WebView from the Web.

In this paper, we perform the first systematic study of iden-
tity confusion vulnerabilities and their exploits in the real-
world app-in-app ecosystems. The adoption of different iden-
tities naturally categorizes vulnerabilities into three types:

● Domain name confusion. Such confusion could arise
when a malicious sub-app with an unprivileged app ID
loads a privileged web domain, and the super-app only
checks the domain name for identity. Particularly, we find
that there exist race conditions among rendering the web
content, obtaining the domain name, and checking the
domain name. When the rendered content has a different
domain name from what is being checked, domain name
confusion arises.
● App ID confusion. Such confusion could arise when an

unprivileged web domain resides in a privileged sub-app,
and the super-app only checks the app ID. We design a
mimicry attack to achieve this purpose in loading mali-
cious URLs into a privileged sub-app. The attack first
abuses webpage redirections of some sub-apps and then
exploits flawed URI loading checks of super-apps, e.g.,
string matching that checks suffixes and insecure regular
expressions.
● Capability confusion. Such capability confusion may

come from either a malicious app ID or a malicious do-
main name with a privileged capability. We design leak
attacks to steal or obtain the capability that can be used to
invoke privileged APIs. Specifically, we find that the APIs
to obtain capabilities can often be reverse-engineered and
called without any protections against adversaries.

Our systematic study involves 47 high-profile super-apps
collected from three leading app stores and ranked by their
popularity. Our results show that they (both the Android and
iOS versions) are all vulnerable to at least one type of identity
confusion attack despite the diversity in identity checks. We
then explore and study the further consequences of identity
confusion beyond breaking identity checks. We find that such
confusion vulnerabilities lead to consequences such as phish-
ing, privacy leaks, and privilege escalation. Specifically, 31
are further vulnerable to phishing, 35 privacy leaks, and 38
privilege escalations. We report all the vulnerabilities to cor-
responding super-app developers and help them with the fix.
As an example, we have a regular monthly meeting schedule
with Alipay for half a year before fixing the vulnerability.

We summarize the contributions of this paper as below:
● We conduct the first systematic study on identity confu-

sion vulnerabilities in super-apps with app-in-app ecosys-
tems by analyzing their design and implementation flaws.
We find three types of confusion vulnerabilities: app ID,
domain name, and capability.
● We collect and analyze 47 popular real-world super-apps,

which exceed 46 billion downloads in total. Our analysis
confirms that they are all vulnerable to different types
of identity confusion vulnerabilities. Such vulnerabilities
can further lead to severe consequences, such as stealing
bank accounts and remote installation of malicious apps.
● We thoroughly study why such identity confusion vul-

nerabilities exist and propose corresponding mitigation
strategies based on the causes.



Table 1: Top 15 popular super-apps and their sub-app markets.
"-" means there are no public statistics, and it is hard to esti-
mate the number of sub-apps in the corresponding market.

Super-app Name Category Downloads Market Size
TikTok Social 18.8B+ -
WeChat Communication 2.1B+ 3.8M+
Snapchat Social 1B+ 6+
Kuaishou Social 780M+ -

Alipay Finance 690M+ 2M+
Line Communication 500M+ -

UC Browser Communication 500M+ 1K+
Baidu Tools 410M 420K+

JinRiTouTiao News & Magazines 220M+ -
Microsoft Teams Business 100M+ 911+

Grab Maps & Navigation 100M+ -
VK Social 100M+ 219+

Paytm Finance 100M+ 176+
Go-Jek Travel & Local 50M+ 15+

UnionPay Finance 39.7M+ 705+

2 App-in-app Ecosystem: A Survey Study

In this section, we present a brief survey study of existing
app-in-app ecosystems. The purpose here is to present how
popular such ecosystems are, what structures (including iden-
tity checks) super-apps use, and how sub-apps are running
atop super-apps.

2.1 Popular Super-app Runtimes

In this subsection, we perform a survey study to crawl and
analyze popular app-in-app ecosystems. Our methodology is
semi-automatic with three steps. First, we randomly crawl
6,000 popular Android apps from two leading Android app
stores (i.e., Google Play and WanDouJia [10]) and automati-
cally analyze these apps for the presence of WebViews. Sec-
ond, if WebViews are present, we manually analyze these
apps, e.g., search them in online engines, to understand
whether they support any sub-apps. Lastly, we also study
other markets, e.g., iOS’s App Store, to find the counterpart
super-app and the ecosystem.

Table 1 shows a list of the top 15 popular super-apps ranked
by total downloads according to our survey study. These super-
apps are diversified, which ranges from communication and
social to finance and business and spans across different coun-
tries, such as WeChat (China), Line (Korea) [4], and Microsoft
Teams (U.S.) [5]. The number of sub-apps in each ecosystem
also varies from several million to a few hundred. Note that
the number value for some super-apps is “unknown” (marked
as “-”) because we cannot find a reliable source to estimate
the market size, and the super-app disallows broader sub-app
crawling.

We further analyze these super-apps and summarize them
into a typical structure of an app-in-app ecosystem in Figure 2.
A super-app provides a runtime for sub-apps with three major
components: (i) an embedded browser instance, (ii) runtime
privileged APIs, and (iii) a web-to-mobile bridge.
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Figure 2: A Typical Structure of App-in-app Ecosystem

First, the embedded browser instance (e.g., WebView1 for
Android and WKWebView [12] for iOS) provides an isolated
environment for a sub-app. Such an instance often includes a
customized worker to load and execute pre-defined sub-app
code. Second, runtime privileged APIs provide access to vari-
ous resources, such as user data and network access, which
are sometimes unique to the super-app. Third, the web-to-
mobile bridge connects sub-app code with the native Java
code and, most importantly, enforces identity checks for the
sub-app. While details of the bridge vary among different
super-apps, a typical implementation encapsulates all privi-
leged API invocations from the web side into a message sent
to the mobile side via a dispatch method registered through
“addJavaScriptInterface”. The mobile side parses the received
message, finds the corresponding APIs, checks identities, and
then invokes them if the check passes.

2.2 Typical Sub-app Programming Model and Lifecycle

This subsection describes the general programming model
of sub-apps running atop super-app runtimes as described
in Section 2.1. Such sub-apps are usually programmed as
mini web applications with JavaScript, HTML, and CSS and
have possible access to privileged APIs via the web-to-mobile
bridge. Sub-apps not only are hosted on a super-app market,
but also fetch content from their own or third-party servers.

Now we describe a typical lifecycle of a sub-app when be-
ing loaded by a super-app. First, an end user will either click
on or scan a QR code [2] with a deep link [3] pointing to a sub-

1Without loss of generality, we use WebView to refer to such embedded
web browsers in the paper.



Table 2: The process of identity checks in the top 15 super-
apps. D or A means the whitelist of Domain or AppID and
their subscripts sub or super mean who provides them. Sym-
bol→ means the check happens in the Server or Native side.

Super-app Identifier Check Policy Location

TikTok Domain Endswith(targetURL, {d∣∀d∈Dsub}) Loading
AppID appID∈Asuper API access

WeChat
Domain targetURL→ (Server,Dsub) Loading

targetURL→ Server API access
AppID appID→ Server API access
Capability Equal(Scaller ,Ssuper) API access

Alipay
Domain RegMatch(targetURL, {d∣∀d∈Dsub]}) Loading

RegMatch(callerURL,{d∣∀d∈Dsuper}) API access

AppID appID∈Asuper API access
appID→ Server API access

UC Browser
Domain RegMatch(targetURL,{d∣∀d∈Dsub}) Loading

RegMatch(callerURL,{d∣∀d∈Dsuper}) API access

AppID appID∈Asuper API access
appID→ Server API access

Baidu Domain Endswith(targetURL,{d∣∀d∈Dsub}) Loading
AppID appID→ Server API access

JinRiTouTiao Domain Endswith(targetURL, {d∣∀d∈Dsub}) Loading
AppID appID∈Asuper API access

Teams Domain Equal(targetURL,{d∣∀d∈Dsub}) Loading
RegMatch(callerURL,{d∣∀d∈Dsuper}) API access

VK AppID appID→ Server API access

Go-Jek Domain Equal(targetURL,{d∣∀d∈Dsub}) Loading
Equal(callerURL,{d∣∀d∈Dsuper}) API access

UnionPay Domain targetURL→ (Native,Dsub) Loading
Capability Equal(Scaller ,Ssuper) API access

app of a super-app’s app-in-app ecosystem. Second, the super-
app will find the sub-app based on the app ID embedded in the
deep link and then download a bundle of web content from
the super-app’s market. Such downloaded content is often
rendered in a customized worker provided by the WebView.
Third, the sub-app, e.g., these running in a worker, will further
fetch contents from its own or third-party servers and render
them in a WebView instance. Lastly, the sub-app’s code, in-
cluding those downloaded from the super-app’s market, its
own server, and third-party server, may access privileged APIs
via the web-to-mobile bridge.

Note that there are two locations where an identity check
can happen. First, when web contents are fetched from sub-
app or third-party servers and then rendered in a WebView
instance, the super-app will check the identity of fetched
contents. Second, when a WebView instance accesses privi-
leged APIs provided by the super-app, the super-app will also
check whether the access is allowed based on the WebView
instance’s identity.

2.3 Existing Identity Checks

In this subsection, we perform a survey study on how identity
checks in existing super-apps work. Our methodology is as
follows. We manually review all the 15 super-app’s source
code in Table 1 with the help of static analysis tools and
explore the super-app using dynamic analysis. Our purpose
is to understand an important question on what identity and
corresponding checking policy are used in real-world super-
apps.

Let us summarize all identities and their checking policies
found in these super-apps below:
● Domain Name. A domain name, as part of web origin,

represents a server and contents delivered from the server.
We find two main types of domain name based identity
checks: (i) strict whitelist and (ii) vague matching. First,
some super-apps use a strict method to exactly match a
whitelist of web domains. Second, some super-apps adopt
a vague matching method, e.g., an Endswith to check the
suffix of a web domain and a regular expression to match
domains with certain patterns.
● App ID. A sub-app ID (or called AppID for short) is

an identifier assigned by a super-app to the sub-app. The
checking of AppID is usually strict based on a whitelist,
and the checking could be performed at either the super-
app (native and Java) or the remote server.
● Capability. A capability is a secret issued by either a

super-app or a server and checked based on exact match.
There are two ways of obtaining a capability in existing
super-apps. First, a sub-app obtains a capability on the
mobile side via a hidden runtime API. Second, a sub-
app obtains a capability from its cloud after a two-way
authentication.

Then, let us describe details of our survey study results, i.e.,
how these identity checks exist in real-world super-apps, in
Table 2. First, most super-apps adopt more than one identity in
the check to ensure security. Second, most super-apps adopt
identity checks at both the content loading and the API access
to ensure that the loaded contents are correct and the APIs,
especially privileged ones, are accessed with a correct identity.
Lastly, identity check policies are very diversified from one
super-app to another, making the checks fragmented and local
to a specific super-app.

2.4 Super-app Runtime API Analysis

In this subsection, we perform a study on runtime APIs pro-
vided by super-apps. The challenges are three-fold. First,
these APIs are different from one super-app to another. That
is, we need to analyze each super-app. Second, many APIs are
hidden, i.e., undocumented, and cannot be discovered by read-
ing documents. Lastly, many APIs are not directly invoked
but triggered by a web-to-mobile message via an API pool.

Our detailed steps in discovering these APIs contain both
static and dynamic analysis. First, we analyze super-apps
statically to find direct hidden API invocations via standard
WebView interfaces or event handlers (e.g., methods anno-
tated by “@JavaScriptInterface” or “onConsoleMessage()”).
Specifically, we conduct a static control-flow analysis by uti-
lizing both “addJavaScriptInterface” and WebView callbacks
as entries. Then, we identify all container objects (e.g., maps,
arrays, and sets) during static analysis as potential API pools.

Second, we use dynamic instrumentation to discover in-
direct hidden API calls. Specifically, we hook statically-
identified container objects (e.g., via Xposed [13]) and then
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Figure 3: API statistics among top 15 super-apps.

generate test cases to trigger documented public runtime APIs.
If these container objects are accessed during a public API
call, we will consider them as API pools and read all the
stored APIs from the pool. Next, if a hidden API is protected
by manually verified identity checks, we will consider it as a
privileged hidden API.

Figure 3 illustrates the results of the top 15 super-apps,
which show that about 50% of APIs are not well-documented.
We also manually sample 200 hidden APIs and check whether
they are privileged. Our analysis results show that at least
80% of them, i.e., 160 APIs, are privileged and should not
be used by arbitrary sub-apps. For example, a hidden API—
named “rpc"—can be used to access the super-app’s cloud-
side interfaces, like manipulating user accounts. For another
example, a hidden API called "getUsageRecord" in TikTok
can be abused by sub-apps to monitor users’ actions on other
sub-apps.

3 Identity Confusion: An Overview
In this section, we give an overview of identity confusion
vulnerability by presenting the definition of identity confusion,
a motivating example, and our threat model.

3.1 Definition

An identity confusion is a type of vulnerability where a per-
mission (e.g., the access to a privileged API and the loading
of web content) is granted to an identity that is broader than
(or different from) the intended target, leading to a confusion.
An identity confusion is often a disobey of the least privi-
lege principle. In an app-in-app ecosystem, identity confusion
arises when multiple definitions of identities co-exist for a
given entity, such as a WebView instance. For example, say
a permission is granted to an AppID. Then, an identity con-
fusion happens when the sub-app with the AppID is tricked
into loading contents from a malicious web domain. For an-
other example, if a permission is granted to a web domain,

contents from the web domain may be loaded in a malicious
sub-app. That is, one notable reason for such confusion is
that web content (loaded in sub-apps) is highly flexible and
potentially changes every moment, e.g., web navigation and
even sub-app redirection. Thus, it is challenging for the super-
app layer to obtain the correct identities, especially when a
change happens in the sub-app layer.

Oftentimes, an identity confusion needs to be combined
with another vulnerability, e.g., an incorrect domain check
or a race condition, for exploitation. Let us take a look at
the aforementioned two examples in the previous paragraph
again. When the super-app has an incorrect domain check,
the adversary can trick a sub-app to load contents from a ma-
licious domain. Similarly, when there exists a race condition
in checking domain names, the contents loaded in a malicious
sub-app can be recognized as from a permitted web domain.
Once identity confusion is exploited, the consequences could
be severe because identities are often associated with high
privileges, e.g., these APIs accessing user data.

To summarize, a remote adversary (e.g., malicious web
content and sub-app provider) with unprivileged identities
can disguise own identities, confuse access control enforced
in super-apps, and finally call privileged runtime APIs. This
can be done by leveraging the privilege assignment and man-
agement problem and the asynchronous design between the
sub-app and mobile layers. We define such a vulnerability as
identity confusion.

3.2 A Motivating Example

In this subsection, we describe a motivating example of a
super-app WeChat and its sub-app Pingduoduo2 to illustrate
identity confusion vulnerability, which eventually leads to
privilege escalation attacks, such as arbitrary APK download
and installation on the Android platform.

Let us describe the steps of the end-to-end attack as shown
in Figure 4. The attack has 12 detailed steps that can be
grouped into three major phases: (i) loading contents in the
customized worker, (ii) loading contents in the WebView
instance, and (iii) downloading malicious apks.

First, let us look at the first phase in loading con-
tents into the customized worker. In Step (0a), a vic-
tim is tricked into clicking on a malicious deep link
such as weixin://encoded(pingduoduo-appID,path,
malicious-url). WeChat will recognize the deep link for
preparing the runtime for Pingduoduo’s sub-app in Step (0b).
Starting from Step (1a), WeChat downloads and executes
Pingduoduo’s sub-app code from its own market. Next, in
Step (1b), Pingduoduo sends the request for loading the URL
embedded in the malicious deep link. Note that the original
design of this dynamic URL request is for convenient switches
between different online shops maintained by Pingduoduo.
This request is hooked by WeChat, which will further send

2Pingduoduo is a popular online customer-to-manufacturer market man-
aging over 8.6 million virtual shops.

weixin://encoded(pingduoduo-appID, path, malicious-url)
weixin://encoded(pingduoduo-appID, path, malicious-url)
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Figure 4: Motivating example for a remote attacker to exploit
WeChat app-in-app ecosystem.

the URL to its own server for security check in Step (1c).
However, the design and implementation to check the URL
are flawed, which leads to our first identity confusion vulner-
ability.

Here is a description of the flaw. The security check is
flawed because the server-side URL parser cannot distinguish
the username and the hostname of a common URI. For exam-
ple, a URL like https://benign.com:x@malicious.com
will be considered benign.com. Therefore, in Step (1d), the
WeChat server grants permission for loading this URL.

Second, let us look at the second phase in loading contents
into a WebView instance. Because the WeChat obtains a green
light for loading the malicious URL, in Step (2a), WebChat
loads the contents from malicious.com to Pingduoduo’s
runtime. At this moment, the loaded malicious contents still
have no high privileges, because they are isolated in a We-
bView instance. Although the AppID of Pingduoduo has a
high privilege, the access to high privileged APIs still needs a
capability, i.e., a secret token.

Here comes our second flaw in the ecosystem. The ca-
pability is obtained from a Web service API provided by
Pingduoduo, which does not have any access control. That is,
any client can call this API to obtain a capability for a higher
privilege at WeChat. Specifically, in Step (2b), the malicious
contents loaded in the WebView instance can request for a
capability from Pingduoduo, which will negotiate with the
WeChat server in Step (2c) and then deliver the capability to
the WebView in Step (2d).

Third, let us describe the third phase, i.e., downloading
and installing a malicious APK. In Step (3a), the malicious
contents invoke a privileged API with the obtained capability.
Particularly, we use addDownloadTask(), a hidden, undocu-
mented API, as an example in Step (3b), which can download
and install any APKs on the Android platform.

Note that there exist two types of identity confusion vul-
nerability for the invocation of addDownloadTask(), which
are AppID and capability confusions, because the API in-
vocation requires the checking of both the AppID and the
capability. The former AppID confusion happens when a ma-
licious domain is loaded in a sub-app with an authenticated
AppID. This vulnerability has to be combined with the incor-
rect policy checking, i.e., Flaw 1 between Steps (1c) and (1d).
The latter capability confusion happens when a malicious
domain from the correct sub-app can request for a capability
from the server, i.e., Flaw 2 between Steps (2a) and (2b), and
the requested capability is accepted by WeChat, i.e., Flaw 3
between Steps (3a) and (3b).

3.3 Threat Model

In this subsection, we describe the threat model adopted in
the paper. We assume that the super-app and the underlying
mobile Operating System (OS) are benign and with no ma-
licious mobile apps installed. Specifically, we consider the
following two scenarios:

● Vulnerable Sub-app. A vulnerable sub-app is benign
code running atop a super-app with an identity confusion
vulnerability (e.g., an AppID or a capability confusion).
The adversary in this scenario is a malicious web domain,
which has the capability to send a victim user a malicious,
phishing deep link pointing to the vulnerable sub-app
inside a super-app.
● Malicious Sub-app. A malicious sub-app is code with

malicious intent and being crafted by an adversary. The
adversary in this scenario is a malicious sub-app devel-
oper, which has the capability to upload malicious content
to the market of the super-app and trigger an identity con-
fusion vulnerability (e.g., a domain name confusion) of
the super-app.

Note that the former scenario—a vulnerable sub-app case—
is considered as a stronger threat model compared with the
latter. The reasons are two-fold. First, although both threat
models need that a victim user clicks on a malicious deep
link, the link itself is pointing to a recognized, benign sub-
app in the former scenario, but an unrecognized, potentially-
malicious sub-app in the latter. Second, the threat model of
the malicious sub-app requires that the adversary uploads
the malicious code (potentially obfuscated) to the super-app
market, which boosts the chance of being detected.

4 Identity Confusion: A Taxonomy Study
In this section, we perform a taxonomy study to break down
existing identity confusions into three major types: domain
name, AppID and capability-based.

4.1 Domain Name Confusion

A domain name confusion is that the web domain that invokes
a privileged API from WebView is different from the domain
that a super-app obtains and checks for identity. Specifically,

https://benign.com:x@malicious.com
benign.com
malicious.com


we classify domain name confusions into two types: timing-
based (due to race condition) and frame-based (due to the
existence of multiple domains). Table 3 shows the high-level
results of whether event handlers of different Android classes
are vulnerable to these two types of timing and frame-based
race conditions. If super-apps use any of these tested Web-
View APIs and callbacks to implement domain-based identity
checks are all vulnerable. We now describe the details.

4.1.1 Type 1: Timing-based Confusion

The first type—called timing-based—is because of a race
condition between different threads of WebView and super-
app from a high level. That is, as a simplification of the race
condition, when a WebView thread invokes a privileged API
and passes the control to a super-app thread, the identity is
from say malicious.com; but when another super-app thread
checks the identity, the identity changes to say privileged.
com due to redirection, leading to confusion.

We now describe the details. Before that, we need to explain
different threads that reside in WebView instances and super-
apps.
● WebView Threads. A WebView instance usually has

two types of threads, one used for rendering web contents
(called a render thread) and the other used for loading web
contents (called a browser thread).
● Super-app Threads. A super-app may have three types

of threads: (i) a thread that obtains the WebView’s do-
main name as an identity, (ii) a thread that checks the
obtained identity and decides whether to allow the exe-
cution, and (iii) a thread that dispatches privileged API
calls in an asynchronous queue. Note that the existence
of these three types of threads depends on the design and
implementation of super-apps.

Next, we illustrate two case studies.

Case 1: Race between WebView’s rendering and loading
threads. This race condition is because WebView’s render-
ing and loading threads may be dealing with content from
different web domains. Specifically, on the WebView end,
when the loading thread starts to load contents from a new
URL after redirection, the rendering thread may still execute
contents from the old URL. Then, on the super-app end, there
are two threads, one that obtains a new web domain after redi-
rection from the loading thread of WebView as an identity,
and the other that checks the new domain name but allows a
privileged API call from the old domain.

There are two variations of this race condition depending
on the initiation of the URL loading. Figure 5 shows one
variation. First, the JavaScript from malicious.com running
in WebView’s rendering thread starts to redirect the webpage
to privileged.com. Second, the redirection is sent to the
loading thread, which starts to load privileged.com and
triggers the callback (e.g., onPageStarted()) registered by
the super-app. Third, the corresponding super-app thread trig-
gered by the callback obtains the new domain name as the
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Figure 5: [Domain Name Confusion: Type 1] An illustration
of timing-based confusion using onPageStarted API due
to race conditions between WebView’s Rendering (called
Render) and Loading (called Browser) Threads.

identity. Lastly, the same JavaScript from malicious.com
invokes a privileged API call, but the identity has already
become privileged.com.

Next, Figure 6 shows another variation. First, a thread of
the super-app calls loadUrl(), which instructs the browser
thread to load an URL (privileged.com) and returns the
new domain name as the identity. Second, the JavaScript code
from the old URL (malicious.com) invokes a privileged
API, which is checked by a thread of the super-app but consid-
ered as from privileged.com. This leads to domain name
confusion.

It is worth noting that many WebView APIs and callbacks
are either interacting with or triggered by the browser thread
instead of the render thread. That is, the race condition is very
common among many WebView APIs. To understand how
prevalent such race conditions are, we collect all the Web-
View APIs from Android’s documentation, and then perform
a small-scale study on WebView APIs that return URLs and
WebView callbacks that have URLs as a parameter. Specifi-
cally, we first either register a callback and then redirect the
webpage to another URL. Then, we measure whether there
exists inconsistency between the callback and the webpage’s
URL from two perspectives: (1) whether the old webpage can
still execute JavaScript code but the URL has been updated
to the new one and (2) whether the new webpage can execute
JavaScript code but the URL is still the old one.

Here are the detailed steps in measuring the aforementioned
two points. We create a webpage that has an endless loop for
printing its URL together with the timestamp (i.e., Tjs), and let
the WebView’s callbacks print its own URL (i.e., URLcb) with
the timestamp (i.e., Tcb). Then, for (1), we measure whether
max(Tjs) is larger than Tcb and URLcb is the new webpage’s;
for (2), we measure whether min(Tjs) is smaller than Tcb and
URLcb is the old webpage’s.
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Table 3: The domain name confusion in using WebView’s event handlers to obtain identity information. We measure them at
time and frame dimensions.

Class Name Method Signature of Event Handlers Domain Name Confusion
Timing-based Frame-based

Getter Method:

WebView getOriginalUrl () ✔ ✔
getUrl () ✔ ✔

Callback Method:

WebViewClient

doUpdateVisitedHistory (WebView view, String url, boolean isReload) ✔ ✔
onLoadResource (WebView view, String url) ✔
onPageCommitVisible (WebView view, String url) ✔ ✔
onPageFinished (WebView view, String url) ✔ ✔
onPageStarted (WebView view, String url, Bitmap favicon) ✔ ✔
onReceivedClientCertRequest (WebView view, ClientCertRequest request) ✔ ✔
onReceivedError (WebView view, WebResourceRequest request, WebResourceError error) ✔
onReceivedHttpAuthRequest (WebView view, HttpAuthHandler handler, String host, String realm) ✔
onReceivedHttpError (WebView view, WebResourceRequest request, WebResourceResponse errorResponse) ✔
shouldInterceptRequest (WebView view, WebResourceRequest request) ✔
shouldOverrideUrlLoading (WebView view, WebResourceRequest request) ✔

WebChromeClient onReceivedTouchIconUrl (WebView view, String url, boolean precomposed) ✔ ✔
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Figure 6: [Domain Name Confusion: Type 1] An illustration
of timing-based confusion using loadUrl() API due to race
conditions between WebView’s Rendering (called Render)
and Loading (called Browser) Threads. Although GET and
CHECK threads are separate in the figure, they can reside in
the same one.

Case 2: Race between super-app’s dispatch and check-
ing threads. This race condition is summarized as follows.
When super-app’s dispatch thread receives a privileged API
call, it does not check the identity but instead dispatches to an
asynchronous queue. Then, when the checking thread fetches
the API call from the queue and checks the identity, the iden-
tity obtained from the WebView is out of date.

Figure 7 illustrates such a race condition. First, the
JavaScript from malicious.com in the WebView render
thread calls a privileged runtime API. Next, the WebView
thread passes the call to a super-app thread. Then, the super-
app thread dispatches the API call to a queue without check-
ing its identity. Next, the JavaScript in the WebView’s render
thread redirects the webpage to privileged.com. Lastly,
when another super-app thread fetches the API call from the
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Figure 7: [Domain Name Confusion: Type 1] An illustration
of timing-based confusion due to race conditions between
super-app’s dispatching (called Dispatch) and domain check-
ing (called Check) Threads.

queue and executes it with identity checks, the obtained iden-
tity is privileged.com instead of malicious.com.

Note that when the super-app finishes the execution of the
invoked API, the old webpage (i.e., malicious.com) can-
not obtain the return value because the webpage is now
privileged.com. Nevertheless, the attack still succeeds as
the privileged API finishes its execution. For example, the
addDownloadTask API can still download a malicious APK
and the mute API can silence the mobile phone.

4.1.2 Type 2: Frame-based Confusion

The second type—called frame-based—is that an iframe acts
on behalf of the top frame’s identity. The reason is that many
WebView’s APIs and callback functions only return the top
frame’s URL when multiple sub-frames are embedded as
part of a top frame. Then, no matter what identity checks
a super-app adopts and how it performs such checks, the
super-app can only obtain the top frame’s identity if such
APIs and callbacks are used. That is, an advertisement from
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malicious.com embedded as an iframe of privileged.com
can act on behalf of the latter.

We also perform a similar study as we do for timing-based
confusions to understand the spread of frame-based confu-
sions among WebView APIs and callbacks. Specifically, we
create a webpage with an iframe from a different web do-
main and run these APIs and callbacks to determine whether
they will return multiple domains. Table 3 shows the results:
eight out of 14 APIs and callbacks are vulnerable to frame-
based confusions. This list includes commonly-used ones like
onPageStarted, onPageFinished, and getUrl.

4.2 App ID Confusion

An AppID confusion is that a malicious domain with a privi-
leged AppID invokes a privileged runtime API, thus confusing
the super-app’s identity checks. We call it AppID confusion
because the malicious domain has the correct AppID, but the
domain itself is malicious. The key step for AppID confusion
is to load a malicious domain within a privileged sub-app.
In practice, we find three cases of such AppID confusions in
loading malicious URLs into privileged sub-apps.

Type 1: Flawed URL whitelist matching. This flaw is that
the URL whitelist used for loading is flawed, thus being able
to allow potential malicious URLs to load. The deep reason is
the lack of coordination and proper documents between super-
app and sub-apps. Specifically, the URL whitelist checking
algorithm is provided by the super-app, but the whitelist is
provided by the sub-app. Therefore, a misunderstanding of the
check algorithm often leads to flaws and we list two scenarios
here.

● endswith being misunderstood as strict matching. In
this scenario, the super-app provides endswith as the
matching algorithm, but the sub-app developer thinks it
is a strict matching. Therefore, when the sub-app uses
benign.com in the whitelist, an adversary can bypass the
check using a domain like maliciousbenign.com.
● Regular expression (regex) being misunderstood as strict

matching. In this scenario, the super-app uses regex
in the matching, but the sub-app developer still thinks it
is a strict matching. Therefore, when the sub-app uses
benign.a.com, the dot matches an arbitrary character.
That is, an adversary can bypass the check using a domain
like benignXa.com.

Type 2: Flawed URL parsing. This flaw is that super-apps
have logic errors in parsing URLs and extracting web domains.
We listed two types of parsing errors.

● Username and password fields. This parsing error is
that the super-app does not recognize username and pass-
word fields or a URL. Take https://benign.com:x@
malicious.com as an example. A logic error is to extract
benign.com as the domain name instead of malicious.
com.

● JavaScript protocol. This parsing error is that the super-
app does not recognize JavaScript as a protocol. Thus,
an attacker can use the URL javascript://payloads
to exploit the URL parsing, resulting in code injection
attacks and the loading of arbitrary domains.

Type 3: Missing URL checks. This flaw is that super-apps
do not check web domains when a sub-app loads a third-party
URL into either an iframe or a top frame. Therefore, an adver-
sary can either embed a malicious URL as an advertisement
or trick the top frame into visiting a malicious URL and then
accesses privileged APIs, such as reading user contacts.

4.3 Capability Confusion

A capability confusion is that the privileged capability used
for protecting runtime APIs is leaked to a malicious entity.
Specifically, we find two cases of capability confusion: un-
protected client-side and server-side APIs.

Type 1: Unprotected client-side API. This flaw is that
super-apps use a hidden, unprotected API to transfer capabili-
ties. The super-app assumes that the API is undocumented and
will not be used by an adversary, but the API can be reverse-
engineered from privileged sub-apps and used by an adversary.
It is worth noting that hidden APIs are a widespread problem
in super-apps, which takes up to about half of all the runtime
APIs (details are in Figure 3 of §5).

Type 2: Unprotected server-side API. This flaw is that a
privileged sub-app server exposes unprotected APIs to sign
an invocation request that can be accepted by a super-app.
Specifically, here is how the attack works. malicious.com
first sends a request to the sub-app’s back-end servers to
sign the invocation request and then forwards the request to
super-apps. Because the request is signed by a privileged sub-
app server, the super-app will allow the API invocation. Our
motivating example in Figure 4 has such a flaw.

5 Measurement: Prevalence & Consequence
In this section, we describe our measurement methodology
and results in analyzing the prevalence and consequence of
identity confusion vulnerabilities of existing super-apps. We
also give a few case studies at the end.

5.1 Methodology

In this subsection, we describe our overall measurement
methodology, which has three semi-automatic steps with man-
ual efforts.

5.1.1 Step I: Super-app Discovery

In this step, we use a semi-automatic method to discover
more super-apps beyond these that we find in §2. The high-
level insight is that super-apps often define many templates
(e.g., “miniapp0” and “miniapp1” for process names, and
“AbsMakePhoneCallApiHandler” and “AbsChooseAddress-
ApiHandler” for class names) in running different sub-apps,
which can be used to find app-in-app ecosystem.
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Specifically, there are three sub-steps. First, we use static
analysis by utilizing Soot [9], to identify apps with Web-
Views and JavaScript bridges, e.g., detecting whether they re-
implement addJavaScriptInterface. Second, we conduct
a class name similarity analysis to find super-app runtimes.
Specifically, we collect the class name of the activity which
contains WebView instances and keep those apps containing
at least five similar (i.e., sharing keywords) class or process
names as potential super-apps. Then, we use the keyword-
based package name matching to filter ads-related WebView
instances, which may have bridge implementation but are not
sub-apps runtime. Third, we manually verify whether they
are truly super-apps with app-in-app ecosystem.

5.1.2 Step II: Vulnerability Analysis

In this step, we analyze each super-app for different identity
confusion vulnerabilities. The high-level idea is that we man-
ually write test cases and exploits by the identity confusion
taxonomy and check the existence of each vulnerability. Al-
though our analysis is performed on Android, we use the Proof
of Vulnerability (PoV) for Android versions of super-apps to
verify whether their iOS versions are also vulnerable.

Domain name confusion analysis. The analysis has two
major steps: (i) determination of whether a vulnerable API
or callback in Table 3 is used, and (ii) manually generating
exploits triggering the vulnerability. Let us start with the first
step. There are two types of WebViews: Android WebView
or iOS counterpart, and customized WebView (e.g., UCWeb-
View). If it is an unchanged WebView, we can directly look
up Table 3; otherwise, if it is a customized WebView, we
will perform an analysis (as we did in §4.1.1) to determine
the vulnerable implementation on API or callback for this
WebView.

Second, we create a malicious webpage that invokes priv-
ileged runtime APIs with an endless loop, and let the web-
page trigger the event handlers, e.g., jumping to a privileged
domain. Next, if any of the privileged API executes success-
fully, it indicates that the super-app is vulnerable to domain
name confusion. Let us use onPageStarted as an exam-
ple to explain more clearly. Figure 8 illustrates the web-
page we crafted for testing Microsoft Teams—This JavaScript
starts a repeated asynchronous loop to invoke the privileged
runtime API “getAuthToken” with “window.setInterval()”,
and then uses “window.location.href” to jump to https:
//privileged.com for triggering WebView’s event handler
onPageStarted. Because there exists a race condition, the
return result from the privileged API is accessed by the old
page controlled by the adversary.

Note that we need to generate different exploit codes for
onPageStarted in WebViews with a >72 Chromium kernel.
The reason is that the time window for domain name confu-
sion in Figure 5 becomes very small and the race condition is
difficult to trigger. Specifically, we ask the webpage to load
an error URL (i.e., either a very long URL or an unregistered

1 //JavaScript
2 window.setInterval(function(){
3 res = nativeInterface.framelessPostMessage(’

{"id":1,"func":"authentication.getAuthToken","
args":[[" privileged.com"]]}’);

4 //res can be leaked to malicious server
5 ... ...
6 },1500);
7 window.location.href = "https://privileged.

com/";

Figure 8: Example for verifying domain name confusion. The
getAuthToken is a privileged API of Microsoft Teams. This
figure exhibits a race condition: although the webpage is set
to navigate to https://privileged.com, and so does the
domain name, the code is still executed under the old context
before the new page is loaded. The return value is accessed
by the old page controlled by the adversary during the small
interval.

URL scheme), making WebView execute its error-handling
code, thus enlarging the time window of race condition for
onPageStarted.

AppID confusion analysis. This analysis checks whether
an adversary can ask a super app to load any malicious do-
main in a sub-app. Specifically, we create a sub-app and set a
whitelist for benign domains. Then, we generate a variety of
URLs by mutating several initial seeds. Next, we randomly
select URLs that cannot match the whitelist to test the sub-
app. During the test, we hijack the network traffics and return
the same webpage we crafted for invoking privileged run-
time APIs, when requesting these URLs. Thus, if any of these
URLs is successfully loaded and the JavaScript executed, an
AppID confusion is confirmed.

Capability confusion analysis. This analysis checks
whether the API of transferring secret is exposed. Specifi-
cally, we first collect ten sub-apps for each super-app. Then,
we check how they invoke privileged APIs: (1) we first con-
duct a backward control-flow analysis and extract the adjacent
API calls before the invocation of privileged APIs; (2) we
cluster the extracted API calls; and (3) if there exists an API
which always is invoked before privileged APIs, it may be a
secret API. Then, we further check it with manual verification.

5.1.3 Step III: Consequence Analysis

In this step, we analyze the security consequence for each
vulnerable super-app. In practice, we find three kinds of such
consequences of identity confusion vulnerabilities. We now
explain our analysis methodology (mostly manual) below:

● Privilege Escalation. We manually inspect whether an
adversary can access privileged APIs after successfully
confusing the super-app and disguising itself as a privi-
leged identity. We consider the consequence that exists if
the adversary can access at least one of such APIs.
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Table 4: # of remaining apps in locating super-apps after
applying each filter.

Filtering Methods # Super-apps

Filter 1: Containing WebView 5,436
Filter 2: Redefining addJavaScriptInterface 3,463
Filter 3: Class name clustering 291
Filter 4: Manual analysis 47

Table 5: Breakdown of Identity Confusion Vulnerabilities of
47 Super-apps

Identity Confusion # Super-apps Examples

D
om

ai
n Type 1: Timing-based 15 WeChat, Alipay

Type 2: Frame-based 15 Microsoft Teams, Go-Jek

Total 15

A
pp

ID Type 1: Flawed matching 26 TikTok, Baidu
Type 2: Flawed parsing 2 WeChat, Go-Jek
Type 3: Missing checks 10 Microsoft Teams, UnionPay

Total 38

C
ap

ab
ili

ty Type 1: Client-side 1 UnionPay
Type 2: Server-side 1 WeChat

Total 2

No identity checks 9 Snapchat, Kuaishou

Total 47

● Phishing. We manually inspect whether a sub-app can
load web contents from a malicious domain, with phishing
contents.
● Privacy Leaks. We manually inspect whether an adversary

(e.g., a malicious domain) can access sensitive user data,
e.g., via some privileged APIs like getContacts.

5.2 Measurement Results

In this part, we describe our measurement results. The first
step gives us 47 super-apps: The number of remaining apps af-
ter applying each filter is shown in Table 4. Next, we describe
the results from Steps II and III.

5.2.1 Vulnerability Prevalence

Table 5 illustrates the overall results of our vulnerability analy-
sis. It shows that they (both the Android and iOS versions) are
all vulnerable to at least one type of identity confusion attack
despite the diversity in identity checks used in these super-
apps. Here are the breakdowns. Nine super-apps adopt no
identity checks at all, thus being all vulnerable; all 38 super-
apps with AppID checks are vulnerable; all 15 super-apps
with domain name checks are vulnerable; two super-apps with
capability checks, all are vulnerable. Note that the overlaps
are because one super-app may adopt more than one identity
check.

Additionally, there are two things worth noting for domain
confusion vulnerabilities. First, we evaluate the security of
customized WebViews used by some super-apps and show the
results in Table 6. To summarize, despite the customization,
they have the same vulnerabilities as Android’s WebView.

Table 6: The customized WebViews affected by [Domain
Name Confusion: Type 1], including the iOS’s WebView. We
collect the iOS version of these 47 super-apps.

Platform WebView Domain Name Confusion Affected Apps

Android

UCWebView ✔ 10
Tencent TBS ✔ 4

Baidu T5 ✔ 6
ToutiaoWebview ✔ 4

KsWebView ✔ 2
others ✔ 2

iOS WKWebView ✔ 47

Table 7: The system WebViews of stock Android with the
latest security patches. ∗ means attackers should use an error
URL to exploit the identity checks implemented on WebView
API onPageStarted.

Android Patch Level WebView’s Domain Name
Chromium Version Confusion

< Version 72
Android 6 2017-10-01 52 ✔
Android 7 2019-03-01 51 ✔
Android 8 2019-06-05 61 ✔
Android 9 2019-08-01 66 ✔

> Version 72
Android 10 2019-09-05 74 ✔⋆
Android 11 2021-07-05 83 ✔⋆

Table 8: Breakdown of Identity Confusion Consequences of
47 Super-apps

Consequences # Super-apps Examples

Privilege Escalation 38 Go-Jek, Grab
Phishing 31 TikTok, WeChat
Privacy Leaks 35 Alipay, Microsoft Teams

Second, we evaluate WebViews with Chromium as its kernel
in the stock Android from version 6 to the latest 11. The
results in Table 7 show that they are all vulnerable.

5.2.2 Vulnerability Consequence

Table 8 illustrates the overall results of our consequence anal-
ysis. It shows that such confusion vulnerabilities can lead
to phishing, privacy leaks, and privilege escalation. Here are
breakdowns: (i) 38 super-apps are vulnerable to privilege
escalation; (ii) 31 phishing; and (iii) 35 privacy leaks. This
demonstrates the severity of identity confusion.

Interestingly, during our manual inspection, we also find
some security consequences that are independent of identity
confusion. We list three types below:

● Permission re-delegation. When a benign domain applies
for permission and the user grants it, the super-app will
give this permission to the sub-app, but not the domain.
Then, any other domain, e.g., malicious.com, in this sub-
app can use this permission. We find and confirm that 21
super-apps have this vulnerability.
● Data leakage. It is the disclosure of sensitive information

to an adversary, such as token and account information.
The reason is that a sub-app does not check the destination
webpage when sending sensitive data. For example, an

malicious.com


Table 9: The overall result of our flaws detection tool tested on the total 47 super-apps. Symbol "∅" means the host app does not
have this type of security enforcement. ✔ means it is vulnerable to our attack.

#ID Super-app Domain Name Confusion AppID Confusion Capability Confusion Security Consequences
Time-based Frame-based Privilege Escalation Phishing Attack Privacy Leaks

01 TikTok ✔ ✔ ✔ ∅ ✔ ✔ ✔
02 WeChat ✔ ✔ ✔ ✔ ✔ ✔ ✔
03 Snapchat ∅ ∅ ∅ ∅ ✔ ✔
04 Kuaishou ∅ ∅ ∅ ∅

05 Alipay ✔ ✔ ✔ ∅ ✔ ✔ ✔
06 Line ∅ ∅ ∅ ∅ ✔ ✔
07 UC Browser ✔ ✔ ✔ ∅ ✔ ✔ ✔
08 Baidu ∅ ∅ ✔ ∅ ✔ ✔ ✔
09 JinRiTouTiao ∅ ∅ ✔ ∅ ✔
10 Microsoft Teams ✔ ✔ ✔ ∅ ✔ ✔
11 Grab ∅ ∅ ∅ ∅ ✔ ✔
12 VK ∅ ∅ ✔ ∅ ✔ ✔
13 Paytm ∅ ∅ ✔ ∅ ✔ ✔
14 Go-Jek ✔ ✔ ∅ ∅ ✔ ✔ ✔
15 UnionPay ✔ ✔ ✔ ✔ ✔ ✔
16 Kugou ∅ ∅ ∅ ∅

17 QQ ∅ ∅ ✔ ∅ ✔ ✔ ✔
18 JingDong ∅ ∅ ✔ ∅ ✔ ✔ ✔
19 DingTalk ✔ ✔ ✔ ∅ ✔ ✔ ✔
20 Quark Browser ✔ ✔ ✔ ∅ ✔ ✔ ✔
21 Youku ✔ ✔ ✔ ∅ ✔ ✔ ✔
22 Cainiao ✔ ✔ ✔ ∅ ✔ ✔ ✔
23 Taobao ✔ ✔ ✔ ∅ ✔ ✔ ✔
24 Koubei ✔ ✔ ✔ ∅ ✔ ✔ ✔
25 Gaode ✔ ✔ ✔ ∅ ✔ ✔ ✔
26 iQIYI ∅ ∅ ✔ ∅ ✔ ✔ ✔
27 Tieba ∅ ∅ ✔ ∅ ✔ ✔ ✔
28 Baidu Map ∅ ∅ ✔ ∅ ✔ ✔ ✔
29 XiaoHongShu ∅ ∅ ✔ ∅ ✔ ✔
30 KanDuoDuo ∅ ∅ ✔ ∅ ✔ ✔ ✔
31 Baidu Netdisk ∅ ∅ ✔ ∅ ✔ ✔ ✔
32 Haokan ∅ ∅ ✔ ∅ ✔ ✔ ✔
33 Meituan ∅ ∅ ✔ ∅ ✔
34 NetEase Cloud Music ∅ ∅ ∅ ∅

35 Feishu ∅ ∅ ✔ ∅ ✔
36 Yippi ∅ ∅ ∅ ∅ ✔
37 Dianping ∅ ∅ ✔ ∅ ✔
38 Kuaishou-Mini ∅ ∅ ∅ ∅

39 JinRiTouTiao-Mini ∅ ∅ ✔ ∅ ✔
40 Tiktok-Mini ∅ ∅ ✔ ∅ ✔
41 Suning Finance ∅ ∅ ∅ ∅

42 QQ-Mini ∅ ∅ ✔ ∅ ✔ ✔ ✔
43 BaiduBaiKe ∅ ∅ ✔ ∅ ✔ ✔ ✔
44 Baidu Browser ∅ ∅ ✔ ∅ ✔ ✔ ✔
45 BaiduHanYu ∅ ∅ ✔ ∅ ✔ ✔ ✔
46 Baidu-Mini ∅ ∅ ✔ ∅ ✔ ✔ ✔
47 YiLu ✔ ✔ ✔ ∅ ✔ ✔ ✔

adversary can craft a deep link with the victim app ID and
a malicious URL, and then the sub-app will leak sensitive
user data to the malicious URL controlled by the adversary.
We randomly collected 200 popular sub-apps and found
that 21.5% of them are vulnerable to this attack.

● Data over-collection. Data over-collection is when a
super-app collects more data than it needs from a sub-
app, leading to a privacy concern. Specifically, we find
that WeChat hooks all the requests coming from sub-apps,
which include sub-app sensitive data, and sends them to
WeChat’s server.

5.3 Results and Case Studies

In this subsection, we present the overall results and perform
case studies of some identity confusion vulnerabilities. Ta-
ble 9 shows the statistics of collected 47 super-apps, including

the vulnerability types and security consequences. Nine super-
apps adopt no identity checks, thus all being vulnerable to our
attack. Several super-apps have privileged hidden APIs (e.g.,
“fetchAuthToken” in Snapchat) without any identity checks,
thus being vulnerable to privilege escalation or privacy leaks.
Kuaishou, Kugou, NetEase Cloud Music, and Suning Finance
have little API support and none of them is privileged ac-
cording to our manual analysis. JinRitouTiao has an AppID
confusion, but it redirects the hidden API invocation to an-
other sandbox WebView restricting the actual API calls. Thus,
we failed to launch privilege escalation or exploit privacy
leaks.

Now, we illustrate two specific interesting examples.

Example 1 [Alipay]: Manipulating Super-apps’ Backend
Servers. The first example is the domain name and AppID
confusions of Alipay, the most popular payment app in China



Table 10: The trigger conditions of WebView’s error codes.

WebViewErrorCode Trigger Condition

ERR_CLEARTEXT_NOT_PERMITTED Set usesCleartextTraffic as false
ERR_NAME_NOT_RESOLVED Use a wrong sub-domain name
ERR_CONNECTION_CLOSED Use long URL, e.g., > 4,000 chars

ERR_UNKNOWN_URL_SCHEME Use unregistered scheme, e.g., Htttp

with about 690 million downloads. An adversary can further
manipulate Alipay’s backend servers by exploiting them.

Let us start with identity confusion vulnerabilities. First,
Alipay is vulnerable to domain name confusion due to race
conditions of a customized WebView called UCWebView.
Second, sub-apps of Alipay have AppID confusion due to a
flaw in Alipay’s URL whitelist matching. Particularly, Alipay
uses regular expression on string matching, but many sub-apps
think it is a strict matching and add domain names directly to
their whitelist.

Next, we describe the security consequences of Alipay’s
identity confusion. Alipay only checks AppID for any priv-
ileged API calls and therefore an adversary can access any
privileged API after successful identity confusion exploita-
tion. Specifically, Alipay has about 781 undocumented but
accessible APIs as shown in Figure 3. One of them, namely
“rpc()”, is privileged and can access Alipay’s backend cloud
sever. Note that this API is designed to be only used by Alipay
itself, but in fact, it can be accessed by any sub-app.

Now take a sub-app, 1688, an online wholesale market man-
aging over 920,000 virtual shops, for example, to illustrate
the attack and consequence. An attacker can first craft a phish-
ing deep link, e.g., alipays://platformapi/startapp?
appId=[1688]&url=malicious.com.... Then, when a mo-
bile user clicks the link, the 1688 sub-app will start and exe-
cute the malicious JavaScript from malicious.com, which
invokes the API “rpc()” to access Alipay’s cloud servers, e.g.,
managing user’s financial and account data.

Example 2 [TikTok]: Bypassing Security Patches with an
Error URL. This second example is the AppID and domain
name confusions of TikTok, a popular social app with about 18
billion downloads. The app ID confusion is from the matching
of URLs using endswith as we discussed in §4.2. Then, the
domain name confusion is from the check implemented on
customized WebView being vulnerable to the race condition
of onPageStarted. We reported the vulnerability to TikTok,
which then deployed a patch to update its chromium kernel
to the latest. However, the patch is still vulnerable because
we can utilize an error URL, delay the webpage rendering,
and enlarge the time window for the race condition. Note that
we further analyzed all WebView’s error codes, and found
four of them can be easily triggered by attackers as shown in
Table 10.

Here are the detailed steps to exploit TikTok’s domain name
confusion. First, attackers create a malicious webpage, which
abuses benign.com’s identity by executing the JavaScript

“window.location.href = htttp://maliciousbenign.com”. Since
“htttp” is not a supported scheme, this URL will trigger the
race condition of onPageStarted.

6 Lessons learned, Mitigation and Discussion
The most important lesson learned from our research is that
the identity checks of sub-apps (e.g., for allowing sensitive
API invocations) should follow the least privilege principle.
That is, the definition of identity in the app-in-app ecosystem
needs to be atomic, providing clear coordination between
developers of super-apps, sub-apps, and WebView.

From our point of view, the atomic definition free of identity
confusions is a combination of all three identities used in
the wild, i.e., domain name, sub-app ID, and capability. The
former two provide a definition of an atomic unit in an Access
Control List (ACL), and the latter provides a capability in
invoking specific privileged APIs. Specifically, when a sub-
app tries to invoke a privileged API of a super-app, the sub-
app will provide a secret signed by the private key from the
sub-app’s server like a digital signature. Next, the super-app
obtains the secret using the public key and then verifies the
secret, the domain name, and the sub-app ID before allowing
the invocation.

Other than the atomic identity definition, the mitigation of
identity confusions will also benefit from a domain synchro-
nization between the mobile and web layers of WebView. The
mobile code should be empowered to transparently obtain
the correct, synchronized, up-to-date domain of any frame in
WebView. Draco [42] provides a good example of such a do-
main synchronization. Specifically, Draco modifies the native
code of WebView and supports JavaScript to send the domain
information from the render thread. We believe that such a
practice should be integrated into the mainstream design of
WebView.

Last but not least, sub-app developers should also pay more
attention to its security, especially on sensitive but exposed
interfaces like the launching webpage. They should also care-
fully read the documents of super-apps to understand the
security checks, e.g., URL whitelisting.

Ethics. We discuss ethical issues of our study, including
vulnerability disclosure and experimental setups. First, we
have informed all the 47 super-apps of their vulnerabilities.
Currently, 29 super-apps have confirmed their vulnerabilities,
and 19 have already fixed them. Take Alipay, for an example.
We had regular monthly meetings with their developers for
half a year. In the end, Alipay not only fixed the vulnerabil-
ity but also rewarded us $2,500 as part of their bug bounty
program. Second, all the attacks are tested on our own de-
vices with our test accounts, which does not harm sub-apps,
super-apps, or any of their servers.

7 Related Work
App-in-App Ecosystem. Recent years witnessed several
techniques to support app-in-app ecosystems, such as web

alipays://platformapi/startapp?appId=[1688]&url=malicious.com...
alipays://platformapi/startapp?appId=[1688]&url=malicious.com...
malicious.com
benign.com


apps, hybrid apps, instant apps, and virtual apps. Numerous
studies [14, 27, 30, 41, 44, 46, 49–51] have looked into their
designs, prevalence, usages, and flaws. For example, DCV-
Hunter [46] focuses on differential context vulnerabilities for
hybrid apps. Lee et al. [27] investigate privacy issues and
side-channel flaws in progressive web apps. MIAFinder [41]
studies the link hijacking attacks to instant apps. Zhang et
al. [49] reveal the weak isolation between different virtual
apps. Lu et al. [30]. focus on analyzing the resource man-
agement flaws of app-in-app. Zhang et al. [51] design and
implement a novel, scalable crawler, called MiniCrawler, to
index over 1.3 million WeChat mini-apps and measure their
aggregated statistics, such as resource consumption, API/li-
brary usage, obfuscation rate, and app categorization/ratings.
As a comparison, our paper focuses on a special type of vul-
nerability, called identity confusion, with a different threat
model from prior works, which has not been studied before.

WebView Security. WebView is becoming a widely-used
component for loading web contents in mobile apps and has
been studied by many research works [6, 21, 25, 26, 29, 31,
32, 36, 39, 40, 43]. For example, Jin et al. [25], Li et al. [29],
Wang et al. [43] show that attackers can inject malicious
code into victim apps by exploiting insecure app communi-
cation channels (e.g., scheme and intent) in WebView-based
hybrid apps. Son et al. [39] analyze WebView-based adver-
tisement apps and find that malicious ads can hijack mobile
apps. As a comparison, our work focuses on identity confu-
sion vulnerabilities, e.g., how super-apps protect their APIs in
WebView-based sub-app runtime and whether the protection
is insecure.

Past works also study the race condition attacks in Web-
View. Lau et al. [26] present a semi-automated approach to
analyze the concurrency flows in the PhoneGap framework
and discover event-based race conditions of JavaScript APIs.
Another research work [6] also reports several race conditions
in WebView’s event handlers. As a comparison, our threat
model is different from theirs because our sub-app may also
include third-party resources. More importantly, our domain
name confusion part is much broader research on the Web-
View’s event handlers, which demonstrates the root causes
in design flaws and shows more varieties of exploiting such
vulnerabilities. Moreover, we also introduce a measurement
study to reveal how these event handlers affect the identity
checks of real-world mobile apps.

Identity Checks. Many research works investigate iden-
tity check flaws in mobile and web apps. We start from
the mobile part. Smalley et al. [38] demonstrate the limi-
tation of UID-based Discretionary Access Control (DAC)
and bring much more complicated Mandatory Access con-
trol (MAC) to the mobile system. Hernandez et al. [24] an-
alyze the issues of enforced security policies. We then de-
scribe web apps and their connection with mobile systems.
Prior works [15–18, 28, 45, 47] focus on the security issues

among multi-origin web pages. NoFrak [23] points out the
importance of protecting the web-to-mobile bridge. Then,
Draco [42], MobileIFC [37], WIREframe [22], and Hybrid-
Guard [34] present frameworks to extend the same origin
policy (SOP) to protect web-to-mobile bridges in hybrid appli-
cations and enforce fine-grained access control mechanisms.
Moreover, prior works [19, 20] discover additional flawed
URL parsing and matching examples in different scenarios,
such as email senders.

As a comparison, such app-level identification (e.g., UID-
based permission validation) and domain-based (e.g., cross-
site validation) authorization in mobile apps are different
from identity check problems in sub-apps of an app-in-app
ecosystem. Specifically, it is much more complicated for Web-
View based app-in-app ecosystem to integrate both app-level
identification and domain verification.

8 Conclusion

In this paper, we perform the first systematic study of so-
called identity confusions in real-world app-in-app ecosys-
tems. We categorize and taxonomize existing identity confu-
sions into three types—domain name, app ID, and capabil-
ity confusions—based on the identity check adopted in the
app-in-app ecosystem. Such identity confusion could lead
to severe consequences such as manipulating users’ finan-
cial accounts and malware installation on smartphones. Then,
we study 47 most popular super-apps supporting app-in-app
ecosystems and find that they are all vulnerable to at least
one type of aforementioned identity confusion. We also re-
sponsibly report all of the vulnerabilities to corresponding
super-app developers.
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