
ReactAppScan: Mining React Application Vulnerabilities via
Component Graph

Zhiyong Guo
Johns Hopkins University

Baltimore, MD, USA
zguo55@jh.edu

Mingqing Kang
Johns Hopkins University

Baltimore, MD, USA
mkang31@jhu.edu

V.N. Venkatakrishnan
University of Illinois Chicago

Chicago, IL, USA
venkat@uic.edu

Rigel Gjomemo
University of Illinois Chicago

Chicago, IL, USA
rgjome1@uic.edu

Yinzhi Cao
Johns Hopkins University

Baltimore, MD, USA
yinzhi.cao@jhu.edu

ABSTRACT

React, a single-page application framework, has recently become
popular among web developers due to its flexible and convenient
management of web application states via a syntax extension to
JavaScript, called JSX (JavaScript and XML). Despite its abundant
functionalities, the security of React, especially vulnerability de-
tection, still lags: many existing vulnerability detection works do
not support JSX let alone React Data Flow introduced by React
components. The only exception is CodeQL, which supports JSX
syntax. However, CodeQL cannot properly track React Data Flow
across different components for detecting vulnerabilities.

In this paper, we design a novel framework, called ReactApp-
Scan, which constructs a Component Graph (CoG) for tracking Re-
act Data Flow and detecting vulnerabilities following both JavaScript
and React data flows. Specifically, ReactAppScan relies on abstract
interpretation to build such a component graph via tracking compo-
nent lifecycles and then detects vulnerabilities via finding paths be-
tween sources and sinks. Our evaluation shows that ReactAppScan
detects 61 zero-day vulnerabilities in real-world React applications.
We have responsibly reported all the vulnerabilities and so far six
vulnerabilities have been fixed and two have been acknowledged.

CCS CONCEPTS

• Security and privacy→Web application security.

KEYWORDS

Single-pageApplication; Vulnerability Detection; Component Graph

ACM Reference Format:

ZhiyongGuo,Mingqing Kang, V.N. Venkatakrishnan, Rigel Gjomemo, and Yinzhi
Cao. 2024. ReactAppScan: Mining React Application Vulnerabilities via
Component Graph. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3670331

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670331

1 INTRODUCTION

Single-page applications (SPAs) [53]—which allow websites to in-
teract with users via a single HTML page—have recently become
very popular in web application designs. Famous SPAs include
many widely-used websites such as Facebook, Gmail, Twitter, and
GitHub. One notable framework for building SPAs is called React
(or called React.js or ReactJS) [25], which is used by over 13 million
live websites [40] and is being voted as the second most popular
web frameworks [5] only falling behind Node.js (which often serves
as the foundation of React and is not an SPA) on Stack Overflow.
Specifically, React uses a syntax extension to JavaScript, called JSX
(JavaScript and XML), which embeds HTML snippets as part of
JavaScript and models them as components [34], thus reducing web
developers’ efforts in maintaining and synchronizing state.

While React has revolutionized web application design, React
applications—just like traditional web applications—may still be
vulnerable to classic vulnerabilities such as Cross-site Scripting
(XSS) [67, 72, 83]. However, many state-of-the-art works on web ap-
plication vulnerability detection, such as FAST [59] andODGen [69],
cannot detect React application vulnerabilities. On one hand, they
do not natively support the analysis of JSX code. Fundamentally,
such support is challenging because of so-called React Data Flow [19],
which passes data between different React components, e.g., be-
tween parent and child or between siblings, via Props [24] and
State [31] indirectly. On the other hand, their analysis cannot scale
to JavaScript code that is transpiled from even simple JSX code due
to state explosion according to our experiment.

CodeQL is a commercial tool that supports JSX syntax and that
can detect some React application vulnerabilities [10]. However,
CodeQL does not properly support the aforementioned React Data
Flow, making it unable to detect many real-world vulnerabilities.
The support of React Data Flows is challenging because CodeQL’s
representations of objects are coarse-grained, lacking the under-
standing of props and state in different components. We reported
the issue together with test cases to CodeQL developers. They
consider the problem challenging [33], because a fix may “blow up
[their analysis] in complexity/runtime” and lead to “possible [large]
false positives”. Eventually, CodeQL made an update, which is the
version used in our evaluation, but it still performs very poorly in
detecting real-world vulnerabilities with large false negatives.

In this paper, we design a framework, called ReactAppScan, to
mine React application vulnerabilities via a so-called Component

https://doi.org/10.1145/3658644.3670331
https://doi.org/10.1145/3658644.3670331
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3658644.3670331

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhiyong Guo, Mingqing Kang, V.N. Venkatakrishnan, Rigel Gjomemo, and Yinzhi Cao

1 function Comp (props) {

2 const [html , setHtml] = useState('');

3 useEffect (() => {

4 fetch('https ://api.example.com/data')

5 .then(res => res.json())

6 .then(data => setHtml(data));

7 }, []);

8 return <div dangerouslySetInnerHTML ={{ __html: html

}} />; };

Figure 1: A simple code snippet that illustrates a React com-

ponent

Graph (CoG). Our key idea is to represent React components to-
gether with props and state in a graph so that one object instance—
no matter as props or state of different components—has only one
node representation but multiple edges from different props or state
in the graph. Then, ReactAppScan queries the graph for paths be-
tween sources (e.g., HTTP requests) and vulnerability-specific sinks
(e.g., dangerouslySetInnertHTML) to detect vulnerabilities.

Specifically, ReactAppScan builds CoGs via abstract interpreta-
tion following React component lifecycles. That is, first, ReactApp-
Scan constructs an initial CoG via parsing the return statements
of JSX and abstractly interprets the render function of each compo-
nent. Next, ReactAppScan monitors the state and props changes
of each component to abstractly interpret the render or lifecycle
methods/hooks using a queue-like structure, should changes be
observed, mimicking the updating phase. Lastly, ReactAppScan
also simulates the unmounting stage of React components.

Our implementation of ReactAppScan is open-source [27] and
we run ReactAppScan upon popular React applications on both
GitHub and NPM. Our evaluation results in 61 zero-day vulnerabil-
ities. We have responsibly reported all the findings to their devel-
opers: So far, six vulnerabilities have been fixed and two additional
have been acknowledged. We also compared our approach with the
improved version of CodeQL on two datasets, including one with
real-world GitHub and NPM applications and another with known
CVE vulnerabilities. Our evaluation shows that ReactAppScan has
fewer false positives and negatives than CodeQL.

We make the following contributions in the paper:
• We designe the first abstract interpretation framework of JSX,

called ReactAppScan, to model React Data Flow using a compo-
nent graph and detect React application vulnerabilities.

• ReactAppScan models and tracks client-server communication
to detect vulnerabilities that span both sides, e.g., those originat-
ing from a client adversary, traversing through a victim server,
and ending in a client victim.

• Our evaluation shows that ReactAppScan detects zero-day vul-
nerabilities of real-world React applications from GitHub and
NPM and outperforms the state-of-the-art vulnerability detection
tool, namely CodeQL.

2 BACKGROUND

In this section, we give a background of React and React-specific
terminologies using a simple code snippet in Figure 1 for readers
unfamiliar with React.
React Components. A React component describes the User
Interface (UI) of a web application and its purpose is to return

HTML to a web page. There are two types of React components:
(i) function component and (ii) class component. First, a function
component, starting with an uppercase first letter, returns a React
element, i.e., a JavaScript object describing a DOM node and its
properties. Figure 1 shows a function component with the definition
at Line 1, and the return statement is at Line 8. Second, a class
component, extending the Component class from React library, has
a render method that returns a React element. React components
form a tree-like structure based on the return statement just like a
Document Object Model (DOM) tree.

There are two important objects of each React component and
we describe them below:

• Props. Props [24] describe any inputs that are passed to a React
component, which usually comes from a parent component. The
first argument of a function component is the props, e.g., at Line
1 of Figure 1; the constructor of a class component receives a
props argument and passes it to the parent constructor using
the super keyword. A constructor of a class component can be
omitted if there are no other purposes.

• State. State [31] in React is mutable data that changes when a
user interacts with the web application; when state changes, Re-
act components are re-rendered to update their UIs. The original
design of React is to use React class components to hold state,
such as “this.state”; since React 16.8, a function component can
use “Hooks”, such as “useState” (Line 2 of Figure 1), to hold state
as well.

React Data Flow. React Data Flow is unidirectional, i.e., the data
goes down from parent to child components via props; instead,
user-triggered actions and the follow-up updates go up, creating a
circular system. This follows React’s philosophy: the user triggers
actions that modify the state of a React application, which then
alters the UI. For example, the “html” prop at Line 2 of Figure 1
shows a data flow that passes the “html” data from a parent compo-
nent, i.e., “Comp”, to a child, i.e., a HTML div tag, whose attribute
‘dangerouslySetInnerHTML ” is also a Cross-site Scripting (XSS)
sink.

Each React component has a lifecycle, i.e., starting from mount-
ing, to updating and then to unmounting. A function component
uses “useEffect” (Line 3 of Figure 1), i.e. React hooks, to hold state
and monitor state changes in a lifecycle. A class component has
many lifecycle-related methods, e.g., componentWillMount (which
is invoked immediately before the component is inserted into the
DOM) and componentDidMount (which is invoked immediately
after the component is inserted into the DOM).

3 OVERVIEW

In this section, we start from a motivating example in Section 3.1
and describe our threat model in Section 3.2.

3.1 A Motivating Example

Figure 2 illustrates a React application built with MongoDB [21],
Express.js [14], React, and Node.js, i.e., the so-called MERN tech-
nique. The application—motivated by a real-world XSS vulnerability
(CVE-2023-22462 [6]) and adapted for easy description—is a blogger,
which allows users to add blogs via addBlog (Line 4) and read blogs

ReactAppScan: Mining React Application Vulnerabilities via Component Graph CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 // API.js

2 const router = require("express").Router ();

3 const Blog = require("mongoose").model("Blog");

4 router.post("/addBlog", async (req, res , next) => {

5 // req is the source , adversary -controlled request

6 await Blog.create ({ content: req.body.content });

7 });

8 router.get("/getBlog", async (req , res , next) => {

9 const blog = await Blog.findOne ().exec();

10 return res.send(blog.content);

11 });

12 //react.jsx

13 function BlogDetail(props) {

14 const [content , setContent] = useState ();

15 const [mode , setMode] = useState("CODE");

16 useEffect (() => {

17 fetch("/getBlog")

18 .then((res) => res.json())

19 .then((data) => setContent(data));

20 }, []);

21 return (

22 <>

23 <button onClick ={() => setMode("HTML")} />

24 <BlogContent mode={mode} content=content

25 processContent ={props.processContent} />

26 </>

27);

28 }

29 function BlogContent(props) {

30 const [html, setHtml] = useState ();

31 useEffect (() => {

32 setHtml(

33 props.mode === "HTML"

34 ? sanitize(props.content)

35 : props.processContent(props.content)

36);

37 }, [props.mode , props.content]);

38 if (props.mode === "HTML") {

39 // the sink is dangerouslySetInnerHTML

40 return <p dangerouslySetInnerHTML ={{ __html: html

}} />;

41 }

42 }

43 ReactDOM.render(<BlogDetail processContent ={(v) => v}

/>, document.getElementById("root"));

BlogDetail

BlogContent

button

ppropscontent

SINK

html

content

Blog

content

content

data

setContent

data

SOURCEreq

content

Variable Node Object Node

Component Node DOM Node

JSX Attribute Node JSX State Node

Property Edge Data Flow

JSX Parent-to-Child JSX Data Flow

JSX State Update

Sink

Figure 2: A motivating example with a Cross-site Scripting (XSS) vulnerability (Line 40), which is simplified from CVE-2023-

2246 [6] for the description purpose.

via getBlog (Line 8). Then, react.jsx (Lines 12–43) of the appli-
cation provides a user interface with different React components,
such as BlogDetail (Line 13) and BlogContent (Line 29).

A successful exploit of the XSS vulnerability starts from a ma-
licious request to the addBlog API from an adversary until the
dangerouslySetInnerHTML sink (Line 40). The adversary-controlled
data is stored in MongoDB (Line 6) and read by a benign user re-
quest to the getBlog API. Then, the data is stored as a state of the
BlogDetail component (Line 13) as content (Line 14) and then
passed to the BlogContent component (Line 29) as a props and
finally to the sink (Line 40).
Research Challenges. There are three main research challenges
in detecting this XSS vulnerability.

• React Data Flow. There are two React Data Flows in this appli-
cation making the vulnerability challenging to detect. First, let
us start from the data flow related to content at Line 14. The
flow starts from setting a state of the BlogDetail component
(Line 19) and then goes into a prop of the BlogContent (Line 24)
and then a prop of the p tag (Line 40). This is a challenging data
flow because the flow depends on the useEffect hook (Line 31)
and another state (i.e., mode at Line 15) in the BlogDetail compo-
nent. In other words, the application is only vulnerable after the
hook (Line 31) is invoked and mode is set as “HTML”. Second,
we describe the data flow related to processContent at Line
43. This processContent function is defined as a prop of the
BlogDetail component (Line 43), passed to the BlogContent
component as another prop (Line 25), and then eventually in-
voked at Line 35. None of the existing works [10, 59, 69] can

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhiyong Guo, Mingqing Kang, V.N. Venkatakrishnan, Rigel Gjomemo, and Yinzhi Cao

track both data flows, let alone detect the XSS vulnerability, due
to the cross-component nature of both flows.

• Client-server Data Dependency. The data dependency between
blog.content at Line 10 in “API.js” and res/data at Line 18/19
in “react.jsx” is due to client-server communication via the fetch
at Line 17. This is important because a server response may not
be controllable by an adversary (e.g., it could be a constant value)
and such a data dependency links the server response to another
client’s request, i.e., req at Line 4, which is controllable by an
adversary. Existing works [10, 59, 69] do not track such cross-
side data dependencies, which leads to false positives because
some server responses are not controlled by an adversary.

• Database-related Data Dependency. The data dependency be-
tween req.body.content (Line 6) and blog.content (Line 10)
is caused by MongoDB, a NoSQL database. This is a challenging
task because one needs to map the store operation using the
content keyword (Line 6) with the access operation using the
same keyword. Again, none of the existing works [10, 59, 69]
models such a database-related data dependency.

Our Key Idea: Component Graph (CoG). We describe our idea
in detecting the XSS vulnerability in Figure 2. In a nutshell, our
objective is to find data flows from user input (i.e., the req object at
Line 4) to sensitive sinks (i.e., dangerouslySetInnerHTML at Line
39) in detecting this XSS vulnerability. However, to be able to find
these data flows successfully, we need to solve the aforementioned
three types of challenging data dependencies.

Now, we describe how ReactAppScan solves these three re-
search challenges. First, let us start with the challenge of modeling
React Data Flows. ReactAppScan models React components as a
CoG as shown on the right part of Figure 2. All components, e.g.,
BlogDetail and BlogContent, are modeled as nodes following
their parent-child relations and then the states and props of com-
ponents are also represented as nodes under the component nodes.
Note that objects with aliases are represented as the same node: For
example, ReactAppScan only maintains one single node for the
content state of the BlogDetail component and the content prop
of the BlogContent component. This also follows React logic be-
cause once the state of BlogDetail changes, the prop of BlogContent
changes as well automatically. Second, we describe how we solve
the challenges of the client-server and database-related data depen-
dencies. ReactAppScan records the key used in such data depen-
dencies, e.g., the content key used for the database at Line 6 and
the /getBlog key for the server router at Line 8 and the client fetch
at Line 17. Then, ReactAppScan links the corresponding data in a
database or a network request/response based on the common key
and annotates them in the CoG.

ReactAppScan builds this CoG with these challenging data
dependencies via abstract interpretation with the abstract domain
as the graph. The building starts with the static structure of React
components in JSX and thenmodels the updating procedure just like
what React does. For example, if a prop to a component has changed,
ReactAppScan will abstractly interpret the function component
definition or the render method of a class component.

The proposed CoG is complementary to and can be combined
with existing program analysis data structures, such as Object De-
pendence Graph (ODG) [69], Code Property Graph (CPG) [89], or

Program Dependency Graph (PDG) [52], for vulnerability detection.
That is, CoG models data flows between React components that are
not modeled by existing structures, and such modeled data flows
can be connected with the rest data flows in existing structures.
Take ODG for example. Figure 2 shows that the data flow starts
from req.content, i.e., an ODG node, passes through a few ODG
nodes, reaches a state node of BlogDetail, and then ends up with
an attribute node of the p tag, i.e., the ‘dangerouslySetInnerHTML’
attribute.

3.2 Threat Model

In this subsection, we describe our threat model. The victim in our
threat model is a vulnerable React application, which can contain
a vulnerability on either the client- or the server-side. In-scope
vulnerabilities are XSS, arbitrary file upload, and improper autho-
rization. Then, the adversary in our threat model could be one of
the following:
• A malicious client. The adversary attacks the victim server
of the vulnerable React application by sending a malicious re-
quest, which could result in exploiting the server or the client,
for instance, using an XSS payload. Our motivating example in
Figure 2 is such a case, where the adversary sends a malicious
request as the source.

• A crafted victim URL. The adversary tricks a victim client into
visiting a URL belonging to the victim server with a crafted input
as part of the URL parameter. Such a parameter may trigger a
vulnerability on the client side, e.g., a DOM-based XSS with URL
parameters as the source.

• A malicious website. The victim may accidentally visit a mali-
cious application, e.g., by visiting a malicious URL, causing the
adversary-controlled website to be loaded in the same browser as
the vulnerable React website, e.g., in different tabs. Then, the ma-
licious website sends a message (e.g., via postMessage) to attack
the React website, which could lead to improper authorization
and trigger another vulnerability, e.g., XSS.
We also classify existing vulnerabilities into two categories fol-

lowing prior works [59, 69], which are (i) application-level and
(ii) package-level. The former allows an end-to-end attack from
an adversary to a vulnerable sink, e.g., from either a malicious
client request or a malicious message to the sink. The latter ex-
poses an external API without proper sanitization, which makes
another application using the package potentially vulnerable. Such
vulnerabilities are very common and well-documented in the CVE
database [1, 2, 6, 7].

4 DESIGN

In this section, we describe the system architecture of ReactApp-
Scan and then present the detailed three phases of ReactAppScan.

4.1 System Architecture

Figure 3 shows the overall architecture of ReactAppScan, which
takes the source code of a React package or application as input
and outputs detected vulnerabilities. The high-level idea is that
ReactAppScan follows the rendering process of native React on
an application to abstractly interpret its code and to build a CoG,
which can be queried for vulnerability detection.

ReactAppScan: Mining React Application Vulnerabilities via Component Graph CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

JSX Abstract

Interpretation

Source Code

AST Generation

I: Mounting Phase II: Updating Phase

AST Node
Interpretation

Component
Graph (CoG)

Resolving
Asynchronous

Events

Scheduling
Component
Updates

Analyzing
Component
Unmounts

III: Unmounting Phase

update

Events Queue

Graph
Search Sources and Sinks

Vuln

create

update

Figure 3: System Architecture

Following the lifecycles of React components, naturally, there are
three phases for the detection: (i) mounting, (ii) updating, and (iii)
unmounting. First, in the mounting phase, ReactAppScan builds an
initial CoG based on the static JSX file. Specifically, ReactAppScan
starts from the entry points of the Abstract Syntax Tree (AST) and
abstractly interprets each AST node with modeled React.js APIs and
client-side APIs to generate this CoG. ReactAppScan also queues
asynchronous callbacks for preparation of the next phase. Second,
in the updating phase, ReactAppScan processes asynchronous
callbacks and hooks/lifecycle methods, and then updates the CoG
based on prop and state updates by abstractly interpreting the
render method of the component that needs to be updated. Third, in
the unmounting phase, ReactAppScan looks up clean-up functions
or unmount methods to simulate the unmounting process. In the
end, after three phases, ReactAppScan queries the graph for an
unsanitized path between an adversary-controlled source and a
vulnerability-specific sink to detect vulnerabilities.

Now consider the simple example in Figure 1. ReactAppScan
first constructs an initial CoG during the mounting phase, in which
the state node “html” (Line 2) points to an empty string. ReactApp-
Scan also queues the asynchronous callback function, notably the
“useEffect” function at Line 3, for the second phase. Second, in the
updating phase, ReactAppScan abstractly analyzes the queued
asynchronous callback, i.e., adding a link from state node “html”
to the network response. Lastly, in the unmounting phase, Reac-
tAppScan abstractly interprets cleanup function, which does not
exist in our simple example. After the CoG is built, ReactAppScan
queries the graph to find an unsanitized path between the source
(i.e., “res” at Line 5) and the sink (i.e., “dangerouslySetInnerHTML”
at Line 8).

We describe these steps in more details next.

Table 1: Notations (e.g., nodes, edges, and procedures) of Com-

ponent Graph

Notations Descriptions

𝑁 A set of component graph nodes

𝑒𝑙 ∈ 𝑁𝑒𝑙 = 𝑁𝑐 ∪ 𝑁𝑑 JSX element (DOM or component node)
𝑐 ∈ 𝑁𝑐 A JSX Component Node
𝑑 ∈ 𝑁𝑑 A DOM element node

state ∈ 𝑁state The state node of a JSX component
props ∈ 𝑁props The props node of a JSX component
attr ∈ 𝑁attr A JSX Attribute Node of a JSX Element
𝑎 ∈ 𝑁AST An AST Node
𝑣 ∈ 𝑁var A variable Node
𝑜 ∈ 𝑁obj A JSX Object Node

𝐸 A set of component graph edges

𝑒𝑙 → 𝑎 The AST node (𝑎) defines the element 𝑒𝑙
𝑐 → state The edge between a component and its state
𝑐 → props The edge between a component and its props
state →< 𝑣, 𝑣𝑓 > A state variable 𝑣 and its setState function 𝑣𝑓 of a state be-

longing to a certain component.
props → 𝑣 A prop variable 𝑣 of a props node belonging to a certain

component.
𝑒𝑙 → attr An attribute node belonging to a JSX element
𝑒𝑙 → 𝑒𝑙 Parent-child JSX element relation.
𝑣/attr → 𝑜 The object of a variable or a JSX attribute
𝑜 → 𝑜 JSX data dependency
o → 𝑣 The attribute of an object

JSX Procedures (N) All the JSX related operations

ChildEdgeTypeparentNode Get the child node of parentNode with EdgeType
AddXXX𝑎name Add a JSX component/DOM/element/attribute node name and

AST node 𝑎 (i.e., XXX = Comp, DOM, El, Attr).
AddNodeNodeType𝑎 Add a node from 𝑎 with NodeType.
AddEdgeEdgeTypesrc→dst Add an edge from src to dst with EdgeType.

AddProperty
𝑜1→𝑜2
name Add object 𝑜2 as a property of object 𝑜1 with the name of

property.
Copy(𝑜1, 𝑜2) Copy object 𝑜1 to 𝑜2. For each property in 𝑜2 , add an object

as a property of 𝑜1 with the same name. Furthermore, data
flow is added from 𝑜1 to 𝑜2 for these properties.

HasCommonProperty(𝑜1, 𝑜2) Check if object 𝑜1 and object 𝑜2 have any common property
names, if 𝑜2 has any properties.

LkupName(𝑎) Get the name of a JSX Element with its AST 𝑎
LkupAttr(𝑎) Look up a JSX Attribute Node by the AST node 𝑎.
LkupXXX(𝑐) Look up the state/state object/props object/state vari-

able/prop variable node of a component 𝑐 (i.e., XXX =
State, StateObjs, PropsObjs, StateVar, PropsVar.

LkupMountingFunc(c) Look up the mounting lifecycle methods of a compo-
nent 𝑐 , which include the function component defini-
tion, constructor, getDerivedStateFromProps, render,
and componentDidMount.

LkupUpdatingFunc(c) Look up the updating lifecycle methods of a component
𝑐 , which include the function component definition,
getDerivedStateFromProps, shouldComponentUpdate,
componentDidUpdate, getSnapshotBeforeUpdate, and
render.

LkupCleanupFunc(c) Look up the cleanup lifecycle methods of a component 𝑐 ,
which include the cleanup function definition of useEffect
and componentWillUnmount.

Compare(c) Compare whether the props object or the state object of a
component changes.

4.2 Phase I: Mounting

We first describe the definition of a component graph and then the
abstract interpretation process to build such a component graph.

4.2.1 Definitions and Notations. We define a Component Graph as
a graph with JSX-related objects and variables (e.g., JSX elements,
JSX states, and JSX props) as nodes (𝑁) and their relations as edges
(𝐸). Table 1 describes the nodes and edges of a CoG. The core
part of a CoG is a tree-like structure consisting of different JSX
elements, i.e., either a JSX component or a DOM element, with their
attributes, which is similar to a DOM tree but with JSX components
as well. Each JSX component node has a state node representing
its internal states and a props node representing attributes passed

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhiyong Guo, Mingqing Kang, V.N. Venkatakrishnan, Rigel Gjomemo, and Yinzhi Cao

from its parent component. Then, variable nodes are under state
or props nodes and may point to different objects or to the same
object (e.g., the content prop under BlogContent and the content
state under BlogDetail pointing to the same object in Figure 2).

As discussed, one of the main advantages of a CoG is that it can
be combined with existing established program analysis data struc-
tures, such as Object Dependence Graph (ODG) [69], Code Property
Graph (CPG) [89], or Program Dependency Graph (PDG) [52]. The
combination with ODG, PDG, or CPG follows the data flow: In
our example in Figure 2, ODG, PDG, or CPG handles the previous,
classic data flow, and our CoG models the data flow related to React
to the final ‘dangerouslySetInnerHTML’ sink, i.e., a JSX attribute.

4.2.2 Operational Semantics. We now provide the overview of se-
lective operational semantics across the mounting, updating, and
unmounting phases. The complete operational semantics is in Fig-
ure 8 of Appendix A. The abstract domain state is denoted as a
tuple 𝑝 = (𝑁, 𝐸, 𝑒𝑙, 𝑞, 𝑆), where 𝑁 represents all nodes, 𝐸 represents
all edges, 𝑒𝑙 is the current JSX element being interpreted, and 𝑞 is
the queue for scheduling rendering and lifecycle methods. 𝑆 is a
global state that records the snapshot, i.e., the props and state of
a component. It also handles registering and discovering network
response callbacks. Note that all AST node definitions in the oper-
ational semantics follow the JSX specification [3]. There are four
different categories of operational semantics in generating CoG for
JSX and we describe them below.

• Analyzing JSX elements to generate a Tree-like Structure. Re-
actAppScan abstractly interprets JSXElement to add JSX ele-
ments into the CoG. Adhering to the naming rule of JSX com-
ponents [3], if the name of a JSXElement begins with a cap-
italized letter, ReactAppScan adds a JSX Component node 𝑐
to the graph. Otherwise, if the name starts with a lowercase
letter, ReactAppScan adds a DOM node 𝑑 . Next, the interpre-
tation of JSXChildren establishes parent-child relationships be-
tween JSX elements. Specifically, if JSXElement𝑖 appears in the
JSXChildren of another JSXElement𝑗 , ReactAppScan adds a
parent-child relation JSXElement𝑗 → JSXElement𝑖 .

• Analyzing JSX attributes and props to model data flows between
JSX Elements. ReactAppScan models the data flow between
JSX elements through JSX attributes and props. A JSX attribute is
comprised of a JSXAttributeName and a JSXAttributeValue.
ReactAppScan abstractly interprets the AST children of name
and value separately, yielding attribute name and object nodes
for the value. Then a JSX attribute node attr with the attribute
name is added, with an edge pointing to 𝑒𝑙 . Additionally, Re-
actAppScan adds JSX Data dependency edges to link the JSX
attribute node to object nodes. We then describe a specific JSX at-
tribute, ref, which provides access to the DOM. useRef returns
an object node with a property named current. The ref is linked
with a DOM node when it is passed to the JSX attribute ref of
a DOM node. Consequently, any write operation to current
is seen as a write to the DOM, which leads to XSS. Next, Re-
actAppScan also models objects passed into a component via
props. Each JSX component has a reference to its props. When
rendering, ReactAppScan either creates props on first render
or updates the props. ReactAppScan adds JSXAttributeValue

objects as properties to props, using the JSX attribute names as
keys.

• Analyzing JSX states to model state-related data flows. Reac-
tAppScan models data flow within a JSX component using state
nodes. Each JSX component maintains a reference to a state
node, denoted as 𝑠𝑡𝑎𝑡𝑒 . This node links state variables 𝑣 and
corresponding setState functions 𝑣 𝑓 . When 𝑣 𝑓 is invoked, Re-
actAppScan resolves the arguments passed to 𝑣 𝑓 and updates 𝑣
to point to the argument’s objects.

• Modeling JSX component rendering. ReactAppScan first looks
up the definition function for function components, or themount-
ing functions for class components. It then invokes these func-
tions with the necessary arguments, specifically, the props and
state objects as required.

4.3 Phase II: Updating

After ReactAppScan builds an initial CoG, the next phase, called
updating, is to update the CoG based on asynchronous events and
JSX hooks/lifecycle methods as described in the operational seman-
tics for this phase. The full list is in Figure 8 of Appendix A.

4.3.1 Graph Updates for Asynchronous Events. ReactAppScan
maintains a queue structure that stores asynchronous callbacks,
such as a DOM event listener, during abstract interpretation in the
first phase (mounting). Once the first phase is done, ReactAppScan
fetches all the callbacks from the queue to analyze them sequentially.
Detailed operational semantics are shown in the “Async Events"
part of Figure ??. There are two special cases for such callbacks:
• Network response callbacks. ReactAppScan introduces a ser-
vice registry to maintain a relationship between each network re-
quest call (e.g., AJAX) and its corresponding target function. Such
an analysis of network responses follows a three-step process:
First, ReactAppScan adds the registration of service functions to
the service registry. Specifically, ReactAppScan abstractly inter-
prets the API route’s AST nodes with the modeled Node.js APIs
and framework APIs and records the API key and correspond-
ing function definition in the process. Second, ReactAppScan
discovers the service functions when abstractly interpreting the
React.js AST nodes. During this stage, when processing an AJAX
or fetch call, ReactAppScan matches the URL in the service reg-
istry to find the target function recorded and call it. ReactApp-
Scan precisely matches static paths in routes, and also aligns
variables parts with placeholders in dynamic routes. Third, after
invoking the function, the points-to information between the
variable in the React.js code and the object returned by the API is
modeled. Therefore, ReactAppScan establishes a server-client
data dependency.

• Database-related callbacks. ReactAppScan handles database-
related callbacks leveraging the database model semantics, sup-
porting Create, Read, Update, and Delete (CRUD) operations.
Each database model, such as the Blog model in Figure 2 (Line
2), is represented as an object node in the CoG. The create opera-
tion, such as ‘Blog.create’ at Line 6, along with update operation,
establish object-level data flow from input to the model’s proper-
ties. Subsequently, read operations, for instance, ‘Blog.findOne’
at Line 9, create data flow from the model’s properties to the
corresponding properties of the returned object. Note that some

ReactAppScan: Mining React Application Vulnerabilities via Component Graph CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

data operations may involve query filters, which are JavaScript
objects that define fields with keys and set conditions with values,
as utilized in Object Data Modeling (ODM) libraries like Mon-
goose [22]. If any key is specified in the query, ReactAppScan
constructs a regular expression by joining model keys with ’or’
operators between them. This regular expression is then used
to test against the query keys to check for the presence of any
common keys between them. If found, ReactAppScan creates
data flow.

4.3.2 Graph Updates for JSX Component Updates. ReactAppScan
updates CoG based on updates of JSX components, e.g., new props
and state updates. Detailed operational semantics are shown in
Figure 8 of Appendix A. We divide this process into two parts: (i)
update condition determination, and (ii) CoG updates. First, Reac-
tAppScan determines which components require updating based
on three different conditions:
• New Props passed to a component. ReactAppScan checks this
case by comparing whether the props object of a component
changes based on snapshots. Specifically, ReactAppScan takes
snapshots of all the props belonging to JSX component before
and after each update. The initial “before” snapshot is the one
after Phase I (Mounting) but before analyzing the asynchronous
callbacks and the initial “after” snapshot is the one after analyz-
ing the asynchronous callbacks. ReactAppScan compares two
snapshots by examining their properties via property edges. If
there is a change detected in any properties of the props objects,
including the addition of a new property and a property pointing
to a new object, ReactAppScan concludes that the component
needs updates.

• setState method call. When setState is called inside a com-
ponent, which can be either the setState function in function
components or the this.setState function in class components.
Upon the invocation of setState, ReactAppScan first updates
state node by pointing the state variable to resolved objects of
setState arguments. Then it finds the associated component
via the JSX state update edge and marks it for updates.

• forceUpdate method call. When the forceUpdate API is in-
voked, it serves as a method to forcibly update a component in
React.js. Upon calling forceUpdate, ReactAppScan finds the as-
sociated component’s updating functions except for the method
shouldComponentUpdate and marks the component for a forced
update.
Second, ReactAppScan finds all the updating function defini-

tions via LkupUpdatingFunc. For function components, ReactApp-
Scan finds the function definition and the effect-related methods.
For class components, ReactAppScan finds the lifecycle methods
by looking up the function definitions with specific lifecycle method
names, adhering to the sequence prescribed by React lifecycle.

Third, ReactAppScan abstractly analyzes these updating func-
tions. For function components, the component definition is ex-
ecuted with the current props and state objects. During analysis
of effect-related functions, such as useEffect, ReactAppScan en-
queues the callback function. For class components, the analysis
is based on argument types. ReactAppScan analyzes Constructor,
getDerivedStateFromProps, shouldComponentUpdate, as well as
render with current props and state objects; then, ReactAppScan

analyzes getSnapshotBeforeUpdate and componentDidUpdate
with the previous props and state objects, which are stored as
snapshots in the global state 𝑆 . Such steps will be iterated until
convergence (i.e., ReactAppScan calls the lifecycle methods and
repeats the process from the first step until no more changes are
observed for the CoG) or exceeding a maximum number of itera-
tions.

4.4 Phase III: Unmounting

After the updating phase, the CoG is updated based on unmounting
of JSX components. The operational semantics of this process are
also shown in Figure ??. ReactAppScan looks up cleanup func-
tions, including cleanup effects for function components, specif-
ically the returned function of the first argument of useEffect,
and componentWillUnmount for class components. Following this,
ReactAppScan abstractly analyzes these functions to update the
CoG.

5 IMPLEMENTATION

Our implementation, comprising 4,689 lines of new code excluding
any third-party code (e.g., those mentioned below), is open-source
and can be accessed at an anonymous repository [27]. Our Abstract
Syntax Tree (AST) parser of JSX is based on an open-source tool,
called Espree [13]. Next, our abstract interpretation of JavaScript is
based on open-source repositories of bothODGen [4] and FAST [59]:
Specifically, we reuse the representation and generation of ODG
and the modeling of built-in functions from these sources to model
JavaScript features, notably dynamic features such as prototype
chain, reflection, and dynamic property lookups. In addition, Re-
actAppScan abstractly interprets all branches in parallel as does
ODGen. We included the improvement in FAST over ODGen (e.g.,
Promise) into ODGen, but did not use its two-phased abstract inter-
pretation because JSX sinks are JSX attributes rather than JavaScript
function calls. Note that none of ODGen or FAST code is included in
our Line of Code count. Currently, our implementation supports all
React features in its version 16, the most prevalent as per W3Techs
reports [84] as well as popular features in React versions 17 and 18
(e.g., those related to React data flows).

Furthermore, our implementation adopts the graph query func-
tion of ODGen, i.e., a depth-first search (DFS) function to find paths
from sources to sinks. There are two improvements for vulnerabil-
ity detection of React vulnerabilities. First, ReactAppScan adopts
a customized list of sources and sinks as shown in Table 2. Note
that ReactAppScan does not include the setting of innerHTML
for the <script /> tag as a sink. This is because, according to
HTML standards, script elements inserted using innerHTML should
not execute [15]. We apply the same rule to the <style /> tag.
Note that AJAX requests are categorized as sinks when an attacker
can manipulate the request URL, enabling the execution of a privi-
leged AJAX call, as seen in CVE-2023-5654 [8]. Second, ReactApp-
Scan models popular sanitization libraries such as dompurify [12],
markdown-it [20], and sanitize-html [30] during graph query for
vulnerability detection. That is, if a sanitization function is present
between the source and sink, ReactAppScan considers this path
as not vulnerable.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhiyong Guo, Mingqing Kang, V.N. Venkatakrishnan, Rigel Gjomemo, and Yinzhi Cao

Table 2: A List of Sources and Sinks

Type APIs

Application-level Sources

Network Request HTTP(S) requests
server packages, e.g., Express.js

URL window.location
useSearchParams() (react-router-dom)

Message message event

Package-level Sources

Exported APIs
function arguments of
module.exports (Node.js) and
export (ES2015)

Sinks

DOMWrite
dangerouslySetInnerHTML
Setting innerHTML of a DOM Element
document.write

Location Functions

location.replace
location.assign
Setting location.href
window.open

AJAX Requests fetch
axios

DOM Attribute Sinks

<a href />
<form action />
<iframe src />
<area href />
<button formaction />
<input formaction />
<frame src />

6 EVALUATION

In this section, we evaluate ReactAppScan using the following
research questions:
• RQ1: How many zero-day vulnerabilities can ReactAppScan
detect in real-world React applications (but state-of-the-art ap-
proaches cannot)?

• RQ2: What are the false positives and negatives of ReactApp-
Scan when compared with state-of-the-art approaches (e.g.,
CodeQL)?

• RQ3: What are the performance overhead and code coverage of
ReactAppScan in analyzing React applications?

6.1 Experimental Setup

In this subsection, we describe our experimental setup including the
datasets and the experimental environment used in the evaluation.

6.1.1 Datasets. We prepare two datasets for evaluating false posi-
tives and negatives separately.
• Large-scale unlabelled dataset consisting of real-world React ap-
plications (called Large-scale Dataset). There are two sources
of this dataset: (i) GitHub and (ii) NPM. First, we use the GitHub
API to crawl 6,382 repositories built using React technologies in
November 2023. Specifically, we search repositories with “react”
as a topic and having more than 10 stars. We then keep those
repositories that have React.js libraries as dependencies. Second,
we also crawled NPM to find 4,122 React packages with weekly
downloads that were larger than 1,000 in November 2023. Specif-
ically, we identify a React package based on the presence of a
package.json file that specifies “react” within any of the three
dependency fields: dependencies, devDependencies, or peerDe-
pendencies. We obtain the weekly download data by querying

the npm registry API. This unlabelled dataset is used for the
detection of zero-day vulnerabilities and the evaluation of false
positives.

• Small-scale labeled dataset consisting of real-world, historically-
vulnerable applications with CVE identifiers (called CVEDataset).
This dataset is compiled from the legacy Common Vulnerabilities
and Exposures (CVEs) database and consists of 14 applications.
In October 2023, we conducted an extensive keyword search on
the National Vulnerability Database [23]. The search keywords
include “react” along with a selection of React API names, in-
cluding “dangerouslySetInnerHTML”, “renderToStaticMarkup”,
“renderToString”, and “useRef”. We then study each vulnerability
report along with its source code and exclude those not related
to React. A list of the CVEs in this dataset is presented in Ap-
pendix B. This dataset—including XSS, arbitrary file upload, and
improper authorization vulnerabilities—serves as ground truth
for evaluating false negatives.

6.1.2 Experimental Environment. Our experiments are performed
on a server with 64 GB memory, 16 Intel(R) Xeon(R) CPU E5-
2620 v4 @ 2.10GHz cores with 2 threads per core, running Ubuntu
18.04.6 LTS. We run 16 processes of our system at the same time to
speed up the analysis. Our baseline is a state-of-the-art static anal-
ysis tool, namely CodeQL [10], and we use their built-in CodeQL
queries, including client-side cross-site scripting [9], stored cross-
site scripting [32], and reflected cross-site scripting [28], for detect-
ing application-level vulnerabilities and add our sources to CodeQL
to detect package-level vulnerabilities. Note that our version of
CodeQL is the one with their fix after we reported the problem of
CodeQL in tracking React Data Flows to their developers [33].

6.2 RQ1: Zero-day Vulnerabilities

In this subsection, we answer the research question regarding the
number of zero-day vulnerabilities detected by ReactAppScan but
not existing approaches. Following prior works [59, 69], we con-
sider a vulnerability as zero-day if it meets the following criteria:
(i) it is not detected by prior work, such as CodeQL; (ii) there is no
available information about the vulnerability, such as bug reports,
CVE reports, or data in other vulnerability datasets based on our
manual search; and (iii) it is validated through manual exploitation
by a human expert. Note that in practice, when running on the
large-scale unlabelled dataset, ReactAppScan only finds XSS vul-
nerabilities but not arbitrary file upload or improper authorization.

Table 3 shows a list of zero-day vulnerabilities detected by Re-
actAppScan on GitHub repositories and then Table 4 the list of
zero-day vulnerabilities on NPM. Many of them are very popular,
e.g., with more than 20K stars and 27K weekly downloads. In total,
ReactAppScan detects 61 zero-day vulnerabilities with 13 on the
application level and 48 on the package level from the large-scale
dataset. Note that a single repository or package may contain more
than one vulnerability. ReactAppScan outputs data flow paths and
aggregates them by their last line of code. Paths ending on the same
line of code are counted as one vulnerability.
A Case Study. We illustrate a case study using a zero-day vul-
nerability found by ReactAppScan. The vulnerability is located at
rjsf-team/react-jsonschema-form [29], a 13,000-star GitHub reposi-
tory for building JSON Schema [16] web forms. The corresponding

ReactAppScan: Mining React Application Vulnerabilities via Component Graph CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 3: A list of zero-day vulnerabilities detected by ReactAppScan in Github repositories.

Username/Repository Tag/CommitId Status #Stars #Vuls Sinks

datopian/portaljs f23d796 Reported 2,100+ 3 setting innerHTML, <a href />
draft-js-plugins/draft-js-plugins bae2bae Reported 4,000+ 1 <a href />
resendlabs/react-email v0.0.14 Reported 11,000+ 1 dangerouslySetInnerHTML
rjsf-team/react-jsonschema-form v5.16.0 Acknowledged 13,000+ 1 <a href />
plotly/dash v2.14.2 Acknowledged 20,000+ 1 <a href />
DimiMikadze/orca 53f761b Fixed 1,200+ 1 dangerouslySetInnerHTML
jonmircha/youtube-react 4946fb2 Reported 200+ 1 dangerouslySetInnerHTML
Vagr9K/gatsby-advanced-starter v4.17.0 Reported 1,600+ 1 <a href />
unadlib/fronts v0.1.1 Reported 500+ 1 <iframe src />
virtualvivek/react-windows-ui v4.2.2 Fixed 500+ 1 <a href />
lucaspulliese/next-ecommerce 6c4888d Reported 500+ 1 dangerouslySetInnerHTML
justinmahar/react-social-media-embed 2d4e290 Reported 100+ 2 <iframe src />, <a href />
aromalanil/markItDown 7d2fd34 Fixed 30+ 1 dangerouslySetInnerHTML
ericclemmons/click-to-component a9db3e1 Reported 1,500+ 1 window.open
Aaditya1978/Bug-Blog 5027a83 Reported 10+ 1 dangerouslySetInnerHTML
pramit-marattha/Fullstack-projects-frontend-with-react-and-backend-with-various-stacks b4db8c2 Reported 160+ 1 dangerouslySetInnerHTML
itsnitinr/driwwwle 782f64c Fixed 120+ 1 dangerouslySetInnerHTML
dunizb/CodeTest 81226bc Reported 200+ 1 dangerouslySetInnerHTML
refinedev/refine 5a3ad1d Fixed 16,000+ 1 location.replace
staringos/mtbird d359c16 Fixed 400+ 1 window.open
graphcommerce-org/graphcommerce e534f170 Reported 200+ 3 dangerouslySetInnerHTML
alibaba-fusion/materials 9658b8a Reported 200+ 1 <a href />
ice-lab/react-materials 65c5423 Reported 200+ 1 dangerouslySetInnerHTML
gympass/yoga dd4ef57 Reported 200+ 1 <a href />
carbon-design-system/carbon-for-ibm-dotcom f604b8c Reported 200+ 1 setting innerHTML
bangle-io/bangle-editor 45b40cf Reported 600+ 1 window.open
Muhammet-Yildiz/Mern-Blog 31d8569 Reported 40+ 4 dangerouslySetInnerHTML
ant-design/pro-components 0e3609c Reported 3,900+ 1 dangerouslySetInnerHTML
nukeop/react-ui-cards c0c75e5 Reported 200+ 4 <a href />
rcaferati/react-awesome-button a3954b9 Reported 1,200+ 2 dangerouslySetInnerHTML

Table 4: A list of zero-day vulnerabilities detected by Reac-

tAppScan in npm packages (19 in total).

Package Version Status #Weekly

Down-

loads

#Vuls

react-text-transition 1.3.0 Reported 27,000+ 1
@hashicorp/react-hero 8.0.3 Reported 1,800+ 2
@patternfly/react-docs 4.21.35 Reported 2,700+ 1
@financial-times/dotcom-
ui-header

2.6.2 Reported 3,000+ 9

@hashicorp/react-consent-
manager

7.1.0 Reported 2,300+ 5

@financial-times/dotcom-
ui-footer

2.7.2 Reported 2,900+ 1

npm package, @rjsf/core, has 230,000 weekly downloads. The
package provides a React component to build and customize web
forms using JSON Schema. ReactAppScan reports a zero-day XSS
vulnerability and the developers have acknowledged this vulnera-
bility and are fixing it. Specifically, the package fails to adequately
validate user input, resulting in adversary-controlled URLs being
able to flow to the <a href /> sink.

Figure 4 shows the simplified vulnerable code (Lines 6–22), along
with its exploitation (Lines 2–4). The FileWidget component takes
user input (Line 15) and generates a file download link that is con-
trollable by an adversary (Line 8), leading to the XSS vulnerability.
ReactAppScan successfully detects this vulnerability by tracing
the data flow from props to the state (Line 17) and then across JSX
attributes. In contrast, CodeQL fails to detect this vulnerability due
to the extensive use of object destructuring with component props
(Lines 6, 10, and 16), resulting in missing data flow edges.

1 // exploit

2 ReactDOM.render(

3 <FileWidget value ={["javascript:alert (1)"]} options

={{ filePreview: true }} />

4);

5 // code with vulnerability

6 function FileInfoPreview ({ fileInfo }) {

7 const { dataURL , name } = fileInfo;

8 return <a download={`preview -${name}`} href={ dataURL

} />;

9 }

10 function FilesInfo ({ filesInfo , preview }) {

11 return filesInfo.map((fileInfo) => {

12 return preview && <FileInfoPreview fileInfo ={

fileInfo} />;

13 });

14 }

15 function FileWidget(props) {

16 const { value , options } = props;

17 const [filesInfo , setFilesInfo] = useState(

18 Array.isArray(value) ? extractFileInfo(value) :

extractFileInfo ([value])

19);

20 return <FilesInfo filesInfo ={ filesInfo} preview ={

options.filePreview} />;

21 }

22 export default FileWidget;

Figure 4: A Case Study of a Zero-day XSS Vulnerability in the

rjsf-team/react-jsonschema-form GitHub Repository (13,000

stars). The vulnerability is acknowledged by the developers.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhiyong Guo, Mingqing Kang, V.N. Venkatakrishnan, Rigel Gjomemo, and Yinzhi Cao

Table 5: A comparison of false discovery rate (FDR) and false

negative rate (FNR) between ReactAppScan and CodeQL.

FDR is evaluated on the large-scale dataset and FNR is evalu-

ated on the CVE dataset. Note that both numbers are based

on end-to-end, exploitable vulnerabilities.

Approach FDR=FP/(FP+TP) ↓ FNR=FN/(FN+TP) ↓
ReactAppScan 15/96 (15.6%) 2/14 (14.2%)
CodeQL 72/94 (76.5%) 13/14 (92.8%)

6.3 RQ2: FP and FN

In this section, we evaluate the false positives and negatives of
ReactAppScan in comparison with CodeQL using the large-scale
and CVE datasets respectively. We inspect all detection results
from the NPM dataset and all application-level results from the
GitHub dataset. We only check package-level results from GitHub
dataset that have over 200 stars. Table 5 shows an overview of the
comparison, where ReactAppScan outperforms CodeQL in both
FPs and FNs.
True Positives. Let us first discuss true positives detected by both
ReactAppScan and CodeQL on both large-scale and CVE datasets.
Note that a reported vulnerability is considered as true positive only
if it is exploitable. First, on the large-scale dataset, CodeQLmisses 61
true positives that are detected by ReactAppScan; as a comparison,
ReactAppScan misses only two true positives detected by CodeQL.
The main reason that ReactAppScan misses the vulnerabilities is
the object explosion issue that leads to a scalability problem. Second,
on the CVE dataset, ReactAppScan detected all vulnerabilities that
are reported by CodeQL, while CodeQL misses 11 vulnerabilities
detected by ReactAppScan.
False Positives. We conduct a manual inspection of detection
results from ReactAppScan and CodeQL to evaluate False Positives,
i.e., any vulnerability reporting from a detection tool that is not
exploitable. We define the False Discovery Rate (FDR) as the ratio
of FP to the sum of FP and TP, representing the proportion of
reported vulnerabilities that are mistakenly identified. Note that a
vulnerability is counted as a TP only if it can be exploited.

ReactAppScan has a much lower false discovery rate compared
to CodeQL. We examine all the False Positives identified by Reac-
tAppScan: The primary reason is due to the implementation of
validation and data-flow sanitizations, making the detected vulner-
abilities unexploitable. In contrast, CodeQL has a very high false
discovery rate. This is mainly because of the overestimation of
control and data flows in its syntax-driven approach. Besides, the
predefined sources and sinks of CodeQL do not fit React.js appli-
cations perfectly. For example, its built-in queries only consider
specific JSX attribute names, such as dangerouslySetInnerHTML,
as sinks. This approach results in false positives when the JSX el-
ement is a <script />. Moreover, CodeQL analyzes all files in a
repository, regardless of whether they are reachable or even dead
code, leading to additional False Positives. In comparison, Reac-
tAppScan starts from the application’s entry point, which makes
sure that vulnerabilities are at least reachable.
False Negatives. Our false negative evaluation is based on the
ground truth information provided in the CVE dataset. ReactApp-
Scan has two false negatives: (i) CVE-2023-34245 [7], attributable to

102 103 104 105

Number of AST Nodes

10−1

100

101

102

T
ot

al
R

un
ni

ng
T

im
e

(s
)

ReactAppScan

ReactAppScan Line Fit

Figure 5: Total Running Time vs Number of AST Nodes for

500 random applications

0-1
0

10
-20

20
-30

30
-40

40
-50

50
-60

60
-70

70
-80

80
-90

90
-10

0

Code Coverage (%)

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

Figure 6: Code coverage distribution (500 random apps)

unmodeled third-party libraries resulting in missing data flow, and
(ii) CVE-2021-23398 [1], missed due to state explosion—specifically,
a binary operation within a loop leading to timeout, which is a
known limitation in existing JavaScript abstract interpretation [59,
69]. Note that there are additional FNs of ReactAppScan when we
compare the TPs of ReactAppScan and CodeQL; however, since
there is no ground truth information, it is challenging to measure
FNR for the large-scale dataset.

In contrast, CodeQL only detects one vulnerability in the CVE
dataset. The main reason for CodeQL’s bad performance is the
incapability of tracking React data flows when functions are passed
through JSX attributes across multiple components, as mentioned
in our motivating example. Although we reported the issue to the
developers, the fix only helped to detect one vulnerability. Addi-
tionally, dynamic JavaScript features, such as the propagation of
JSX props using spread syntax and bracket syntax, also signifi-
cantly contribute to CodeQL’s bad performance in detecting CVE
vulnerabilities.

6.4 RQ3: Performance

In this subsection, we answer the research question on the perfor-
mance overhead and code coverage of ReactAppScan.
Analysis Time. We evaluate the total analysis time of ReactApp-
Scan vs. the number of Abstract Syntax Tree (AST) Nodes for 500

ReactAppScan: Mining React Application Vulnerabilities via Component Graph CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f F
in

ish
ed

 A
pp

lic
at

io
ns

 (%
)

Total Running Time
Mounting Phase Time

Figure 7: CDF of Analysis Time for 500 random applications

randomly selected applications from our large-scale dataset in Fig-
ure 5. When the number of AST nodes increases, the total running
time increases linearly as we show the trend in a line fit. We also
show a Cumulative Distribution Function (CDF) graph in Figure 7,
which illustrates the total running time with a 120-second time-out
threshold. ReactAppScan completes the analysis of 95% of the
applications within 30 seconds, and 97% within 60 seconds. This
indicates the high efficiency of ReactAppScan in processing a sig-
nificant majority of React packages. The total running time closely
aligns with the duration of the mounting phase, suggesting small
performance overhead during the updating and unmounting phase.
Code Coverage.We evaluate statement coverage, defined as the
percentage of statements executed by ReactAppScan, i.e., the num-
ber of analyzed statements divided by the total. Note that our
measurement methodology and tooling are inherited from prior
work [69], which covers all the statements within an application,
including both client-side and server-side codes. This metric demon-
strates how complete our system is in analyzing React applications.
Figure 6 presents a distribution graph of statement coverage when
analyzing 500 randomly selected React applications, each with a
timeout of 120 seconds. In our evaluation, 67.3% of the React ap-
plications have 100% statement coverage. This number surpasses
ODGen’s code coverage, where only about 40% of applications reach
100% statement coverage. The higher code coverage of ReactApp-
Scan compared to ODGen can be attributed to the less common
practice in client-side React applications of dynamically including
files based on input, a scenario that cannot be statically resolved.
While React does allow for dynamic imports [18], the paths used
in React applications are typically predefined.

7 DISCUSSION

Ethics: Responsible Disclosure. We have responsibly disclosed
all zero-day vulnerabilities found by ReactAppScan to their de-
velopers together with suggested fixes via either emails, GitHub
issues or pull requests. So far, six vulnerabilities have already been
fixed and two have been acknowledged and under fixing.
General Single-page Application. React is one single-page ap-
plication framework and there are others, such as Angular.js. The
high-level idea of component graph applies to other single-page ap-
plications because components are also used by other frameworks,

such as Angular.js, to model Unidirectional Data Flows. At the same
time, our current implementation only supports React, because An-
gular.js heavily relies on TypeScript. We will leave those as our
future work to support other single-page application frameworks.
Analysis Soundness. Our analysis is unsound, which is the same
as all prior abstract interpretation works [59, 69, 90]. There are
different reasons for unsoundness. First, JavaScript may introduce
dynamic code via function calls, such as eval and new Function.
ReactAppScan, just like all prior works, may not resolve such
dynamically-introduced code especially when it is related to user
inputs. Second, ReactAppScan overestimates database-related de-
pendencies by only checking for common keys between query
filters and model properties using a regular expression, especially
for those queries that affect multiple keys or entries. Third, the URL
matching mechanism for client-server data dependencies can fail
to find a match, such as when there is an unresolved variable from
user input in the URL, leading to potential false negatives. Lastly,
the current implementation fully supports React features up to ver-
sion 16 for React data flows. That is, new or experimental features
from newer versions like version 18 may lead to unsoundness.
State Explosion. ReactAppScan, being similar to existing abstract
interpretation [59, 69, 90], may have the problem of state explosion,
especially for heavily-embedded branching statements or ternary
operators. At the same time, the percentage of state explosion
is relatively smaller compared with general NPM packages: For
example, ReactAppScan only encounters one example in the CVE
dataset, which suffers from state explosion. The reason might be
different coding practices for React and general NPM developers.
Execution Order of Asynchronous Events: Theoretically, asyn-
chronous events, e.g., React lifecycle events, can happen in different
orders, but ReactAppScan only abstractly interprets them in one
particular order following the sequence in the queue. This can lead
to both FPs and FNs. Note that we would expect that FPs are rare
because events can usually happen in any order. Similarly, FNs
are rare too, because even if the order is different, two pieces of
dataflows are still established and ReactAppScan can find a path.
Analysis of Transpiled JSX Code. One possible solution of JSX
analysis and vulnerability detection is to transpile JSX code to
JavaScript and apply state-of-the-art JavaScript analysis [59, 69, 90].
However, such an approach is not scalable, and will significantly
suffer from the problem of state explosion. Specifically, according
to our experiments, neither ODGen [69] nor FAST [59] can finish
analyzing the transpiled code of a simple demo application let
alone those applications in the large-scale or CVE database. In
addition, the analysis of transpiled code will lose the JSX syntax
and their information, such as React dataflow. This is similar to the
comparison of binary vs. source code analysis. Although binary
analysis is available, source code analysis will also preserve more
information and greatly improve the analysis accuracy.

8 RELATEDWORK

React Security. React implements many built-in security features
to defend against various possible attacks. For example, React es-
capes any values embedded in JSX by default [17], thereby prevent-
ing injection attacks. Despite these built-in features, due to the func-
tionality reason, React also includes dangerouslySetInnerHTML [11],

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhiyong Guo, Mingqing Kang, V.N. Venkatakrishnan, Rigel Gjomemo, and Yinzhi Cao

which can bypass this escapingmechanism and is also considered as
sinks in our work. To the best of our knowledge, prior work on React
vulnerability detection is limited. CodeQL [10], an industry-level
analysis engine for semantics-based search on a target codebase,
provides standard libraries for data flow analysis and for working
with React. React developer tool [26], although capable of analyz-
ing React applications dynamically, is only used for performance
profiling but not vulnerability detection.
Static Analysis for JavaScript. In the past, there have beenmany
static analysis works that were proposed for different purposes,
such as type inference. TAJS [57] abstractly interpret JavaScript
programs to infer type information and detect programming errors.
Similarly, JSAI [61] uses abstract interpretation for JavaScript type
inference, pointer analysis, and control-flow analysis. SAFE [66]
and SAFEWAPI [37] covert JavaScript to an Intermediate Repre-
sentation for abstract interpretation. Zheng et al. [93] propose a
static analysis method to detect non-deterministic problems caused
by asynchronous AJAX calls. Madsen et al. [70] present an event-
based call graph to detect bugs related to event handling in Node.js
applications. AdGraph [55] represents interactions between HTML
structure, network requests, and JavaScript behavior. As a compari-
son, prior static analysis focuses on JavaScript instead of JSX and
React and there are challenges in analyzing JSX, such as React data
flows between components.
Detection of Node.js Vulnerability. In the past, researchers
have studied various security issues of Node.js, e.g., supply chain
security [46, 82], Regular Expression Denial of Service (ReDoS) [38,
45, 80], privilege reduction [82], debloating [65], hidden property
abuse [88], and prototype pollution [60, 63, 79]. The techniques
in detecting Node.js vulnerabilities also range from static analysis
to dynamic analysis. We start with dynamic analysis. Jalangi [78]
dynamically analyzes JavaScript applications with selective record-
replay, shadow values and shadow execution. Arteau [35] detects
prototype pollution vulnerabilities with a dynamic fuzzer. We then
describe existing static analysis in detecting Node.js vulnerabilities.
DAPP [64] detects prototype pollution vulnerabilities based on ab-
stract syntax tree and control flow graph. Several works, such as
ObjLupAnsys [68], ODGen [69], CoCo [90], and Nodest [73], de-
tect JavaScript vulnerabilities using abstract interpretation. Node.js
ecosystem security is also studied. ConflictJS [76] analyzes Node.js
libraries to find conflicts. Zimmermann et al. [94] studies security
risks of third-party Node.js dependencies. NodeMedic [44] proposes
provenance graph to detect vulnerabilities in Node.js packages.
Brown et al. [39] study security problems in the binding layers of
Node.js. As a comparison, ReactAppScan’s objective is to detect
React vulnerabilities, i.e., out of scope of these prior works.
Client-side JavaScript Security The detection and prevention
of client-side cross-site scripting (XSS) [67, 71, 72, 81, 83] have
been well-studied in the past. Prior work proposes preventing XSS
attacks via Content Security Policy (CSP), e.g., CSPAutoGen [75].
Pathcutter [43] cuts off the propagation path of XSS worms through
view separation. Zhang et al. [91] develop a browser-based frame-
work for analyzing code integrity problems caused by JavaScript
global identifier conflicts. JSIsolate [92], provides a browser-based,
isolated, and reliable JavaScript execution environment based on

the dependency relationship of different JavaScript program compo-
nents. Browser fingerprinting [41, 54, 86, 87] and web tracking [74]
have also been studied by researchers. Deemon [77] is a frame-
work for detecting CSRF vulnerabilities with a unified property
graph built with dynamic traces. Melicher et al. [71] and Steffens
et al. [81] adopt dynamic taint analysis to find DOM-based XSS. Hi-
deNoSeek [48], JShield [42], JaSt [50], and JStap [49] study detecting
and defending against malicious client-side JavaScript programs.
Black Window [47] is a black box data-driven approach to web
crawling and scanning for finding cross-site scripting vulnerabil-
ities. Jin et al. [58] propose a DOM-tree type, a predefined set of
expected DOM trees for Electron apps, to defend against unintended
DOM-tree mutations at runtime. As a comparison, ReactAppScan
does not require dynamic analysis. Moreover, none of these meth-
ods track data flow in React or cross-side data dependencies.
Graph-based Vulnerability Detection. Program analysis, espe-
cially graph-based analysis, is heavily used for security analysis,
especially vulnerability detection. Yamaguchi et al. [89] propose
Code Property Graph (CPG), a joint data structure of abstract syn-
tax trees, control flow graphs and program dependence graph, to
detect vulnerabilities with graph traversals. Backes et al. [36] ex-
tends CPG with call graphs for PHP vulnerability detection. Jensen
et al. [56] utilize static analysis for detecting both dataflow-related
and type-related programming errors in browser-based JavaScript
applications, which models both the DOM model of the browser
API and HTML page. JAW [62] introduces the Hybrid Property
Graph, a code representation that includes Event Registration, Dis-
patch, and Dependency Graph to capture event-based transfer of
control. Taintmini [85] is a static taint analysis method designed to
detect the flow of sensitive data in mini-programs. DoubleX [51]
introduces Extension Dependence Graph (EDG) to detect vulnera-
bilities in browser extensions. As a comparison, from a high-level,
ReactAppScan is also a graph-based analysis, but ReactAppScan
focuses on the detection of React application vulnerabilities.

9 CONCLUSION

Single-page application frameworks, such as React, have recently
become popular and widely used by many top websites and web
applications. At the same time, vulnerability detection for React
applications falls behind: Many vulnerability detection approaches
do not support React applications, and those that support React also
fall short in modeling React data flows, leading to the incapability
of detecting many real-world React application vulnerabilities.

In this paper, we design a novel, open-source vulnerability de-
tection system, called ReactAppScan, which models React com-
ponents as Component Graph with data flows among their props
and states. ReactAppScan builds the component graph via abstract
interpretation with monitoring of state and props change and then
performs graph queries to mine vulnerabilities. Our evaluation
shows that ReactAppScan detected 61 zero-day vulnerabilities; we
have reported all of them to their developers and so far six have
already been fixed. We also compare ReactAppScan with CodeQL,
the state-of-the-art approach in detecting React application vulner-
abilities, and show that ReactAppScan significantly outperforms
CodeQL with much lower false positive and negative rates.

ReactAppScan: Mining React Application Vulnerabilities via Component Graph CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for their helpful com-
ments and feedback. This work was supported in part by National
Science Foundation (NSF) under grants CNS-21-54404 and CNS-
20-46361 and awards 2330565 and 1918542, a Defense Advanced
Research Projects Agency (DARPA) Young Faculty Award (YFA)
under Grant Agreement D22AP00137-00, the UK Research and Inno-
vation organization (UKRI) under award EP/Y026233/1, an Amazon
Research Award (ARA) 2021, and gifts from Visa Research. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of NSF,
DARPA, Amazon, Visa Research, or UKRI.

REFERENCES

[1] 2021. CVE-2021-23398 Detail. Retrieved Jan 6, 2024 from https://nvd.nist.gov/
vuln/detail/CVE-2021-23398

[2] 2021. CVE-2021-31712 Detail. Retrieved Jan 6, 2024 from https://nvd.nist.gov/
vuln/detail/CVE-2021-31712

[3] 2022. JSX. Retrieved Dec 21, 2023 from https://facebook.github.io/jsx/
[4] 2022. ODGen. Retrieved Nov 20, 2023 from https://github.com/Song-Li/ODGen
[5] 2023. 2023 Developer Survey. Retrieved Jan 10, 2024 from

https://survey.stackoverflow.co/2023/#section-most-popular-technologies-
web-frameworks-and-technologies

[6] 2023. CVE-2023-22462 Detail. Retrieved Jan 6, 2024 from https://nvd.nist.gov/
vuln/detail/CVE-2023-22462

[7] 2023. CVE-2023-34245 Detail. Retrieved Jan 6, 2024 from https://nvd.nist.gov/
vuln/detail/CVE-2023-34245

[8] 2023. CVE-2023-5654 Detail. Retrieved Jan 6, 2024 from https://nvd.nist.gov/
vuln/detail/CVE-2023-5654

[9] 2024. Client-side cross-site scripting. Retrieved Jan 5, 2024 from https://codeql.
github.com/codeql-query-help/javascript/js-xss/

[10] 2024. CodeQL. Retrieved Jan 6, 2024 from https://codeql.github.com/
[11] 2024. Dangerously setting the inner HTML. https://react.dev/reference/react-

dom/components/common#dangerously-setting-the-inner-html
[12] 2024. DOMPurify - a DOM-only, super-fast, uber-tolerant XSS sanitizer for

HTML, MathML and SVG. https://github.com/cure53/DOMPurify
[13] 2024. Espree. https://github.com/eslint/espree.
[14] 2024. Express - Node.js web application framework. Retrieved Jan 19, 2024 from

https://expressjs.com/
[15] 2024. HTML 5. Retrieved Jan 19, 2024 from https://www.w3.org/TR/2008/WD-

html5-20080610/dom.html#innerhtml0
[16] 2024. JSON Schema. https://json-schema.org/
[17] 2024. JSX Prevents Injection Attacks. Retrieved Jan 10, 2024 from https:

//legacy.reactjs.org/docs/introducing-jsx.html#jsx-prevents-injection-attacks
[18] 2024. lazy. Retrieved Jan 6, 2024 from https://react.dev/reference/react/lazy
[19] 2024. Managing State. https://react.dev/learn/managing-state
[20] 2024. markdown-it - Markdown parser, done right. https://github.com/

markdown-it/markdown-it/tree/master
[21] 2024. MongoDB: The Developer Data Platform. Retrieved Jan 19, 2024 from

https://www.mongodb.com/
[22] 2024. Mongoose: elegant mongodb object modeling for node.js. https:

//mongoosejs.com/
[23] 2024. National Vulnerability Database. Retrieved Jan 5, 2024 from https:

//nvd.nist.gov/
[24] 2024. Passing Props to a Component. Retrieved Jan 19, 2024 from https:

//react.dev/learn/passing-props-to-a-component
[25] 2024. React. Retrieved Jan 6, 2024 from https://react.dev/
[26] 2024. React Developer Tools. https://react.dev/learn/react-developer-tools
[27] 2024. ReactAppScan Open-Source Repository. https://github.com/react-app-

scan/react-app-scan
[28] 2024. Reflected cross-site scripting. Retrieved Jan 5, 2024 from https://codeql.

github.com/codeql-query-help/javascript/js-reflected-xss/
[29] 2024. rjsf-team/react-jsonschema-form. https://github.com/rjsf-team/react-

jsonschema-form
[30] 2024. sanitize-html. https://www.npmjs.com/package/sanitize-html
[31] 2024. State: A Component’s Memory. Retrieved Jan 19, 2024 from https:

//react.dev/learn/state-a-components-memory
[32] 2024. Stored cross-site scripting. Retrieved Jan 5, 2024 from https://codeql.

github.com/codeql-query-help/javascript/js-stored-xss/
[33] 2024. Taint Tracking of Function Passed Through JSX Attributes. https:

//github.com/github/codeql/issues/15207.

[34] 2024. Writing Markup with JSX. Retrieved Jan 6, 2024 from https://react.dev/
learn/writing-markup-with-jsx/

[35] Olivier Arteau. 2018. Prototype pollution attack in nodejs application.
[36] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.

2017. Efficient and Flexible Discovery of PHP Application Vulnerabilities. In
2017 IEEE European Symposium on Security and Privacy (EuroS&P). 334–349.
https://doi.org/10.1109/EuroSP.2017.14

[37] SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. 2014. SAFE-
WAPI: web API misuse detector for web applications. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Hong Kong, China) (FSE 2014). New York, NY, USA, 507–517.

[38] Zhihao Bai, KeWang, Hang Zhu, Yinzhi Cao, and Xin Jin. 2021. Runtime recovery
of web applications under zero-day redos attacks. In 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 1575–1588.

[39] Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson Engler, Ranjit Jhala,
and Deian Stefan. 2017. Finding and Preventing Bugs in JavaScript Bindings. In
2017 IEEE Symposium on Security and Privacy (SP). 559–578.

[40] BuiltWith. [n. d.]. React Usage Statistics. Retrieved Jan 18, 2024 from https:
//trends.builtwith.com/javascript/React

[41] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-) browser fingerprinting
via OS and hardware level features. In Proceedings 2017 Network and Distributed
System Security Symposium. Internet Society.

[42] Yinzhi Cao, Xiang Pan, Yan Chen, and Jianwei Zhuge. 2014. JShield: towards real-
time and vulnerability-based detection of polluted drive-by download attacks. In
Proceedings of the 30th Annual Computer Security Applications Conference (New
Orleans, Louisiana, USA) (ACSAC ’14). New York, NY, USA, 466–475.

[43] Yinzhi Cao, Vinod Yegneswaran, Phillip A. Porras, and Yan Chen. 2012. PathCut-
ter: Severing the Self-Propagation Path of XSS JavaScript Worms in Social Web
Networks. In Network and Distributed System Security Symposium.

[44] Darion Cassel, Wai Tuck Wong, and Limin Jia. 2023. NodeMedic: End-to-End
Analysis of Node.js Vulnerabilities with Provenance Graphs. In 2023 IEEE 8th
European Symposium on Security and Privacy (EuroS&P). 1101–1127.

[45] James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A Sense of Time
for JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In 27th USENIX Security Symposium (USENIX Security 18). 343–359.

[46] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2020. Towards measuring supply chain attacks on package
managers for interpreted languages. arXiv preprint arXiv:2002.01139 (2020).

[47] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black
Widow: Blackbox Data-drivenWeb Scanning. In 2021 IEEE Symposium on Security
and Privacy (SP). 1125–1142. https://doi.org/10.1109/SP40001.2021.00022

[48] Aurore Fass, Michael Backes, and Ben Stock. 2019. HideNoSeek: Camouflaging
Malicious JavaScript in Benign ASTs. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for ComputingMachinery, New York, NY, USA, 1899–1913.

[49] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: a static pre-filter for ma-
licious JavaScript detection. In Proceedings of the 35th Annual Computer Security
Applications Conference (San Juan, Puerto Rico, USA) (ACSAC ’19). Association
for Computing Machinery, New York, NY, USA, 257–269.

[50] Aurore Fass, Robert P. Krawczyk, Michael Backes, and Ben Stock. 2018. JaSt: Fully
Syntactic Detection ofMalicious (Obfuscated) JavaScript. InDetection of Intrusions
and Malware, and Vulnerability Assessment, Cristiano Giuffrida, Sébastien Bardin,
and Gregory Blanc (Eds.). Cham, 303–325.

[51] Aurore Fass, Dolière Francis Somé, Michael Backes, and Ben Stock. 2021. DoubleX:
Statically Detecting Vulnerable Data Flows in Browser Extensions at Scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). 1789–1804.

[52] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program
dependence graph and its use in optimization. ACM Trans. Program. Lang. Syst.
9, 3 (jul 1987), 319–349. https://doi.org/10.1145/24039.24041

[53] Veronica Gavrilă, Lidia Băjenaru, and Ciprian Dobre. 2019. Modern single page
application architecture: a case study. Stud. Inform. Control 28 (2019), 231–238.

[54] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in the
crowd: an analysis of the effectiveness of browser fingerprinting at large scale.
In Proceedings of the 2018 world wide web conference. 309–318.

[55] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. Adgraph: A graph-based approach to ad and tracker blocking.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 763–776.

[56] Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the
HTML DOM and browser API in static analysis of JavaScript web applications. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. 59–69.

[57] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis
for JavaScript. In Static Analysis, Jens Palsberg and Zhendong Su (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 238–255.

[58] Zihao Jin, Shuo Chen, Yang Chen, Haixin Duan, Jianjun Chen, and Jianping
Wu. 2023. A Security Study about Electron Applications and a Programming
Methodology to Tame DOM Functionalities. In NDSS.

https://nvd.nist.gov/vuln/detail/CVE-2021-23398
https://nvd.nist.gov/vuln/detail/CVE-2021-23398
https://nvd.nist.gov/vuln/detail/CVE-2021-31712
https://nvd.nist.gov/vuln/detail/CVE-2021-31712
https://facebook.github.io/jsx/
https://github.com/Song-Li/ODGen
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-web-frameworks-and-technologies
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-web-frameworks-and-technologies
https://nvd.nist.gov/vuln/detail/CVE-2023-22462
https://nvd.nist.gov/vuln/detail/CVE-2023-22462
https://nvd.nist.gov/vuln/detail/CVE-2023-34245
https://nvd.nist.gov/vuln/detail/CVE-2023-34245
https://nvd.nist.gov/vuln/detail/CVE-2023-5654
https://nvd.nist.gov/vuln/detail/CVE-2023-5654
https://codeql.github.com/codeql-query-help/javascript/js-xss/
https://codeql.github.com/codeql-query-help/javascript/js-xss/
https://codeql.github.com/
https://react.dev/reference/react-dom/components/common#dangerously-setting-the-inner-html
https://react.dev/reference/react-dom/components/common#dangerously-setting-the-inner-html
https://github.com/cure53/DOMPurify
https://github.com/eslint/espree
https://expressjs.com/
https://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml0
https://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml0
https://json-schema.org/
https://legacy.reactjs.org/docs/introducing-jsx.html#jsx-prevents-injection-attacks
https://legacy.reactjs.org/docs/introducing-jsx.html#jsx-prevents-injection-attacks
https://react.dev/reference/react/lazy
https://react.dev/learn/managing-state
https://github.com/markdown-it/markdown-it/tree/master
https://github.com/markdown-it/markdown-it/tree/master
https://www.mongodb.com/
https://mongoosejs.com/
https://mongoosejs.com/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/passing-props-to-a-component
https://react.dev/
https://react.dev/learn/react-developer-tools
https://github.com/react-app-scan/react-app-scan
https://github.com/react-app-scan/react-app-scan
https://codeql.github.com/codeql-query-help/javascript/js-reflected-xss/
https://codeql.github.com/codeql-query-help/javascript/js-reflected-xss/
https://github.com/rjsf-team/react-jsonschema-form
https://github.com/rjsf-team/react-jsonschema-form
https://www.npmjs.com/package/sanitize-html
https://react.dev/learn/state-a-components-memory
https://react.dev/learn/state-a-components-memory
https://codeql.github.com/codeql-query-help/javascript/js-stored-xss/
https://codeql.github.com/codeql-query-help/javascript/js-stored-xss/
https://github.com/github/codeql/issues/15207
https://github.com/github/codeql/issues/15207
https://react.dev/learn/writing-markup-with-jsx/
https://react.dev/learn/writing-markup-with-jsx/
https://doi.org/10.1109/EuroSP.2017.14
https://trends.builtwith.com/javascript/React
https://trends.builtwith.com/javascript/React
https://doi.org/10.1109/SP40001.2021.00022
https://doi.org/10.1145/24039.24041

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhiyong Guo, Mingqing Kang, V.N. Venkatakrishnan, Rigel Gjomemo, and Yinzhi Cao

[59] Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, V. N.
Venkatakrishnan, and Yinzhi Cao. 2023. Scaling JavaScript Abstract Interpretation
to Detect and Exploit Node.js Taint-style Vulnerability. In 2023 IEEE Symposium
on Security and Privacy (SP). 1059–1076.

[60] Zifeng Kang, Song Li, and Yinzhi Cao. 2022. Probe the Proto: Measuring Client-
Side Prototype Pollution Vulnerabilities of One Million Real-world Websites. In
Network and Distributed System Security Symposium (NDSS 2022).

[61] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, BenWiedermann, and BenHardekopf. 2014. JSAI: a static analysis
platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014). 121–132.

[62] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying Client-side
CSRF with Hybrid Property Graphs and Declarative Traversals. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, 2525–2542. https:
//www.usenix.org/conference/usenixsecurity21/presentation/khodayari

[63] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin Lee, Si WooMun, Jeong Hoon
Shin, and Kyounggon Kim. 2022. DAPP: automatic detection and analysis of
prototype pollution vulnerability in Node.js modules. International Journal of
Information Security 21, 1 (2022), 1–23.

[64] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin Lee, Si WooMun, Jeong Hoon
Shin, and Kyounggon Kim. 2022. DAPP: automatic detection and analysis of
prototype pollution vulnerability in Node.js modules. Int. J. Inf. Secur. 21, 1 (feb
2022), 1–23.

[65] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the attack surface of Node.js applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020). 121–134.

[66] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. 2012.
SAFE: Formal specification and implementation of a scalable analysis framework
for ECMAScript. In FOOL 2012: 19th International Workshop on Foundations of
Object-Oriented Languages. Citeseer, 96.

[67] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 1193–1204.

[68] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.js
prototype pollution vulnerabilities via object lookup analysis. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2021). 268–279.

[69] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining Node.js
Vulnerabilities via Object Dependence Graph and Query. In 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA, 143–160.

[70] Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static analysis of event-
driven Node.js JavaScript applications. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2015). 505–519.

[71] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out domsday: Towards detecting and preventing dom cross-site
scripting. In 2018 Network and Distributed System Security Symposium (NDSS).

[72] Yacin Nadji, Prateek Saxena, and Dawn Song. 2009. Document Structure Integrity:
A Robust Basis for Cross-site Scripting Defense.. In NDSS, Vol. 20.

[73] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019.
Nodest: feedback-driven static analysis of Node.js applications. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). 455–465.

[74] Xiang Pan, Yinzhi Cao, and Yan Chen. 2015. I do not know what you visited
last summer: Protecting users from third-party web tracking with trackingfree
browser. In Proceedings of the 2015 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA.

[75] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou.
2016. CSPAutoGen: Black-box Enforcement of Content Security Policy upon Real-
world Websites. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (Vienna, Austria) (CCS ’16). 653–665.

[76] Jibesh Patra, Pooja N. Dixit, and Michael Pradel. 2018. ConflictJS: Finding and
Understanding Conflicts Between JavaScript Libraries. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). 741–751.

[77] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian
Rossow. 2017. Deemon: Detecting CSRF with dynamic analysis and property
graphs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 1757–1771.

[78] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
(Saint Petersburg, Russia) (ESEC/FSE 2013). 488–498.

[79] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. 2023. Silent
Spring: Prototype Pollution Leads to Remote Code Execution in Node.js. USENIX
Security.

[80] Cristian-Alexandru Staicu andMichael Pradel. 2018. Freezing theWeb: A Study of
ReDoS Vulnerabilities in JavaScript-based Web Servers. In 27th USENIX Security

Table 6: A List of vulnerabilities used in our CVE dataset

Vulnerability Type CVE#

Cross-site Scripting (XSS) CVE-2023-41167, CVE-2023-37259, CVE-2023-
34245, CVE-2023-30609, CVE-2023-22462, CVE-
2023-25572, CVE-2021-23398, CVE-2021-31712,
CVE-2020-12113, CVE-2021-41249, CVE-2020-
15119

Improper Authorization CVE-2023-5654
Unrestricted File Upload CVE-2021-32622
Insufficient Data Authenticity CVE-2021-21320

Symposium (USENIX Security 18). 361–376.
[81] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t

Trust The Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild. (2019).

[82] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Preventing dynamic
library compromise on Node.js via rwx-based privilege reduction. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
1821–1838.

[83] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross site scripting prevention with dynamic
data tainting and static analysis.. In NDSS, Vol. 2007. 12.

[84] W3Techs. [n. d.]. Historical trends in the usage statistics of React versions for
websites. Retrieved Jan 10, 2024 from https://w3techs.com/technologies/history_
details/js-react

[85] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-
mini: Detecting Flow of Sensitive Data in Mini-Programs with Static Taint Anal-
ysis. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 932–944. https://doi.org/10.1109/ICSE48619.2023.00086

[86] Shujiang Wu, Song Li, Yinzhi Cao, and Ningfei Wang. 2019. Rendered private:
Making {GLSL} execution uniform to prevent {WebGL-based} browser finger-
printing. In 28th USENIX Security Symposium (USENIX Security 19). 1645–1660.

[87] Shujiang Wu, Pengfei Sun, Yao Zhao, and Yinzhi Cao. 2023. Him of many
faces: Characterizing billion-scale adversarial and benign browser fingerprints
on commercial websites. In 30th Annual Network and Distributed System Security
Symposium, NDSS.

[88] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu, Guofei
Gu, and Wenke Lee. 2021. Abusing hidden properties to attack the Node.js
ecosystem. In 30th USENIX Security Symposium (USENIX Security 21). 2951–2968.

[89] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium
on Security and Privacy. 590–604. https://doi.org/10.1109/SP.2014.44

[90] Jianjia Yu, Song Li, Junmin Zhu, and Yinzhi Cao. 2023. CoCo: Efficient Browser
Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract
Interpretation. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’23). 2441–2455.

[91] Mingxue Zhang and Wei Meng. 2020. Detecting and understanding JavaScript
global identifier conflicts on the web. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2020). 38–49.

[92] Mingxue Zhang and Wei Meng. 2021. JSISOLATE: lightweight in-browser
JavaScript isolation. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing Ma-
chinery, New York, NY, USA, 193–204.

[93] Yunhui Zheng, Tao Bao, and Xiangyu Zhang. 2011. Statically locating web appli-
cation bugs caused by asynchronous calls. In Proceedings of the 20th International
Conference on World Wide Web (Hyderabad, India) (WWW ’11). Association for
Computing Machinery, New York, NY, USA, 805–814.

[94] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995–1010.

Appendices

A OPERATIONAL SEMANTICS

Figure 8 depicts the detailed operational semantics.
B A LIST OF ZERO-DAY VULNERABILITIES

Table 6 shows a list of React vulnerabilities and their CVE identifiers
in our CVE dataset.

https://www.usenix.org/conference/usenixsecurity21/presentation/khodayari
https://www.usenix.org/conference/usenixsecurity21/presentation/khodayari
https://w3techs.com/technologies/history_details/js-react
https://w3techs.com/technologies/history_details/js-react
https://doi.org/10.1109/ICSE48619.2023.00086
https://doi.org/10.1109/SP.2014.44

ReactAppScan: Mining React Application Vulnerabilities via Component Graph CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Phase I: Mounting (JSX Elements)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), 𝑒1 ⇒ (𝑁𝑒1 , 𝐸𝑒1 , 𝑒𝑙,𝑞, 𝑆)

((𝐸𝑙𝑁𝑎𝑚𝑒 𝑥,𝐴𝑡𝑡𝑟𝑠 𝑒1), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑒1 , 𝐸 ∪ 𝐸𝑒1 ∪𝐴𝑑𝑑𝐸𝑑𝑔𝑒𝑒𝑙→𝑒𝑙
𝑒𝑙→𝑒𝑙new

, 𝑒𝑙new, 𝑞, 𝑆), where 𝑒𝑙new := 𝐴𝑑𝑑𝐸𝑙𝑎𝑎.𝑥 .name

(JSXOpeningElement)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆, (𝑒1, 𝑎.𝑒1, 𝑝) ⇒ (𝑁𝑒1 , 𝐸𝑒1 , 𝑒𝑙𝑒1 , 𝑞, 𝑆), ..., (𝑒𝑛,𝑎.𝑒𝑛, 𝑝,𝑞) ⇒ (𝑁𝑒𝑛 , 𝐸𝑒𝑛 , 𝑒𝑙𝑒𝑛 ,𝑞, 𝑆)

((𝐶ℎ𝑖𝑙𝑑 𝑒1, ...,𝐶ℎ𝑖𝑙𝑑 𝑒𝑛), 𝑎, 𝑝,𝑞) ⇒
(
𝑛⋃
𝑖=1

𝑁𝑒𝑖 ,
𝑛⋃
𝑖=1

𝐸𝑒𝑖 ∪
𝑛⋃
𝑖=1

AddEdge𝑒𝑙→𝑒𝑙
𝑒𝑙→𝑒𝑖

, 𝑒𝑙,𝑞, 𝑆

) (JSXChildren)

Phase I: Mounting (JSX Attributes and Props)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑒1, 𝑎.𝑒1, 𝑝) ⇒ (𝑁𝑒1 , 𝐸𝑒1 , 𝑒𝑙,𝑞, 𝑆), (𝑒2, 𝑎.𝑒2, 𝑝) ⇒ (𝑁𝑒2 , 𝐸𝑒2 , 𝑒𝑙,𝑞, 𝑆)
((name 𝑒1 = Value 𝑒2), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑒1 ∪𝑁𝑒2 , 𝐸 ∪ 𝐸𝑒1 ∪ 𝐸𝑒2 ∪ 𝐸attr ∪ 𝐸props, 𝑒𝑙,𝑞, 𝑆)

where


𝐸attr := AddEdgeattr→𝑜

attr′→𝑜′ , ∀𝑜
′ ∈ Child𝑎→𝑜

𝑎.𝑒2 , attr′ = LkupAttr(𝑎.𝑒1)

𝐸props := AddProperty
props→𝑜′
𝑎.𝑒1 .𝑛𝑎𝑚𝑒 , props := LkupPropsObjs(𝑒𝑙) , 𝑒𝑙 ∈ 𝑁𝑐

(JSXAttribute)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑒1, 𝑎𝑒1 , 𝑝) ⇒ (𝑁𝑒1 , 𝐸𝑒1 , 𝑒𝑙,𝑞, 𝑆), ..., (𝑒𝑛,𝑎𝑒𝑛 , 𝑝,𝑞) ⇒ (𝑁𝑒𝑛 , 𝐸𝑒𝑛 , 𝑒𝑙,𝑞, 𝑆)

((Attr 𝑒1, ..., Attr 𝑒𝑛), 𝑎, 𝑝) ⇒ (
𝑛⋃
𝑖=1

𝑁𝑒𝑖 ,
𝑛⋃
𝑖=1

𝐸𝑒𝑖 , 𝑒𝑙,𝑞, 𝑆)
(JSXAttributes)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑒,𝑎𝑒 , 𝑝) ⇒ (𝑁𝑒 , 𝐸𝑒 , 𝑒𝑙,𝑞, 𝑆), 𝑟 := AddNode𝑜𝑎,𝑐 := AddNode𝑜𝑎, 𝑝 := AddProperty𝑟→𝑜
current

(𝑢𝑠𝑒𝑅𝑒𝑓 (𝑒), 𝑎, 𝑝) ⇒ (𝑁 ∪ 𝑟 ∪ 𝑐, 𝐸 ∪ 𝑝, 𝑒𝑙,𝑞, 𝑆) (useRef)

Phase I: Mounting (JSX State)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑒,𝑎.𝑒, 𝑝) ⇒ (𝑁𝑒 , 𝐸𝑒 , 𝑒𝑙,𝑞, 𝑆)
(𝑢𝑠𝑒𝑆𝑡𝑎𝑡𝑒 (𝑒), 𝑎, 𝑝) ⇒ if LkupState(𝑒𝑙) ≠ ∅ then (𝑁,𝐸, 𝑒𝑙,𝑞) else (𝑁 ∪𝑁𝑒 ∪𝑁state ∪𝑁state_v ∪𝑁setState, 𝐸 ∪ 𝐸𝑒 ∪ 𝐸state ∪ 𝐸setState ∪ 𝐸𝑣, 𝑒𝑙,𝑞, 𝑆)

where


𝑁state := AddNodestate𝑎

𝑁state_v := AddNode𝑣𝑎

𝑁setState := AddNode𝑣𝑎

&



𝐸state := AddEdge𝑐→state
𝑒𝑙→𝑁state

𝐸setState := AddEdge
state→<𝑣,𝑣𝑓 >

𝑁state→<𝑁state_v,𝑁setState>

𝐸𝑣 := AddEdge𝑣→𝑜
𝑁state_v→𝑜′ , ∀𝑜

′ ∈ Child𝑎→𝑜
𝑎.𝑒

(useState)

Phase I: Mounting (Component Rendering)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), 𝑒1 ⇒ (𝑁𝑒1 , 𝐸𝑒1 , 𝑒𝑙𝑒1 , 𝑞, 𝑆), 𝑒2 ⇒ (𝑁𝑒2 , 𝐸𝑒2 , 𝑒𝑙𝑒1 , 𝑞, 𝑆)
((𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐸𝑙 𝑒1,𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑒2), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑒1 ∪𝑁𝑒2 ∪𝑁𝑟 , 𝐸 ∪ 𝐸𝑒1 ∪ 𝐸𝑒2 ∪ 𝐸𝑟), 𝑒𝑙𝑒1 , 𝑞 ∪𝑞𝑢,𝑆 ∪ {𝑒𝑙𝑒1 :< LkupStateObjs(𝑒𝑙𝑒1), LkupPropsObjs(𝑒𝑙𝑒1) >})

where

{ (𝑁𝑟 , 𝐸𝑟) := if 𝑆 (𝑒𝑙𝑒1) = ∅ then (call 𝑓) else ∅, 𝑓 := LkupMountingFunc(𝑒𝑙𝑒1)

𝑞𝑢 := {if (𝑆 (𝑒𝑙𝑒1) ≠ ∅and Compare(𝑒𝑙))then LkupUpdatingFunc(𝑒𝑙)else ∅}
(JSXElement)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆)
(𝑒,𝑎, 𝑝) ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆) (JSXClosingElement) 𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆)

(𝑒,𝑎, 𝑝) ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆) (JSXIdentifier) 𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆)
(𝑒,𝑎, 𝑝) ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆) (JSXElementName)

Phase II: Updating (Async Events)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑓 , 𝑎.𝑓 , 𝑝) ⇒ (𝑁𝑓 , 𝐸𝑓 , 𝑒𝑙,𝑞, 𝑆)

(𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑥, 𝑓), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑓 , 𝐸 ∪ 𝐸𝑓 , 𝑒𝑙,𝑞, 𝑆 ∪ {𝑎.𝑥 .𝑛𝑎𝑚𝑒 : 𝑜′ }), ∀𝑜′ ∈ Child𝑎→𝑜
𝑎.𝑓

(callback register)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑐𝑏,𝑎.𝑐𝑏, 𝑝) ⇒ (𝑁𝑐𝑏, 𝐸𝑐𝑏 , 𝑒𝑙,𝑞, 𝑆), 𝑓 := 𝑆 (𝑎.𝑥 .𝑛𝑎𝑚𝑒), call 𝑓 ⇒ (𝑁𝑠 , 𝐸𝑠 , 𝑒𝑙,𝑞, 𝑆)
(𝑐𝑎𝑙𝑙 (𝑥,𝑐𝑏), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑐𝑏, 𝐸 ∪ 𝐸𝑐𝑏, 𝑒𝑙,𝑞 ∪ (call 𝑐𝑏 (𝑜′)), 𝑆), ∀𝑜′ ∈ Child𝑎→𝑜

𝑎.𝑓

(callback invocation)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑥,𝑎.𝑥, 𝑝) ⇒ (𝑁𝑥 , 𝐸𝑥 , 𝑒𝑙,𝑞, 𝑆)
(𝑚𝑜𝑑𝑒𝑙 (𝑥), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑥 ∪ AddNode𝑜𝑎.𝑥 , 𝐸 ∪ 𝐸𝑥 , 𝑒𝑙,𝑞, 𝑆)

(database model)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑒,𝑎.𝑒, 𝑝) ⇒ (𝑁𝑒 , 𝐸𝑒 , 𝑒𝑙,𝑞, 𝑆), (𝑓 , 𝑎.𝑓 , 𝑝) ⇒ (𝑁𝑓 , 𝐸𝑓 , 𝑒𝑙,𝑞, 𝑆), if HasCommonKey(m, f′) then Copy(𝑜′,𝑚) ⇒ (𝑁𝑐 , 𝐸𝑐)
(𝑥.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑓 , 𝑒), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑒 ∪𝑁𝑐 ∪𝑁𝑓 , 𝐸 ∪ 𝐸𝑒 ∪ 𝐸𝑐 ∪ 𝐸𝑓 , 𝑒𝑙,𝑞, 𝑆)

where


𝑚 := Child𝑥𝑎→𝑜

𝑜′ := Child𝑎.𝑒𝑎→𝑜

𝑓 ′ := Child
𝑎.𝑓
𝑎→𝑜

(model update)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑒,𝑎.𝑒, 𝑝) ⇒ (𝑁𝑒 , 𝐸𝑒 , 𝑒𝑙,𝑞, 𝑆),𝑚 := Child𝑥𝑎→𝑜 ,𝑛 := Child𝑎.𝑒𝑎→𝑜 , if HasCommonKey(m, n) then Copy(𝑚,𝑜) ⇒ (𝑁𝑐 , 𝐸𝑐) where 𝑜 := AddNode𝑎𝑜 ,

(𝑥.𝑓 𝑖𝑛𝑑 (𝑒), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑒 ∪𝑁𝑐 , 𝐸 ∪ 𝐸𝑒 ∪ 𝐸𝑐 , 𝑒𝑙,𝑞, 𝑆)
(model read)

Phase II: Updating (JSX Component Updating)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑥,𝑎.𝑥, 𝑝,𝑞) ⇒ (𝑁𝑥 , 𝐸𝑥 , 𝑒𝑙,𝑞, 𝑆)
(setState(𝑥), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑥 , 𝐸 ∪ 𝐸𝑥 ∪ 𝐸𝑠 , 𝑒𝑙,𝑞 ∪ {if Compare(𝑒𝑙)then LkupUpdatingFunc(𝑒𝑙)else ∅}, 𝑆 ∪ 𝑆𝑥) where



𝐸𝑠 := AddEdge𝑣→𝑜
𝑣𝑠→𝑜𝑠

𝑣𝑠 := LkupStateVar(𝑎.𝑥)

𝑜𝑠 := LkupObj(𝑎.𝑥)

𝑆𝑥 :=< LkupStateObjs(𝑒𝑙), LkupPropsObjs(𝑒𝑙) >}

(setState)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑓 , 𝑎.𝑓 , 𝑝) ⇒ (𝑁𝑓 , 𝐸𝑓 , 𝑒𝑙,𝑞, 𝑆), 𝑐 := LkupCleanupFunc(𝑒𝑙), (𝑐𝑎𝑙𝑙 𝑐 (), 𝑎.𝑐, 𝑝) ⇒ (𝑁𝑐 , 𝐸𝑐 , 𝑒𝑙,𝑞, 𝑆), (𝑒,𝑎.𝑒, 𝑝) ⇒ (𝑁𝑒 , 𝐸𝑒 , 𝑒𝑙,𝑞, 𝑆)

(useEffect(𝑓 , 𝑒), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑓 ∪𝑁𝑒 ∪𝑁𝑐 , 𝐸 ∪ 𝐸𝑓 ∪ 𝐸𝑒 ∪ 𝐸𝑐 , 𝑒𝑙,𝑞 ∪ {𝑁𝑑 }, 𝑆) where𝑁𝑑 := Child𝑎→𝑜
𝑎.𝑓 →𝑜′

(useEffect)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆),
(forceUpdate(), 𝑎, 𝑝) ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞 ∪ {LkupUpdatingFunc(𝑒𝑙)) }, 𝑆) (forceUpdate)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑓 (), 𝑎.𝑓 , 𝑝) ⇒ (𝑁𝑓 , 𝐸𝑓 , 𝑒𝑙,𝑞𝑓 , 𝑆𝑓)
(𝑐𝑎𝑙𝑙 𝑓 (), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑓 , 𝐸 ∪ 𝐸𝑓 , 𝑒𝑙,𝑞 ∪𝑞𝑓 , 𝑆 ∪ 𝑆𝑓) (componentDidMount)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑓 (LkupPropsVar(𝑒𝑙), LkupStateVar(𝑒𝑙)), 𝑎.𝑓 , 𝑝) ⇒ (𝑁𝑓 , 𝐸𝑓 , 𝑒𝑙,𝑞𝑓 , 𝑆𝑓)
(𝑐𝑎𝑙𝑙 𝑓 (𝑎1, ..., 𝑎𝑛), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑓 , 𝐸 ∪ 𝐸𝑓 , 𝑒𝑙,𝑞 ∪𝑞𝑓 , 𝑆 ∪ 𝑆𝑓) (constructor, render, getDerivedStateFromProps, shouldComponentUpdate)

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑓 (𝑆 (𝑒𝑙)), 𝑎.𝑓 , 𝑝) ⇒ (𝑁𝑓 , 𝐸𝑓 , 𝑒𝑙,𝑞𝑓 , 𝑆𝑓)
(𝑐𝑎𝑙𝑙 𝑓 (𝑎1, ..., 𝑎𝑛), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑓 , 𝐸 ∪ 𝐸𝑓 , 𝑒𝑙,𝑞 ∪𝑞𝑓 , 𝑆 ∪ 𝑆𝑓) (getSnapshotBeforeUpdate, componentDidUpdate)

Phase III: Unmounting

𝑝 ⇒ (𝑁,𝐸, 𝑒𝑙,𝑞, 𝑆), (𝑓 (), 𝑎.𝑓 , 𝑝) ⇒ (𝑁𝑓 , 𝐸𝑓 , 𝑒𝑙,𝑞, 𝑆)
((𝑐𝑎𝑙𝑙 𝑓 (), 𝑎, 𝑝) ⇒ (𝑁 ∪𝑁𝑓 , 𝐸 ∪ 𝐸𝑓 , 𝑒𝑙,𝑞, 𝑆)

(cleanup effects, componentWillUnmount)

Figure 8: Detailed Operational Semantics for Building the Component Graph.

	Abstract
	1 Introduction
	2 Background
	3 Overview
	3.1 A Motivating Example
	3.2 Threat Model

	4 Design
	4.1 System Architecture
	4.2 Phase I: Mounting
	4.3 Phase II: Updating
	4.4 Phase III: Unmounting

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: Zero-day Vulnerabilities
	6.3 RQ2: FP and FN
	6.4 RQ3: Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Operational Semantics
	B A List of Zero-day Vulnerabilities

