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Abstract. Federated learning (FL) allows clients to train a deep learn-
ing model collaboratively while maintaining their private data locally.
One challenging problem facing FL is that the model utility drops signif-
icantly once the data distribution gets heterogeneous, or non-i.i.d, among
clients. A promising solution is to personalize models for each client, e.g.,
keeping some layers locally without aggregation, which is thus called per-
sonalized FL. However, previous personalized FL often suffer from sub-
optimal utility because their choice of layer personalization is based on
empirical knowledge and fixed for different datasets and distributions.
In this work, we design PFedEdit, the first federated learning frame-
work that leverages automated model editing to optimize the choice of
personalization layers and improve model utility under a variety of data
distributions including non-i.i.d. The high-level idea of PFedEdit is to
assess the effectiveness of every global model layer in improving model
utility on local data distribution once edited, and then to apply edits on
the top-k most effective layers. Our evaluation shows that PFedEdit
outperforms six state-of-the-art approaches on three benchmark datasets
by 6% on the model’s performance on average, with the largest accuracy
improvement being 26.6%. PFedEdit is open-source and available at
this repository: https://github.com/Haolin-Yuan/PFedEdit

1 Introduction

Federated learning (FL) [13,15,20,31,33] has emerged as a widely used training
algorithm of deep learning, especially in the image domain, due to its practical
applications in real-world scenarios and its impressive performance. A federated
learning training scenario entails multiple local clients and a global server. Each
client trains their local model using their private image data. After performing lo-
cal training, each client updates their local model weights to the global server for
aggregation with other clients’ model weights. Federated learning allows clients
to train a collaborative model that performs well on multi-class tasks—even if
each client only possesses a few classes of images—via only sharing models but
not local training images.

https://github.com/Haolin-Yuan/PFedEdit
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Fig. 1: High-level idea of PFedEdit (PFedEdit edits the global model returned from
FL server to fit the local client’s distribution.)

As the goal of federated learning is to learn a global model for all devices co-
operatively, if the data distributions among clients are similar, the global model
is supposed to perform better than local models that are solely trained on local
data. However, once the data distribution becomes skewed, or non-i.i.d., e.g.,
some clients may possess image samples of only one or two classes or some pos-
sess many more image samples from one class than others, the global model
becomes ineffective to be employed as local models. The reason is that the lo-
cal data distribution at one client could be dramatically different from others,
thus causing local model weights to adversely affect each other during the model
aggregation.

Multiple works [11, 14, 16] have been proposed to improve the FL model ac-
curacy under the non-i.i.d. distribution by optimizing local models. They either
regularize local models to maximize the agreement between clients [14], or re-
duce clients’ weights drift from the server end [11, 16] for a better global model
that generalizes on each local distribution. While such works improved model’s
accuracy, the model is still uniform across different clients, and cannot be tai-
lored based on different clients’ data distribution. Therefore, one natural step is
a so-called personalized FL [2,4,18,36], which enables each user to have person-
alized layers that help customize local models to their data distributions. Those
personalized layers are retained locally each communication round and are not
updated from the global model, thereby preventing being aggregated with oth-
ers and avoiding bias towards other clients’ data distributions. The choices of
those personalized layers are various but are all pre-defined before the training,
e.g., it can be linear layer [2], batch normalization layer [4], or specially designed
layer [36].

However, there are still two challenges that remain for personalized FLs de-
spite the accuracy improvement. First, the personalized layers chosen in previ-
ous personalized FL works [2, 4, 18, 36] are inspired by empirical findings and
fixed, implying that those choices may not be optimal when given different data
distributions or datasets. That is, while the weights of those layers might be
personalized, the locations and types of those layers are not, e.g., either linear
or batch normalization layers in certain locations of a learning model. Second,
previous personalized works are limited in their application scenarios as they
assume certain model structure [18], which may not be used for certain clients.
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In this paper, to address these two challenges, we design a framework that
automatically locates and chooses layers to be personalized. We propose the first
personalized federated learning framework, called PFedEdit, which leverages
automated model editing [3,5,21,23] to optimize the layer choosing and improve
model utility under different settings including non-i.i.d. The high-level idea of
PFedEdit, as shown in Figure 1, is to look for model layers that contain knowl-
edge about local distribution that benefits clients the most, and by editing those
layers, PFedEdit mitigates the negative influence brought by other clients, thus
tailoring the global model weights towards the local model weights in each round.
Specifically, PFedEdit assesses which layers of the global model are the most
effective in maintaining the local distribution and then marks them as target
layers. PFedEdit then edits the top-k target layers to tailor the global model
weights closer to local models thus improving the model utility. PFedEdit does
not make any assumptions on model selection and thus is model-structure ag-
nostics.

We performed extensive experiments on three benchmark datasets, namely
CIFAR-10 [12], CIFAR-100 [12], and Lyme dataset [35], and we compared PFedEdit
with FedAvg [20] and other six state-of-the-art personalized federated learning
approaches. Our experimental results demonstrate that PFedEdit outperforms
all SOTA personalized federated learning works on all the datasets, with an
average 6% accuracy improvement.

In summary, our contributions are as follows:
• We design PFedEdit, the first personalized federated learning framework that

optimizes personalized layer selections for each client using model editing.
• PFedEdit is adaptable to all model structures because it does not impose

any assumption on model selection.
• We conduct extensive experiments to show that PFedEdit outperforms other

SOTA personalized federated works on different benchmark datasets.

2 Related Work

Federated Learning. Federated learning [13, 15, 20, 31] (FL) is first proposed
to predict user’s text input on portable devices and it has been widely de-
ployed in other industries, such as medical imaging [19], Internet of Things
(IoT) [24], and block-chain [25]. It allows multiple clients to collaboratively
train a model that can perform on samples from any clients’ data distribu-
tion. Two common approaches in federated learning (FL) are FedSGD [28] and
FedAvg [20]. FedSGD optimizes global weights by back-propagating each local
gradient, while FedAvg allows for multiple local training epochs and client-side
optimization. In FedAvg, the server’s role is limited to averaging and distributing
the aggregated weights. While FedAvg reduces communication costs compared
to FedSGD, it lacks a convergence guarantee, and heterogeneous data distri-
bution among clients can significantly reduce the global model’s utility There-
fore, various works [2, 4, 14, 18, 32, 36] have been proposed to solve such utility
degradation caused by data heterogeneity. One direction [14] is to optimize local
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model either via personalized objective functions; yet, another, called personal-
ized FL [2,4,18,36], allows clients to have personalized model layers that can be
kept locally. As a comparison, PFedEdit is the first work that optimizes and
personalizes the choice of model layers with further improved utilities of FL,
especially under non-i.i.d. settings.

Model Editing. Model editing [3, 5, 17, 23, 26] involves adding, removing, or
adjusting layers and parameters of a model architecture to improve its perfor-
mance or adapt it to new tasks. Specifically, let hi be the i-th hidden states
of any model, {hl|l ∈ [1, L]}, where L is the number of layers in model, model
editing allows users to find each hidden state’s contribution towards a specific
prediction. It mainly contains three runs: i). clean run, in which the statistics
of each state are recorded when fed a factual prompt x; ii). corrupted run, in
which each hidden layer is added Gaussian noise such that hl := hl + ϵ. Because
the hidden layer is obfuscated by the added noise, the model will output incor-
rect predictions; iii). restoration run, in which the model gives predictions with
noised hidden states recovered to clean one at a time to find out which layer is
related to producing factual knowledge. Following all three steps, users can find
out the causal importance of all model layers in the computation graph and edit
weights of those knowledge-related layers to alter the final model output.

There are different applications of model editing. For example, model editing
can be employed on large language models (LLMs) to facilitate the interpretation
of LLMs as black boxes when generating particular content or to guide LLMs
in producing desired outputs [22, 30]. ROME [22] edits LLMs’ linear layers to
modify some learned factual knowledge and make LLMs output desired content
such as “Eiffel Tower is located in the city of Rome”. Meng et al. [23] utilizes
Gaussian noise to perturb predictions to achieve mass editing in a transformer.

As a comparison, PFedEdit is different from prior model editing works in
two aspects. First, PFedEdit is a layer-wise model editing approach, which
replaces the entire model layer from the local model instead of editing specific
neuron stats. The advantage is that PFedEdit is able to perform well against
potential images from various data distributions. Second, PFedEdit considers
the global model as corrupted instead of one with Gaussian noise to reduce
computation overhead.

3 Overview

We start by describing some backgrounds in defining personalized federated
learning and then present a motivating example.

3.1 Background: Personalized Federated Learning

We describe some backgrounds of personalized federated learning. Consider the
initial weights for all local models as {θ1, θ2, θ3, ..., θn}. Let Pi be the data distri-
bution over domain X ×Y and li be the loss function for client i ∈ {1, 2, 3.., n}.
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The goal of personalized federated learning is to find the set of personalized
weights Θ for each client such that it minimizes empirical loss with respect to
each Pi as shown in Equation 1.

Θ = argminθi

1

n

n∑
i=1

Ex,y∼Pi
[li(θi, x, y)] (1)

3.2 A Motivating Example
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Fig. 2: A motivating example: We con-
sider three different ways to personal-
ize layers of local models in a feder-
ated learning scenario: random choos-
ing, fixed choosing, and optimized layer-
choosing based on the loss value. For
the fixed choosing algorithm, we allow
clients to keep certain numbers of batch
normalization layers locally each round,
and this approach becomes equivalent to
FedBN [18] when the number of person-
alized layers gets 17.

In this part, we run through an example to
motivate PFedEdit. We start with a chal-
lenging question. Note that previous personal-
ized FL work [2,4,18,36] has noted the advan-
tages of keeping some layers locally under non-
i.i.d. scenarios, e.g., all batch normalization
layers for FedBN [18]. This observation raises
an intriguing question: How do we choose per-
sonalized layers to improve FL’s performance
with heterogeneous data?

Our motivating example provides insight
into this question. Specifically, we consider a
real-world federated learning scenario where
there are 10 clients collaboratively training
their models on the CIFAR-100 dataset [12].
Each client is assigned 20 classes of image
samples following Yuan et al. [36] to form a
non-i.i.d. scenario, and we choose ResNet18 [9]
as their classifier. To inspect the correlation
between the personalized layers and the model
utility, we pick {1, 3, 5, 7, 10, 13, 17} as the
number of personalized layers, and choose
three personalized algorithms for comparison.
The first algorithm randomly chooses certain numbers of layers from local model
and keeps those layers locally. The second algorithm follows FedBN [18] to per-
sonalize batch normalization layers, and we denoted it as fixed choosing. The
third personalized algorithm optimizes layer-choosing based on loss values and
it considers layers that, once kept locally, yield the least loss values personalized
layer and keeps them locally each round.

Figure 2 shows the results: The optimized-personalized algorithm clearly out-
performs both fixed and random personalized algorithms in all cases. This mo-
tivates our approach of using model editing to choose the optimal layers for
personalization. Note that the random-personalized algorithm fails to outper-
form FedAvg [20] in all cases, implying that random-personalized layers do not
grant utility improvement as it comes with significant randomness. The fixed-
personalized algorithm fails to outperform FedAvg [20] when with a small number
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Fig. 3: Framework of PFedEdit. The federated learning still works as usual. That
is, first, clients train their local models and upload their model weights to the global
server. Then, the global server aggregates all model weights and returns the new global
model weight to clients. Then, the main change is how PFedEdit merges global model
with the local, which has two steps: i) PFedEdit generates a list of candidate model
editings, and ii) PFedEdit locates the top-k important model layers and outputs the
edited model for the next-round local training.

of personalized layers, and its utility is quite similar to the random-choosing al-
gorithm. Once the number of personalized layer gets 17, which means all batch
normalization layers are locally personalized, the utility improvement increases
significantly and it outperforms FedAvg [18] by 13%, which implies that fixed-
personalized algorithm may require all certain layers to be involved to show any
utility improvement.

4 Method

In this section, we introduce our method, PFedEdit, which leverages model
editing to improve model accuracy for heterogeneous data distributions. Figure 3
shows the entire workflow of PFedEdit. The training still follows a traditional
FL, i.e., each client uploads their local model to the server for aggregation, and
then the server returns the aggregated model. Then, when the client receives
the global model, there are mainly two steps in PFedEdit, model editing and
locating personalized layers, to update the client model based on the global
model.

4.1 Step I: Generating Candidate Model Editings

The purpose of this step is to generate a list of possible editings of the local model
based on the global model returned from the FL server. Specifically, PFedEdit
considers the local model “clean model” as it is trained on local distribution.
On the opposite, it considers the global model “corrupted model” as in non-
i.i.d. scenarios, different models bias global model weights towards their local
distributions, causing it not generalizing well on each local distribution. In the
model editing step, as Figure 3 shows, PFedEdit hypothesizes all editings that
tailor the “corrupted model” towards local distribution.
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We show the pseudocode of this step in Algorithm 1, Line 5-6. For each
editing, PFedEdit replaces one layer {hg

t |t ∈ (1, T )}, where T is the total num-
ber of model layers, from the global model fθg with the corresponding layer
hl
t from the local model fθl . Then the edited model is defined as S(θ∗) =

(S(θg)\{hg
j}kj=0)∪{hl

j}kj=0. As the global model is equipped with the local model
layer, which is optimized on local distribution, the global model is tailored to-
wards local distribution.

The first editing happens after the first round (Line 1-2), right after each
client receive the aggregated global model weights (Line 4) and before they start
next-round local training (Line 14). The reason is that the global model starts
to bias towards other distributions starting from the second round as its weights
is uniformly initialized in the first round (Line 1).

Algorithm 1 PFedEdit
Input: client i’s initialized global model θg , communication round R, number of model layers T ,

number of layers to be edited k, local training set Dtrain, subset Dp, z = (x, y) ∈ Dp, model
layer set S(·), dictionary W

Output: Edited global model weights θ∗ for R-th round
1: θl ← train θg on Dtrain

2: θg ← 1
n

∑n θl
i

3: for r in range(1,R + 1) do
4: for hg

t in S(θg) do ▷ model editing
5: S(θ∗)← (S(θg)\hg

t ) ∪ hl
t

6: g(θl
i, θ

∗
i , z), (fθ∗ (x), y)← fθ∗ (z)

7: φ← (g(θl
i, θ

∗
i , z), (fθ∗ (x), y)) ▷ make up all cases for prediction list φ

8: W [hg
t ]← φ

9: end for
10: W ← Lexicographic_rank(W )
11: for j ∈ range(0, k) do
12: m← Wj .key() ▷ get model layer index
13: S(θ∗)← (S(θg)\hg

m) ∪ hl
m

14: end for ▷ update local weights
15: if r == R then
16: return θ∗

17: else
18: θl ← train θ∗ on Dtrain

19: θg ← 1
n

∑n θl

20: end if
21: end for

4.2 Step II: Locating Personalized Layers by Ranking Editings

The purpose of this step is to access all possible editings from Step I and then
locate a list of personalized layers. The detailed substeps are two-fold. First,
PFedEdit evaluates model editing’s effectiveness based on a Total Effectiveness
(TE) Score (Step II-a). Second, PFedEdit generates prediction lists based on
TE score and ground-truth mask to reflect changes in probability and predicted
labels (Step II-b). Lastly, PFedEdit ranks all prediction lists following the
lexicographic order and then selects the top-k best layer editings as personalized
layers for each client based on the ranking (Step II-c).
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Step II-a: Evaluating model editing effectiveness. This substep is to calculate a
so-called Total Effectiveness (TE) score to evaluate mode editing effectiveness.
Specifically, PFedEdit queries local model f(θl) using a representative subset
of the training set, denoted as Dp, which maintains the same distribution as the
full training set Dtrain and |Dp| = p ∗ |Dtrain|, where p ∈ (0, 1). PFedEdit
considers that model weights θl represents local distribution as it is trained
on pure local data. PFedEdit then queries each edited model f(θ∗) using the
same subset to see the prediction of tailored weights on local distribution. Then
by comparing probability outputs from both local and edited weights on the
same image samples, PFedEdit measures the effectiveness of that editing as
well as the capability of edited layer in improving model accuracy. Specifically,
when querying the edited model f(θ∗), PFedEdit collects both TE scores and
ground-truth masks, Line 7 in Algorithm 1. The Total Effectiveness (TE) score,
as defined below, reflects the probability change on the ground-truth class while
the ground truth mask, which is a boolean list indicating whether the predicted
label matches the ground truth label, reflects the predicted label change.

Now we describe the definition of TE score. Given model weight θ and train-
ing dataset D with c classes, we denote by P (y|θ, x) the probability (softmax) of
the ground-truth class y. We define the total effectiveness (TE) score of editing
the model weight θ into the new weight θ∗ given dataset D is defined as:

g(θ, θ∗, D) =
1

N

∑
x,y∈D

P (y|θ∗, x)
P (y|θ, x)

− 1 (2)

A positive TE score represents an increased probability on ground-truth label
while a negative TE score signifies a decrease.

Step II-b: Generating prediction lists based on TE and ground-truth mask. This
sub-task is to generate prediction lists based on TE and ground-truth mask.
Specifically, the TE score, together with the ground-truth mask, makes up four
combinations in total, and we call the list of all four cases a prediction list,
denoted by φ. The prediction list then serves as a reference for evaluating the
editing as well as the capability of such layer in improving model’s accuracy.
Below we show the prediction list that contains all four combinations of TE
score and ground-truth mask in Equation 3.

φ =


fθ∗(x) = y, g(θ, θ∗, z) > 0

fθ∗(x) = y, g(θ, θ∗, z) < 0

fθ∗(x) ̸= y, g(θ, θ∗, z) > 0

fθ∗(x) ̸= y, g(θ, θ∗, z) < 0

(3)

The top case of the prediction list φ shows the the best editing (predicted
label same as ground-truth label, TE score greater than 0) and bottom case
shows the worst editing effect (predicted label different to ground-truth label,
TE score less than 0). PFedEdit collects values for such prediction list for each
editing by splitting which case each image prediction belongs to, and then ranks
all prediction lists using Lexicographic order defined below.
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Fig. 4: Non-i.i.d. data distribution (2 classes per client and 20 classes for CIFAR-100)
among clients in Section 5.2.

Step II-c: Locating top-k personalized layers using lexicographic order. This sub-
step is to rank all prediction lists (φ) using lexicographic order and select the
top-k as the personalized layers. Here is the definition of lexicographic order,
which is used to rank φ. That is, given two prediction lists φ1, φ2 for two model
editings on layer l1, l2, respectively, say φ1 = a1, ..., a4, φ2 = b1, ..., b4, where a
and b are possible cases from prediction lists, the order of those two lists depends
on the numeric order of the cases in the first place i where the two case counts
differ. That is, φ1 < φ2 if and only if ai < bi in the natural order of numbers.

Note that the advantages of using such metric here are two-folds: i) We record
φj(θ, θ

∗, z) by counting the number of each case and compare any two predic-
tion lists following the Lexicographic order instead of a summation manner, i.e.,∑i
|D| φj(θ, θ

∗, z), so that the impact of one case is not overridden by another,
even if there are insufficient instances. ii) The case order listed in Equition 3,
from top to the bottom, is intuitive and aligns with accuracy metric, thus im-
plying that the editing with highest prediction list ranking comes with a largest
accuracy improvement. We also discuss and compare our metrics with other
potential ones, and evaluation details are shown in Section 5.4.

5 Evaluation

In this section, we compare PFedEdit with baselines in terms of the accuracy
and convergence. We then perform a study on parameters used in PFedEdit.
The evaluation on computation overhead and complexity of PFedEdit can be
found in Appendix A.4.

5.1 Experimental Setup

We describe four aspects, i.e., setup of federated learning, datasets, models, and
then baselines, for our experimental setup.
FL Setup. Our default settings follow state-of-the-art works [2, 6] in evaluating
federated learning. That is, there are 10 clients to participate in a FL scenario
with 100 communication rounds. The global sampling rate is set to be 1.0 in each
communication round and each client has one local training epoch. The default
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value (k) in selecting and editing top layers is 7%, and the default representative
subset ratio (p) is 0.1. Both values are selected based on our parameter study
(Section 5.4). By default, personalized layers are chosen each round, and the
comparison with fixed personalized layer setting can be found in Appendix A.2.
Datasets. We evaluate PFedEdit on three benchmark datasets to show its per-
formance on different domains. Specifically, we choose i). CIFAR-10 [12], a bench-
mark dataset that contains 60,000 32×32 color images in 10 classes; ii). CIFAR-
100 [12], a benchmark dataset that contains 60,000 32×32 color images in 100
classes; and iii). Lyme [35] dataset, a skin disease dataset that contains 3,027
skin disease images in 4 classes that are confusers for Lyme. We resize CIFAR-
10 image samples to 64×64, CIFAR-100 samples to 224×224 following [36], and
Lyme samples to 255×255 following [35].

To show that PFedEdit can perform on various non-i.i.d. scenario, we adopt
the Distributional Heterogeneity level (DH-level) from Yuan et al. [36] to split
data distribution into different levels. Specifically, we first assign certain numbers
of classes to each client i, and then for each local class c, we sample Di,c ∈
(0.4, 0.6) from Dc. Each client is assigned Di,c∑

Dn,c
of samples in class c. The DH-

level ranges from 0%, which represents an i.i.d. scenario where each client gets
all classes of data, all the way to 100%, which means that each client only gets
one class of data. (10 classes for CIFAR-100). For Lyme [35] dataset, since it
only possesses four classes, we only conduct evaluations on 50% (2 classes per
clients) and 100% (4 classes per clients) DH-level distribution scenarios. Unless
specified otherwise, the default data distribution among clients is 2 classes per
client (20 classes per client for CIFAR-100) in our evaluation. We demonstrate
the default heterogeneous data distribution for each dataset in Figure 4. We also
consider feature space non-i.i.d. scenario, and the evaluation, in comparison with
Cd2-pfed [27] and Partialfed-fix [29], can be found in Appendix A.3.
Models. For model selection, we choose ResNet18 [9] for evaluation on CIFAR
10 and CIFAR 100, and ViT [8] for Lyme. We allow ResNet18 model to have
pretrained weights and allow ViT to have b16 weights that is fine-tuned on
Image1k. We set the learning rate for ViT to be 1e-3 and we follow FedPer [2]
to set the learning rate as 1e-2 for ResNet18.
Baselines. We compare PFedEdit with FedAvg [20], MOON [14], and other
five SOTA personalized FL works as baselines, namely, FedPer [2], FedRep [4],
FedBN [18], APFL [6], and DisTrans [36]. We allow each baseline to have the
same data distribution and model selection as PFedEdit. We consider all layer
normalization layers personalized for FedBN [18] when employing ViT. For other
parameters, we follow their default paper settings to assign values. The accu-
racy comparison with more baselines (Fedfa [38], FedALA [37],Fed-LAMB [10],
FedRolex [1], and HeteroFL [7]) can be found in Appendix A.1.

5.2 Accuracy Comparison

As Table 1 shows, PFedEdit outperforms other state-of-the-art works on all
three datasets under different DH-level data distributions. Compared to the
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baseline FedAvg, the accuracy improvement ranges from 0.007 to 0.266, with
an average 0.09 accuracy improvement, and the largest accuracy improvement
gets to 0.156 and average improvement gets to 0.05 when compared to other
personalized FL works. The accuracy gap between PFedEdit and other STOA
personalized works in CIFAR-10 is not as huge as in other two dataset, and the
reason is that we allow all works to employ models with pretrained weights, which
provides a greater lower bound for model accuracy and reduces the accuracy gap
between different methods.

We then evaluate PFedEdit, together with other SOTA personalized FL
methods under different DH levels. According to Table 1, PFedEdit consis-
tently achieves superior accuracy compared to other SOTA works under all data
distributions, and we have two observations here. First, some personalized FL
methods, e.g., FedPer, FedBN, and FedRep, fail to outperform FedAvg under
i.i.d. scenarios, which is attributed to their natures as personalized FL works:
they are strategically designed to align the global model with local distributions
under non-i.i.d. scenarios. If the data distribution is i.i.d., where there is a close
alignment between the global model distribution and each local one, the per-
sonalized layers may block favorable updates from other clients. On the other
hand, PFedEdit outperforms FedAvg under i.i.d. scenarios, and the reason is
that PFedEdit allow clients to update the weights of personalized layers so
that they can favor other clients when local distributions are similar. Second,
the accuracy improvement brought by PFedEdit compared to FedAvg increases
as the DH-level increases. The reason is that as the distribution becomes more
non-i.i.d., the gap between the global and local model distributions widens. Per-
sonalized layers help bridge this gap, tailoring the global model towards the local
distribution and improving its generalization on local data.

It is noteworthy to mention that PFedEdit gets 0.989 accuracy on CIFAR-
10 when DH-level gets to 100%. The reason is that, in an extreme non-i.i.d.
scenario where clients only get one class of data samples, the local model is very
likely to get 1.0 testing accuracy and the model editing effectively improves the
model accuracy as the local model distribution is highly matched with the local
data distribution.

5.3 Convergence

In this section we evaluate the convergence rate of PFedEdit. Specifically,
we compare PFedEdit with FedAvg and we demonstrate their best accuracy
on each dataset and the numbers of rounds to achieve it. As Table 2 shows,
PFedEdit converges much faster than FedAvg on all three datasets as it only
requires 18 epoches to converge on CIFAR-100, 13 epoches on CIFAR-10, and
25 epochs on Lyme. On the opposite, FedAvg takes around three times numbers
of rounds to get a suboptimal accuracy on both CIFAR-10 and CIFAR-100. For
Lyme, it takes 87 epochs to get accuracy above 0.7, which only takes 4 epochs for
PFedEdit. The reason is that FedAvg does not provide convergence guarantee
as it aggregates all model weights each round without having any optimization,
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Table 1: Evaluation of PFedEdit with other SOTA works on different datasets.

Dataset DH-level FedAvg [20] FedPer [2] FedBN [18] FedRep [4] DisTrans [36] MOON [14] APFL [6] PFedEdit

CIFAR-10
0 % (i.i.d) 0.942 0.890 0.9272 0.889 0.947 0.922 0.891 0.955

40% 0.923 0.873 0.926 0.884 0.944 0.931 0.889 0.953
60% 0.939 0.880 0.940 0.920 0.960 0.927 0.910 0.965
80% 0.806 0.887 0.945 0.933 0.954 0.938 0.915 0.962
100% 0.830 0.902 0.961 0.980 0.972 0.940 0.927 0.989

CIFAR-100
0 % (i.i.d) 0.783 0.733 0.746 0.742 0.788 0.746 0.744 0.790

40% 0.779 0.753 0.776 0.747 0.779 0.762 0.753 0.825
60% 0.772 0.748 0.802 0.793 0.830 0.768 0.802 0.855
80% 0.737 0.769 0.862 0.859 0.887 0.770 0.833 0.890
100% 0.664 0.790 0.904 0.880 0.903 0.773 0.859 0.930

Lyme 0% 0.707 0.700 0.733 0.730 0.745 0.699 0.722 0.765
50 % (i.i.d) 0.716 0.808 0.821 0.833 0.850 0.768 0.781 0.912

Table 2: Best Accuracy of PFedEdit/FedAvg and number of rounds to achieve it. (-
represents not achieved within 100 rounds)

Dataset PFedEdit/FedAvg # Rounds for target accuracy (PFedEdit/FedAvg)

>0.6 >0.7 >0.75 >0.8 >0.85 >0.9
CIFAR-10 0.962/0.806 4/5 6/8 7/13 9/33 11/- 13/-

CIFAR-100 0.890/0.737 6/9 8/24 10/- 12/- 18/- -/-

Lyme 0.912/0.716 3/32 4/87 5/- 5/- 9/- 25/-

Table 3: Accuracy of PFedEdit with different editing ratios (in comparison with
FedAvg).

Dataset FedAvg PFedEdit
1% 3% 5% 7% 9%

CIFAR-10 0.806 0.933 0.947 0.948 0.962 0.952
CIFAR-100 0.748 0.860 0.878 0.885 0.890 0.874

Lyme 0.716 0.868 0.880 0.889 0.912 0.910

and PFedEdit edits the global model and tailors it towards the local distribu-
tion, which makes it faster to generalize on local distributions.

5.4 Parameter Study

Model Editing Ratio (k) PFedEdit allows users to pre-define k, the number
of layers to be edited. It then edits the top-k layers, which are considered to be
the most effective in improving model accuracy. In this section we set up an
experiment to show the correlation between the number of modified layers and
the model accuracy. Intuitively, if the number of edited layers increases, the
model accuracy gets higher as greater part of the model is tailored towards local
distribution. However, such increase may not hold all the time as there are layers
that do not possess any learnable parameters and the model may converge.

We choose the ratios of edited layers to be 1%, 3%, 5%, 7%, and 9% to
the total model layers and we round up the number in each case. Shown in
Table 3, as the editing ratio increases, the overall testing accuracy gets higher.
The accuracy improvement is greater from improving the ratio from 1% to 3%
and the increasing rate gets flatter when keep improving the ratio from 3% to
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5%, or 5% to 7%. At the end, when the ratio is set from 7% to 9%, the accuracy
starts to drop a little bit, implying that the model may converge on that accuracy.
Compared to the baseline, PFedEdit improves the model accuracy from 0.13,
with editing 1% layers, to 0.16, with editing 7% layers, on three datasets on
average.

Table 4: Evaluation of PFedEdit with representative sub-
set ratio (i.e., p).

Dataset Subser ratio

p=0.01 p=0.025 p=0.05 p=0.08 p=0.1

CIFAR-10 0.951 0.953 0.954 0.954 0.962

CIFAR-100 - 0.875 0.884 0.886 0.890

Table 5: Evaluation of PFedEdit using different met-
rics in assessing model editing

Dataset Different metrics

Accuracy Loss TE score Prediction list

CIFAR-10 0.540 0.905 0.885 0.962

CIFAR-100 0.705 0.886 0.821 0.890

Representative Subset Ratio (p) As mentioned in Section 4, PFedEdit
queries the model using a representative subset Dp of the training set Dtrain.
PFedEdit employs a ratio p to pre-define the subset size compared to the train-
ing set, |Dp| = p ∗ |Dtrain|. We want to ensure that the subset is representative
enough for potential testing image sample while not introducing too much com-
putation overhead. Therefore, we conduct a study on the size of the subset versus
the performance of PFedEdit. Intuitively, a larger size covers a broader local
data distribution and leads to a more accurate layer locating and thus a higher
model accuracy. However, on the other hand, taken a larger subset from the
original training set reduces the size of the remaining set. We want to find an
optimal size of the subset that is large enough to give a complete representation
of local data distribution but also leaves enough samples for the local training.
We split the local training set into a subset that takes up of p ∗ |Dtrain| image
samples, and a training set that takes the rest |D∗trian| = |Dtrain| − |Dp| image
samples. To control the variable, we fix the size of D∗trian, and we choose different
p values from {0.1, 0.08, 0.05, 0.025, 0.01} to adjust the subset size. We conduct
the evaluation on CIFAR-10 and CIFAR-100 [12], with 10 clients and each client
is assigned 2 classes of image samples. Each client possesses 4,500 image samples
as training set, and the subset size varies from 50 image samples (p value 0.01)
to 500 image samples (p value 0.1). Note that the p value starts from 0.025 for
CIFAR-100 because a subset that is 0.01 times the size of training set does not
include image samples from all classes, i.e, 50 image samples do not cover 100
classes thus the subset is not representative.

As Table 4 shows, the overall trend of the testing accuracy keeps increasing
as p value gets larger from 0.01 times the training set to 0.1 times the training
set for both datasets. However, the overall accuracy improvement is minimal
compared to the subset size increase, demonstarting the capability of PFedEdit
in improving model accuracy with a small size subset. For CIFAR-10, as p value
increases from 0.01 to 0.08, which is an 8 times increase, the model accuracy is
improved from 0.951 to 0.954, which is a 0.3% improvement. As p value increases
from 0.08 to 0.1, the accuracy is further improved from 0.954 to 0.962, which is a
0.8% increase. For CIFAR-100, the accuracy improvement brought by increasing
p value is greater than that in CIFAR-10 as the model accuracy is improved from
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0.875 to 0.890 when p value changes from 0.025 to 0.1. Therefore, PFedEdit is
computation-friendly as it requires only 50 image samples to get a 0.951 model
accuracy and 500 image samples to achieve a 0.962 accuracy on CIFAR-10.
Similarly, PFedEdit requires only 125 image samples as the subset to achieve a
0.875 accuracy and 500 image samples to gets a 0.890 accuracy on CIFAR-100.

Metrics Selection In this section, we conduct experiments to explore possi-
ble metric selections for PFedEdit when assessing each model editing. Besides
the prediction list that demonstrates all four combinations of TE score and
ground-truth mask, we also choose model accuracy, loss value, and TE score.
We select cross-entropy loss as our loss metric, which is defined as H(P,Q) =
−
∑

x∈X p(x)logq(x), given two probability distribution P and Q, and the TE
score is introduced in Section 4.

As Table 5 shows, the prediction list employed by PFedEdit outperforms
other metrics and the accuracy gap ranges from 0.057 to 0.422. Among all pos-
sible metrics, using accuracy to assess model editings leads to the lowest ac-
curacy, 0.540 on CIFAR-10 and 0.705 on CIFAR-100, lower than the baseline
FedAvg [20]. The reason is that the effects of some editings are subtle and they
only cause the probability change but not necessarily results in label change. As
the way that accuracy is computed only counts on samples that are correctly
classified, small probability change that do not alter the final prediction will be
considered as no improvement at all. On the other hand, the TE score reflects
the probability change on ground-truth label, but it does not reflects any label
change. In other words, an increase in the probability of the ground-truth label
suggests a positive editing, but a decrease in probability does not necessarily
indicate a negative editing. From the accuracy perspective, the edited model
performs identically to the original model despite these probability changes.

While employing loss functions as the metric provides insights into the prob-
ability of the ground-truth class, the averaged loss value may exhibit bias if out-
liers have a disproportionate impact on the probability of the ground-truth class.
For example, If an editing improves the model accuracy in correctly classifying
two samples with a slight increase in the ground-truth class and misclassifies
one sample with a notable drop in the ground-truth class, the improvement in-
troduced by the correct classifications might be nullified by the incorrect one,
which leads to a biased averaged loss value with respect to each data sample.

6 Conclusion

In this paper, we design the first personalized federated learning framework that
utilizes automated model editing as a core strategy to improve the model’s util-
ity. Our approach leverages layer-specific editing, which automatically identifies
specific layers to be edited based on local data distribution, allowing for more ef-
fective adaptation of the global model to heterogeneous data distributions across
various clients. Our evaluation demonstrates that PFedEdit significantly im-
proves the accuracy of the global model from non-i.i.d. to i.i.d. data distribution.
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A Appendix

A.1 Accuracy comparison with more baselines

We compare PFedEdit with more SOTA personalized FL works. The results
show that PFedEdit outperforms all of them by 0.2%–24.8% in terms of accu-
racy.

Table 6: Performance (Accuracy) of PFedEdit vs. Baselines.

Fedfa [38] Fedfed [34] FedALA [37] Fed-LAMB [10] FedRolex [1] HeteroFL [7] PFedEdit

CIFAR-10 0.887±0.060 0.923±0.058 0.936±0.023 0.917±0.024 0.792±0.032 0.735±0.030 0.938±0.043
CIFAR-100 0.673±0.032 0.696±0.023 0.840 ± 0.022 0.822±0.020 0.674±0.042 0.620±0.038 0.868 ±0.018
Lyme 0.938±0.029 0.943±0.038 0.932±0.035 0.938±0.043 0.872±0.046 0.831±0.040 0.970±0.042

A.2 Comparison on personalized layer strategies

Fixed vs. Flexible Personalized Layers. We conduct an ablation study in
Table 7 to show the advantage of flexible layer personalization vs. fixed one on
CIFAR-100 and CIFAR-10.

Table 7: Ablation Study. (Convergence round / Accuracy)

Fixed Flexible (i.e., PFedEdit’s default)

CIFAR-100 30/0.885±0.019 26/0.890±0.018
CIFAR-10 25/0.920±0.025 23/0.962±0.018

A.3 More data distribution

Feature space non-i.i.d. We also demonstrate that PFedEdit performs bet-
ter on feature space non-i.i.d. FL scenario. We assign light- and dark-skinned
samples of the Lyme dataset to different clients as a feature Space non-i.i.d set-
ting. Table 8 (Last Row) shows that PFedEdit outperforms both Cd2-pfed and
Partialfed.

Table 8: Accuracy of PFedEdit vs. Baselines.

Cd2-pfed [27] Partialfed-fix [29] PFedEdit

CIFAR-10 (non-i.i.d) 0.915±0.050 0.903±0.040 0.938±0.043
CIFAR-100 (non-i.i.d) 0.833±0.028 0.825±0.023 0.868±0.018
Lyme (non-i.i.d) 0.903±0.040 0.926±0.045 0.970±0.042
Lyme (feature non-i.i.d) 0.897±0.032 0.908±0.020 0.921±0.027
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A.4 Discussion on overhead and complexity

Overall Overhead (Caused by Layer Traversal). We discuss the compu-
tation overhead brought by generating candidate model editing step introduced
in Section 4.1. We argue that the overall overhead introduced by traversing
all the layers is minimum because (i) the traversal only involves forward (not
backward) propagation, and (ii) PFedEdit reduces the total number of com-
munication rounds. We compared PFedEdit with other SOTA works utilizing
different model structures and Table 9 shows that PFedEdit has a shorter or
similar training time compared with baselines on CIFAR-10.

Table 9: Training Time (Seconds) of PFedEdit vs. Baselines.

FedAvg pFedALA Fed-LAMB PFedEdit

MLP (4 Layers) 60.50 50.27 54.31 33.74
ResNet18(54 Layers) 187.09 157.63 175.80 150.98
ResNet50 (107 Layers) 301.23 168.59 280.53 272.08
DenseNet121 (370 Layers) 642.54 581.03 606.40 768.17

Computational Complexity. Theoretically, the computational complexity of
PFedEdit’s training is O(R·E ·|Dtrain|·C(θg)+R·T ·C ′(θg)·|Dtrain|+R·n·T ),
where θg represents the model, C ′(θg) and C(θg) the complexity of a single
forward and both forward and backward pass in θg, T the number of layers
in θg, R the number of communication rounds, E the number of local training
epochs, n the number of clients, and Dtrain the training set. Practically, the
training time of PFedEdit is shown in Table 9, which is on par with prior
works.
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