
Towards Making Systems Forget with Machine Unlearning

Yinzhi Cao and Junfeng Yang
Columbia University

{yzcao, junfeng}@cs.columbia.edu

Abstract—Today’s systems produce a rapidly exploding
amount of data, and the data further derives more data, forming
a complex data propagation network that we call the data’s
lineage. There are many reasons that users want systems to forget
certain data including its lineage. From a privacy perspective,
users who become concerned with new privacy risks of a system
often want the system to forget their data and lineage. From a
security perspective, if an attacker pollutes an anomaly detector
by injecting manually crafted data into the training data set,
the detector must forget the injected data to regain security.
From a usability perspective, a user can remove noise and
incorrect entries so that a recommendation engine gives useful
recommendations. Therefore, we envision forgetting systems,
capable of forgetting certain data and their lineages, completely
and quickly.

This paper focuses on making learning systems forget, the
process of which we call machine unlearning, or simply un-
learning. We present a general, efficient unlearning approach
by transforming learning algorithms used by a system into a
summation form. To forget a training data sample, our approach
simply updates a small number of summations – asymptotically
faster than retraining from scratch. Our approach is general,
because the summation form is from the statistical query learning
in which many machine learning algorithms can be implemented.
Our approach also applies to all stages of machine learning,
including feature selection and modeling. Our evaluation, on four
diverse learning systems and real-world workloads, shows that
our approach is general, effective, fast, and easy to use.

I. INTRODUCTION

A. The Need for Systems to Forget

Today’s systems produce a rapidly exploding amount of
data, ranging from personal photos and office documents to
logs of user clicks on a website or mobile device [15]. From
this data, the systems perform a myriad of computations to
derive even more data. For instance, backup systems copy data
from one place (e.g., a mobile device) to another (e.g., the
cloud). Photo storage systems re-encode a photo into different
formats and sizes [23, 53]. Analytics systems aggregate raw
data such as click logs into insightful statistics. Machine learn-
ing systems extract models and properties (e.g., the similarities
of movies) from training data (e.g., historical movie ratings)
using advanced algorithms. This derived data can recursively
derive more data, such as a recommendation system predicting
a user’s rating of a movie based on movie similarities. In short,
a piece of raw data in today’s systems often goes through
a series of computations, “creeping” into many places and
appearing in many forms. The data, computations, and derived
data together form a complex data propagation network that
we call the data’s lineage.

For a variety of reasons, users want a system to forget
certain sensitive data and its complete lineage. Consider pri-
vacy first. After Facebook changed its privacy policy, many
users deleted their accounts and the associated data [69].
The iCloud photo hacking incident [8] led to online articles
teaching users how to completely delete iOS photos including
the backups [79]. New privacy research revealed that machine
learning models for personalized warfarin dosing leak patients’
genetic markers [43], and a small set of statistics on genet-
ics and diseases suffices to identify individuals [78]. Users
unhappy with these newfound risks naturally want their data
and its influence on the models and statistics to be completely
forgotten. System operators or service providers have strong
incentives to honor users’ requests to forget data, both to keep
users happy and to comply with the law [72]. For instance,
Google had removed 171,183 links [50] by October 2014
under the “right to be forgotten” ruling of the highest court in
the European Union.

Security is another reason that users want data to be
forgotten. Consider anomaly detection systems. The security
of these systems hinges on the model of normal behaviors ex-
tracted from the training data. By polluting1 the training data,
attackers pollute the model, thus compromising security. For
instance, Perdisci et al. [56] show that PolyGraph [55], a worm
detection engine, fails to generate useful worm signatures if
the training data is injected with well-crafted fake network
flows. Once the polluted data is identified, the system must
completely forget the data and its lineage to regain security.

Usability is a third reason. Consider the recommendation
or prediction system Google Now [7]. It infers a user’s
preferences from her search history, browsing history, and
other analytics. It then pushes recommendations, such as news
about a show, to the user. Noise or incorrect entries in analytics
can seriously degrade the quality of the recommendation. One
of our lab members experienced this problem first-hand. He
loaned his laptop to a friend who searched for a TV show
(“Jeopardy!”) on Google [1]. He then kept getting news about
this show on his phone, even after he deleted the search record
from his search history.

We believe that systems must be designed under the core
principle of completely and quickly forgetting sensitive data
and its lineage for restoring privacy, security, and usability.
Such forgetting systems must carefully track data lineage
even across statistical processing or machine learning, and
make this lineage visible to users. They let users specify

1In this paper, we use the term pollute [56] instead of poison [47, 77].

1

the data to forget with different levels of granularity. For
instance, a privacy-conscious user who accidentally searches
for a sensitive keyword without concealing her identity can
request that the search engine forget that particular search
record. These systems then remove the data and revert its
effects so that all future operations run as if the data had never
existed. They collaborate to forget data if the lineage spans
across system boundaries (e.g., in the context of web mashup
services). This collaborative forgetting potentially scales to
the entire Web. Users trust forgetting systems to comply
with requests to forget, because the aforementioned service
providers have strong incentives to comply, but other trust
models are also possible. The usefulness of forgetting systems
can be evaluated with two metrics: how completely they can
forget data (completeness) and how quickly they can do so
(timeliness). The higher these metrics, the better the systems
at restoring privacy, security, and usability.

We foresee easy adoption of forgetting systems because they
benefit both users and service providers. With the flexibility
to request that systems forget data, users have more control
over their data, so they are more willing to share data with the
systems. More data also benefit the service providers, because
they have more profit opportunities services and fewer legal
risks. In addition, we envision forgetting systems playing a
crucial role in emerging data markets [3, 40, 61] where users
trade data for money, services, or other data because the
mechanism of forgetting enables a user to cleanly cancel a
data transaction or rent out the use rights of her data without
giving up the ownership.

Forgetting systems are complementary to much existing
work [55, 75, 80]. Systems such as Google Search [6] can
forget a user’s raw data upon request, but they ignore the
lineage. Secure deletion [32, 60, 70] prevents deleted data from
being recovered from the storage media, but it largely ignores
the lineage, too. Information flow control [41, 67] can be
leveraged by forgetting systems to track data lineage. However,
it typically tracks only direct data duplication, not statistical
processing or machine learning, to avoid taint explosion.
Differential privacy [75, 80] preserves the privacy of each indi-
vidual item in a data set equally and invariably by restricting
accesses only to the whole data set’s statistics fuzzed with
noise. This restriction is at odds with today’s systems such
as Facebook and Google Search which, authorized by billions
of users, routinely access personal data for accurate results.
Unsurprisingly, it is impossible to strike a balance between
utility and privacy in state-of-the-art implementations [43]. In
contrast, forgetting systems aim to restore privacy on select
data. Although private data may still propagate, the lineage of
this data within the forgetting systems is carefully tracked and
removed completely and in a timely manner upon request. In
addition, this fine-grained data removal caters to an individual
user’s privacy consciousness and the data item’s sensitivity.
Forgetting systems conform to the trust and usage models of
today’s systems, representing a more practical privacy vs util-
ity tradeoff. Researchers also proposed mechanisms to make
systems more robust against training data pollution [27, 55].

...

Σ

...

a small

number of

summations

training data

samples

Machine Learning Model

Learn

Σ

Learn

Machine Learning Model

g1

...

g2 g1 g1 g2g2

...

g1,g2:

transformations

Fig. 1: Unlearning idea. Instead of making a model directly depend
on each training data sample (left), we convert the learning algorithm
into a summation form (right). Specifically, each summation is the
sum of transformed data samples, where the transformation functions
gi are efficiently computable. There are only a small number of
summations, and the learning algorithm depends only on summations.
To forget a data sample, we simply update the summations and then
compute the updated model. This approach is asymptotically much
faster than retraining from scratch.

However, despite these mechanisms (and the others discussed
so far such as differential privacy), users may still request
systems to forget data due to, for example, policy changes and
new attacks against the mechanisms [43, 56]. These requests
can be served only by forgetting systems.

B. Machine Unlearning

While there are numerous challenges in making systems
forget, this paper focuses on one of the most difficult chal-
lenges: making machine learning systems forget. These sys-
tems extract features and models from training data to answer
questions about new data. They are widely used in many
areas of science [25, 35, 37, 46, 55, 63–65]. To forget a piece
of training data completely, these systems need to revert the
effects of the data on the extracted features and models. We
call this process machine unlearning, or unlearning for short.

A naı̈ve approach to unlearning is to retrain the features
and models from scratch after removing the data to forget.
However, when the set of training data is large, this approach
is quite slow, increasing the timing window during which the
system is vulnerable. For instance, with a real-world data set
from Huawei (see §VII), it takes Zozzle [35], a JavaScript
malware detector, over a day to retrain and forget a polluted
sample.

We present a general approach to efficient unlearning, with-
out retraining from scratch, for a variety of machine learning
algorithms widely used in real-world systems. To prepare for
unlearning, we transform learning algorithms in a system to
a form consisting of a small number of summations [33].
Each summation is the sum of some efficiently computable
transformation of the training data samples. The learning
algorithms depend only on the summations, not individual
data. These summations are saved together with the trained
model. (The rest of the system may still ask for individual data
and there is no injected noise as there is in differential privacy.)
Then, in the unlearning process, we subtract the data to forget

2

from each summation, and then update the model. As Figure 1
illustrates, forgetting a data item now requires recomputing
only a small number of terms, asymptotically faster than
retraining from scratch by a factor equal to the size of the
training data set. For the aforementioned Zozzle example, our
unlearning approach takes only less than a second compared to
a day for retraining. It is general because the summation form
is from statistical query (SQ) learning [48]. Many machine
learning algorithms, such as naı̈ve Bayes classifiers, support
vector machines, and k-means clustering, can be implemented
as SQ learning. Our approach also applies to all stages of
machine learning, including feature selection and modeling.

We evaluated our unlearning approach on four diverse
learning systems including (1) LensKit [39], an open-source
recommendation system used by several websites for confer-
ence [5], movie [14], and book [4] recommendations; (2) an
independent re-implementation of Zozzle, the aforementioned
closed-source JavaScript malware detector whose algorithm
was adopted by Microsoft Bing [42]; (3) an open-source online
social network (OSN) spam filter [46]; and (4) PJScan, an
open-source PDF malware detector [51]. We also used real-
world workloads such as more than 100K JavaScript malware
samples from Huawei. Our evaluation shows:

• All four systems are prone to attacks targeting learn-
ing. For LensKit, we reproduced an existing privacy
attack [29]. For each of the other three systems, because
there is no known attack, we created a new, practical data
pollution attack to decrease the detection effectiveness.
One particular attack requires careful injection of mul-
tiple features in the training data set to mislead feature
selection and model training (see §VII).

• Our unlearning approach applies to all learning algo-
rithms in LensKit, Zozzle, and PJScan. In particular,
enabled by our approach, we created the first effi-
cient unlearning algorithm for normalized cosine similar-
ity [37, 63] commonly used by recommendation systems
(e.g., LensKit) and for one-class support vector machine
(SVM) [71] commonly used by classification/anomaly
detection systems (e.g., PJScan uses it to learn a model of
malicious PDFs). We show analytically that, for all these
algorithms, our approach is both complete (completely
removing a data sample’s lineage) and timely (asymptot-
ically much faster than retraining). For the OSN spam
filter, we leveraged existing techniques for unlearning.

• Using real-world data, we show empirically that unlearn-
ing prevents the attacks and the speedup over retraining
is often huge, matching our analytical results.

• Our approach is easy to use. It is straightforward to
modify the systems to support unlearning. For each
system, we modified from 20 – 300 lines of code, less
than 1% of the system.

C. Contributions and Paper Organization

This paper makes four main contributions:

• The concept of forgetting systems that restore privacy, se-
curity, and usability by forgetting data lineage completely
and quickly;

• A general unlearning approach that converts learning al-
gorithms into a summation form for efficiently forgetting
data lineage;

• An evaluation of our approach on real-world systems/al-
gorithms demonstrating that it is practical, complete, fast,
and easy to use; and

• The practical data pollution attacks we created against
real-world systems/algorithms.

While prior work proposed incremental machine learning
for several specific learning algorithms [31, 62, 73], the key
difference in our work is that we propose a general efficient
unlearning approach applicable to any algorithm that can be
converted to the summation form, including some that cur-
rently have no incremental versions, such as normalized cosine
similarity and one-class SVM. In addition, our unlearning
approach handles all stages of learning, including feature
selection and modeling. We also demonstrated our approach
on real systems.

Our unlearning approach is inspired by prior work on speed-
ing up machine learning algorithms with MapReduce [33]. We
believe we are the first to establish the connection between
unlearning and the summation form. In addition, we are the
first to convert non-standard real-world learning algorithms
such as normalized cosine similarity to the summation form.
The conversion is complex and challenging (see §VI). In con-
trast, the prior work converts nine standard machine learning
algorithms using only simple transformations.

The rest of the paper is organized as follows. In §II, we
present some background on machine learning systems and
the extended motivation of unlearning. In §III, we present the
goals and work flow of unlearning. In §IV, we present the core
approach of unlearning, i.e., transforming a system into the
summation form, and its formal backbone. In §V, we overview
our evaluation methodology and summarize results. In §VI–
§IX, we report detailed case studies on four real-world learning
systems. In §X and §XI, we discuss some issues in unlearning
and related work, and in §XII, we conclude.

II. BACKGROUND AND ADVERSARIAL MODEL

This section presents some background on machine learning
(§II-A) and the extended motivation of unlearning (§II-B).

A. Machine Learning Background

Figure 2 shows that a general machine learning system with
three processing stages.
• Feature selection. During this stage, the system selects,

from all features of the training data, a set of features
most crucial for classifying data. The selected feature
set is typically small to make later stages more accurate
and efficient. Feature selection can be (1) manual where
system builders carefully craft the feature set or (2) au-
tomatic where the system runs some learning algorithms

3

Feature
Selection

Model
Training

Prediction

Unknown sample

or

Feature
Set

Model

Training Data Set

Result

?

+ + -

-+

Fig. 2: A General Machine Learning System. Given a set of training
data including both malicious (+) and benign (−) samples, the system
first selects a set of features most crucial for classifying data. It then
uses the training data to construct a model. To process an unknown
sample, the system examines the features in the sample and uses
the model to predict the sample as malicious or benign. The lineage
of the training data thus flows to the feature set, the model, and the
prediction results. An attacker can feed different samples to the model
and observe the results to steal private information from every step
along the lineage, including the training data set (system inference
attack). She can pollute the training data and subsequently every step
along the lineage to alter prediction results (training data pollution
attack).

such as clustering and chi-squared test to compute how
crucial the features are and select the most crucial ones.

• Model training. The system extracts the values of the
selected features from each training data sample into
a feature vector. It feeds the feature vectors and the
malicious or benign labels of all training data samples
into some machine learning algorithm to construct a
succinct model.

• Prediction. When the system receives an unknown data
sample, it extracts the sample’s feature vector and uses
the model to predict whether the sample is malicious or
benign.

Note that a learning system may or may not contain all
three stages, work with labeled training data, or classify data
as malicious or benign. We present the system in Figure 2 be-
cause it matches many machine learning systems for security
purposes such as Zozzle. Without loss of generality, we refer
to this system as an example in the later sections of the paper.

B. Adversarial Model

To further motivate the need for unlearning, we describe
several practical attacks in the literature that target learning
systems. They either violate privacy by inferring private in-
formation in the trained models (§II-B1), or reduce security
by polluting the prediction (detection) results of anomaly
detection systems (§II-B2).

1) System Inference Attacks: The training data sets, such
as movie ratings, online purchase histories, and browsing
histories, often contain private data. As shown in Figure 2,

the private data lineage flows through the machine learning
algorithms into the feature set, the model, and the prediction
results. By exploiting this lineage, an attacker gains an oppor-
tunity to infer private data by feeding samples into the system
and observing the prediction results. Such an attack is called
a system inference attack [29].2

Consider a recommendation system that uses item-item
collaborative filtering which learns item-item similarities from
users’ purchase histories and recommends to a user the items
most similar to the ones she previously purchased. Calandrino
et al. [29] show that once an attacker learns (1) the item-item
similarities, (2) the list of recommended items for a user before
she purchased an item, and (3) the list after, the attacker can
accurately infer what the user purchased by essentially invert-
ing the computation done by the recommendation algorithm.
For example, on LibraryThing [12], a book cataloging service
and recommendation engine, this attack successfully inferred
six book purchases per user with 90% accuracy for over one
million users!

Similarly, consider a personalized warfarin dosing system
that guides medical treatments based on a patient’s genotype
and background. Fredrikson et al. [43] show that with the
model and some demographic information about a patient,
an attacker can infer the genetic markers of the patient with
accuracy as high as 75%.

2) Training Data Pollution Attacks: Another way to exploit
the lineage in Figure 2 is using training data pollution attacks.
An attacker injects carefully polluted data samples into a
learning system, misleading the algorithms to compute an in-
correct feature set and model. Subsequently, when processing
unknown samples, the system may flag a big number of benign
samples as malicious and generate too many false positives,
or it may flag a big number of malicious as benign so the true
malicious samples evade detection.

Unlike system inference in which an attacker exploits an
easy-to-access public interface of a learning system, data
pollution requires an attacker to tackle two relatively difficult
issues. First, the attacker must trick the learning system into
including the polluted samples in the training data set. There
are a number of reported ways to do so [54, 56, 77]. For
instance, she may sign up as a crowdsourcing worker and
intentionally mislabel benign emails as spams [77]. She may
also attack the honeypots or other baiting traps intended for
collecting malicious samples, such as sending polluted emails
to a spamtrap [17], or compromising a machine in a honeynet
and sending packets with polluted protocol header fields [56].

Second, the attacker must carefully pollute enough data to
mislead the machine learning algorithms. In the crowdsourcing
case, she, the administrator of the crowdsourcing sites, directly
pollutes the labels of some training data [77]. 3% mislabeled
training data turned out to be enough to significantly decrease
detection efficacy. In the honeypot cases [17, 56], the attacker
cannot change the labels of the polluted data samples because
the honeypot automatically labels them as malicious. However,

2In this paper, we use system inference instead of model inversion [43].

4

she controls what features appear in the samples, so she
can inject benign features into these samples, misleading the
system into relying on these features for detecting malicious
samples. For instance, Nelson et al. injected words that also
occur in benign emails into the emails sent to a spamtrap,
causing a spam detector to classify 60% of the benign emails
as spam. Perdisci et al. injected many packets with the same
randomly generated strings into a honeynet, so that true
malicious packets without these strings evade detection.

III. OVERVIEW

This section presents the goals (§III-A) and work flow
(§III-B) of machine learning.

A. Unlearning Goals

Recall that forgetting systems have two goals: (1) com-
pleteness, or how completely they can forget data; and (2)
timeliness, or how quickly they can forget. We discuss what
these goals mean in the context of unlearning.

1) Completeness: Intuitively, completeness requires that
once a data sample is removed, all its effects on the feature set
and the model are also cleanly reversed. It essentially captures
how consistent an unlearned system is with the system that
has been retrained from scratch. If, for every possible sample,
the unlearned system gives the same prediction result as the
retrained system, then an attacker, operator, or user has no
way of discovering that the unlearned data and its lineage
existed in the system by feeding input samples to the unlearned
system or even observing its features, model, and training
data. Such unlearning is complete. To empirically measure
completeness, we quantify the percentage of input samples that
receive the same prediction results from both the unlearned
and the retrained system using a representative test data set.
The higher the percentage, the more complete the unlearning.
Note that completeness does not depend on the correctness
of prediction results: an incorrect but consistent prediction by
both systems does not decrease completeness.

Our notion of completeness is subject to such factors as
how representative the test data set is and whether the learning
algorithm is randomized. In particular, given the same training
data set, the same randomized learning algorithm may compute
different models which subsequently predict differently. Thus,
we consider unlearning complete as long as the unlearned
system is consistent with one of the retrained systems.

2) Timeliness: Timeliness in unlearning captures how much
faster unlearning is than retraining at updating the features
and the model in the system. The more timely the unlearning,
the faster the system is at restoring privacy, security, and
usability. Analytically, unlearning updates only a small number
of summations and then runs a learning algorithm on these
summations, whereas retraining runs the learning algorithm
on the entire training data set, so unlearning is asymptotically
faster by a factor of the training data size. To empirically mea-
sure timeliness, we quantify the speedup of unlearning over
retraining. Unlearning does not replace retraining. Unlearning
works better when the data to forget is small compared to the

training set. This case is quite common. For instance, a single
user’s private data is typically small compared to the whole
training data of all users. Similarly, an attacker needs only a
small amount of data to pollute a learning system (e.g., 1.75%
in the OSN spam filter [46] as shown in §VIII). When the data
to forget becomes large, retraining may work better.

B. Unlearning Work Flow

Given a training data sample to forget, unlearning updates
the system in two steps, following the learning process shown
in Figure 2. First, it updates the set of selected features. The
inputs at this step are the sample to forget, the old feature
set, and the summations previously computed for deriving the
old feature set. The outputs are the updated feature set and
summations. For example, Zozzle selects features using the
chi-squared test, which scores a feature based on four counts
(the simplest form of summations): how many malicious or
benign samples contain or do not contain this feature. To
support unlearning, we augmented Zozzle to store the score
and these counts for each feature. To unlearn a sample,
we update these counts to exclude this sample, re-score the
features, and select the top scored features as the updated
feature set. This process does not depend on the training data
set, and is much faster than retraining which has to inspect
each sample for each feature. The updated feature set in our
experiments is very similar to the old one with a couple of
features removed and added.

Second, unlearning updates the model. The inputs at this
step are the sample to forget, the old feature set, the updated
feature set, the old model, and the summations previously
computed for deriving the old model. The outputs are the
updated model and summations. If a feature is removed from
the feature set, we simply splice out the feature’s data from
the model. If a feature is added, we compute its data in the
model. In addition, we update summations that depend on
the sample to forget, and update the model accordingly. For
Zozzle which classifies data as malicious or benign using naı̈ve
Bayes, the summations are probabilities (e.g., the probability
that a training data sample is malicious given that it contains
a certain feature) computed using the counts recorded in the
first step. Updating the probabilities and the model is thus
straightforward, and much faster than retraining.

IV. UNLEARNING APPROACH

As previously depicted in Figure 1, our unlearning approach
introduces a layer of a small number of summations between
the learning algorithm and the training data to break down
the dependencies. Now, the learning algorithm depends only
on the summations, each of which is the sum of some
efficiently computable transformations of the training data
samples. Chu et al. [33] show that many popular machine
learning algorithms, such as naı̈ve Bayes, can be represented
in this form. To remove a data sample, we simply remove
the transformations of this data sample from the summations
that depend on this sample, which has O(1) complexity, and

5

compute the updated model. This approach is asymptotically
faster than retraining from scratch.

More formally, the summation form follows statistical query
(SQ) learning [48]. SQ learning forbids a learning algorithm
from querying individual training data samples. Instead, it
permits the algorithm to query only statistics about the training
data through an oracle. Specifically, the algorithm sends a
function g(x, lx) to the oracle where x is a training data sam-
ple, lx the corresponding label, and g an efficiently computable
function. Then, the oracle answers an estimated expectation
of g(x, lx) over all training data. The algorithm repeatedly
queries the oracle, potentially with different g-functions, until
it terminates.

Depending on whether all SQs that an algorithm issues
are determined upfront, SQ learning can be non-adaptive (all
SQs are determined upfront before the algorithm starts) or
adaptive (later SQs may depend on earlier SQ results). These
two different types of SQ learning require different ways to
unlearn, described in the following two subsections.

A. Non-adaptive SQ Learning

A non-adaptive SQ learning algorithm must determine
all SQs upfront. It follows that the number of these SQs is
constant, denoted m, and the transformation g-functions are
fixed, denoted g1, g2, ..., gm. We represent the algorithm in
the following form:

Learn(
∑

xi∈X g1(xi, lxi),
∑

xi∈X g2(xi, lxi), ...,
∑

xi∈X gm(xi, lxi))

where xi is a training data sample and lxi its label. This
form encompasses many popular machine learning algorithms,
including linear regression, chi-squared test, and naı̈ve Bayes.

With this form, unlearning is as follows. Let Gk be∑
gk(xi, lxi). All Gks are saved together with the learned

model. To unlearn a data sample xp, we compute G′k as
Gk − gk(xp, lxp). The updated model is thus

Learn(G1 − g1(xp, lxp), G2 − g2(xp, lxp), ..., Gm − gm(xp, lxp))

Unlearning on a non-adaptive SQ learning algorithm is
complete because this updated model is identical to

Learn(
∑

i 6=p g1(xi, lxi),
∑

i 6=p g2(xi, lxi), ...,
∑

i 6=p gm(xi, lxi))

the model computed by retraining on the training data exclud-
ing xp. For timeliness, it is also much faster than retraining
because (1) computing G′k is easy: simply subtract gk(xp, lxp)
from Gk and (2) there are only a constant number of summa-
tions Gk.

We now illustrate how to convert a non-adaptive SQ learn-
ing algorithm into this summation form using naı̈ve Bayes
as an example. Given a sample with features F1, F2, ...,
and Fk, naı̈ve Bayes classifies the sample with label L if
P (L|F1, ..., Fk), the conditional probability of observing label
L on a training data sample with all these features, is bigger

than this conditional probability for any other label. This
conditional probability is computed using Equation 1.

P (L|F1, ..., Fk) =
P (L)

∏k
i=0 P (Fi|L)∏k

i=0 P (Fi)
(1)

We now convert each probability term P in this equation
into summations. Consider P (Fi|L) as an example. It is
computed by taking (1) the number of training data samples
with feature Fi and label L, denoted NFi,L, and dividing by
(2) the number of training data samples with label L, denoted
NL. Each counter is essentially a very simple summation of
a function that returns 1 when a sample should be counted
and 0 otherwise. For instance, NL is the sum of an indicator
function gL(x, lx) that returns 1 when lx is L and 0 otherwise.
Similarly, all other probability terms are computed by dividing
the corresponding two counters. P (L) is the division of NL
over the total number of samples, denoted N . P (Fi) is the
division of the number of training data samples with the
feature Fi, denoted NFi , over N .

To unlearn a sample, we simply update these counters and
recompute the probabilities. For instance, suppose the training
sample to unlearn has label L and one feature Fj . After
unlearning, P (Fj |L) becomes

NFjL−1
NL−1 , and all other P (Fi|L)s

become NFiL
NL−1 . P (L) becomes NL−1

N . P (Fj) becomes
NFj−1
N−1 ,

and all other P (Fi)s become NFi
N−1 .

B. Adaptive SQ Learning

An adaptive SQ learning algorithm issues its SQs iteratively
on the fly, and later SQs may depend on results of earlier
ones. (Non-adaptive SQ learning is a special form of adaptive
SQ learning.) Operationally, adaptive SQ learning starts by
selecting an initial state s0, randomly or heuristically. At
state sj , it determines the transformation functions in the
SQs based on the current state, sends the SQs to the oracle,
receives the results, and learns the next state sj+1. It then
repeats until the algorithm converges. During each iteration,
the current state suffices for determining the transformation
functions because it can capture the entire history starting
from s0. We represent these functions in each state sj as
gsj ,1, gsj ,2, ..., gsj ,m. Now, the algorithm is in the following
form:

(1) s0: initial state;

(2) sj+1 = Learn(
∑

xi∈X gsj ,1(xi, lxi),
∑

xi∈X gsj ,2(xi, lxi),...
,
∑

xi∈X gsj ,m(xi, lxi));

(3) Repeat (2) until the algorithm converges.

The number of iterations required for the algorithm to con-
verge depends on the algorithm, the initial state selected,
and the training data. Typically the algorithm is designed to
robustly converge under many scenarios. This adaptive form
of SQ learning encompasses many popular machine learning
algorithms, including gradient descent, SVM, and k-means.

Unlearning this adaptive form is more changing than non-
adaptive because, even if we restart from the same initial state,

6

if the training data sample to forget changes one iteration,
all subsequent iterations may deviate and require computing
from scratch. Fortunately, our insight is that, after removing a
sample, the previously converged state often becomes only
slightly out of convergence. Thus, unlearning can simply
“resume” the iterative learning algorithm from this state on
the updated training data set, and it should take much fewer
iterations to converge than restarting from the original or a
newly generated initial state.

Operationally, our adaptive unlearning approach works as
follows. Given the converged state S computed on the original
training data set, it removes the contributions of the sample
to forget from the summations that Learn uses to compute S,
similar to unlearning the non-adaptive form. Let the resultant
state be S′. Then, it checks whether S′ meets the algorithm’s
convergence condition. If not, it sets S′ as the initial state and
runs the iterative learning algorithm until it converges.

We now discuss the completeness of our adaptive unlearning
approach in three scenarios. First, for algorithms such as SVM
that converge at only one state, our approach is complete
because the converged state computed from unlearning is the
same as that retrained from scratch. Second, for algorithms
such as k-means that converge at multiple possible states, our
approach is complete if the state S′ is a possible initial state se-
lected by the algorithm (e.g., the algorithm selects initial state
randomly). A proof sketch is as follows. Since S′ is a possible
initial state, there is one possible retraining process that starts
from S′ and reaches a new converged state. At every iteration
of this retraining process, the new state computed by Learn is
identical to the state computed in the corresponding iteration in
unlearning. Thus, they must compute the same exact converged
state, satisfying the completeness goal (§III-A1). Third, our
approach may be incomplete if (a) S′ cannot be a possible
initial state (e.g., the algorithm selects initial state using a
heuristic that happens to rule out S′) or (b) the algorithm does
not converge or converges at a state different than all possible
states retraining converges to. We expect these scenarios to be
rare because adaptive algorithms need to be robust anyway for
convergence during normal operations.

Our adaptive unlearning approach is also timely. The
speedup over retraining is twofold. First, unlearning is faster
at computing the summations if there are old results of
the summations to use. For example, it updates the state S
by removing contributions of the removed sample. Second,
unlearning starts from an almost-converged state, so it needs
fewer iterations to converge than retraining. In practice, we
expect that the majority of the speedup comes from the
reduced number of iterations. For instance, our evaluation
shows that, on average, PJScan retraining needs 42 iterations
while unlearning only 2.4, a speedup of over 17x (§IX).
The implication is that, in principle, our adaptive unlearn-
ing approach should speed up any robust iterative machine
learning algorithm, even if the algorithm does not follow SQ
learning. In practice, however, very few practical learning
algorithms cannot be converted to the adaptive SQ learning
form. Specifically, many machine learning problems can be

cast as optimization problems, potentially solvable using gra-
dient descent, an adaptive SQ learning algorithm. Thus, we
used adaptive SQ learning to represent the more general class
of iterative algorithms in our discussion.

Now, we illustrate how to convert an adaptive SQ learning
algorithm into the summation form using k-means clustering
as an example. K-means clustering starts from an initial set
of randomly selected cluster centers, c1, ..., ck, assigns each
data point to a cluster whose center has the shortest Euclidean
distance to the point, and then updates each ci based on the
mean value of all the data points in its cluster. It repeats this
assignment until the centers no longer change.

To support unlearning, we convert the calculation of each ci
into summations. Because k-means clustering is unsupervised,
labels are not involved in the following discussion. Let us
define gci,j(x) as a function that outputs x when the distance
between x and ci is minimum, and otherwise 0; and define
g′j(x) as a function that outputs 1 when the distance between
x and ci is minimum, and otherwise 0. Now, the new ci in
the j + 1 iteration equals

∑
x∈X gci,j(x)∑
x∈X g′ci,j

(x) .

To unlearn a sample xp, we update
∑
x∈X gci,j(x) and∑

x∈X g
′
ci,j

(x) by subtracting gci,j(xp) and g′ci,j(xp) from
the summations. Then, we continue the iteration process until
the algorithm converges.

V. EVALUATION METHODOLOGY AND RESULT SUMMARY

To evaluate our unlearning approach, we chose four real-
world systems whose purposes range from recommendation to
malicious PDF detection. They include both open-source and
closed-source ones, covering six different learning algorithms.
We focused on real-world systems because they do not use just
the standard learning algorithms studied by Chu et al. [33] or
have just one learning stage [73]. We believe this diverse set
of programs serves as a representative benchmark suite for our
approach. We briefly describe each evaluated system below.

• LensKit [39] is an open-source recommendation system
used by Confer (a conference recommendation website),
MovieLens (a movie recommendation website), and Book-
Lens (a book recommendation website). LensKit’s default
recommendation algorithm is a flexible, fast item-item col-
laborative filtering algorithm from Sarwar et al. [63] and
Deshpande et al [37]. This algorithm first infers similarities
of every two items based their user ratings. Then, if a user
likes another item, it recommends the most similar items to
the user.
• Zozzle [35] is a closed-source JavaScript malware detec-

tor. Its learning has two stages: (1) a chi-squared test to
select features and (2) a naı̈ve Bayes classifier to classify
JavaScript programs into malicious or benign. Its algo-
rithms have been adopted by Microsoft Bing [42]. Since
Zozzle is closed-source, we obtained an independent re-
implementation [21]. This re-implementation was also used
in our prior work [30].
• The system described in Gao et al. [46] is an open-source

OSN spam filter. It uses manually selected features and a

7

TABLE I: Summary of Unlearning Results. Note that m is the number of items, n is the number of users, q is the number of features, N is
the size of training data set, p and l are numbers between 2 and 3, and k is a number between 0 and 1. See the next four sections for more
details on these symbols.

Analytical Results Empirical Results
System Attack Summation? Complete-

ness
Unlearn
Speed

Retrain
Speed

Speedup Complete-
ness

Unlearn
Speed

Retrain
Speed

Speedup Modification
LoC (%)

LensKit Old 3 100% O(m2) O(nm2) O(n) 100% 45s 4min56s 6.57 302 (0.3%)

Zozzle New 3 100% O(q) O(Nq) O(N) 100% 987ms 1day2hours 9.5×104 21 (0.4%)

OSNSF New 7 <100% O(logN) O(NlogN) O(N) 99.4% 21.5ms 30mins 8.4×104 33 (0.8%)

PJScan New 3 100% O(Np) O(N l) O(Nk) 100% 156ms 157ms 1 30 (0.07%)

distance-based algorithm to cluster OSN wall posts into
a moderate number of clusters, and then builds a C4.5
decision tree [58] for classifying posts into “ham” or spam.
The clustering helps to make the classifying step real time.
For brevity, we refer to this system as OSNSF in the
remainder of this paper.
• PJScan [51] is an open-source PDF malware detector tool.

It uses one-class SVM which takes only malicious samples
as the training data to classify PDFs.

For each system, we focused our evaluation on the following
four research questions.

1) Is the system vulnerable to any attack exploiting machine
learning? We answered this question by either reproduc-
ing an existing attack if there is one or constructing a new
attack otherwise. To ensure that the attack is practical, we
used real-world workloads and typically injected different
portions of polluted data to observe how effective the
attack became.

2) Does our unlearning approach apply to the different
machine learning algorithms and stages of the system?
We answered this question by understanding the algo-
rithms in the system and revising them based on our
approach. Analytically, we also computed the unlearning
completeness and timeliness (i.e., asymptotic speedup
over retraining).

3) Empirically, how does our unlearning approach perform?
These empirical results are crucial to understand that
the actual performance of our approach matches the
analytical performance. We answered this question by
running the system on real-world data such as a Facebook
data set with over one million wall posts. We measured
completeness by comparing prediction results on test
data sets before and after unlearning; we additionally
studied whether unlearning prevents the attack against the
system. We measured timeliness by quantifying the actual
speedup of unlearning of retraining.

4) Is it easy to modify the system to support unlearning?
We answered this question by implementing our approach
in the system and counting the lines of code that we
modified.

Table I shows the summary of our results. All four evaluated
systems turned out to be vulnerable. For LensKit, we repro-
duced an existing privacy attack [29]. For each of the other
three systems, we created a new practical data pollution attack.
Our unlearning approach applies to all learning algorithms

in three systems, LensKit, Zozzle, and PJScan, with 100%
completeness. For OSNSF, we leveraged existing techniques
for unlearning and got less than 100% completeness. For all
systems, the speedup of unlearning over retraining is often
asymptotically as large as the size of the training data set.
Empirically, using the largest real-world data sets we obtained,
we show that unlearning was 100% complete for except that
it was 99.4% for the OSNSF. It obtained up to 104× speedup
except for PJScan because its largest data set has only 65
PDFs, so the execution time was dominated by program start
and shutdown not learning. These empirical results match the
analytical ones. Lastly, modification to support unlearning for
each system ranges from 20 – 300 lines of code (LoC), less
than 1% of total LoC of the system. The next four sections
describe these results in more detail for each system.

VI. UNLEARNING IN LENSKIT

We start by describing LensKit’s recommendation algo-
rithm. Recall that it by default recommends items to users
using item-item collaborative filtering [37, 63] that computes
the similarity of every two items based on user ratings of
the items because, intuitively, similar items should receive
similar ratings from the same user. Operationally, LensKit
starts by constructing a user-item matrix based on historical
user ratings of items, where row i stores all ratings given by
user i, and column j all ratings received by item j. Then,
LensKit normalizes all ratings in the matrix to reduce biases
across users and items. For instance, one user’s average rating
may be higher than another user’s, but both should contribute
equally to the final item-item similarity. Equation 2 shows the
normalized rating aij for rij , user i’s original rating of item
j, where µi is the average of all ratings given by user i, ηj the
average of all ratings received by item j, and g is the global
average rating.

aij =

{rij−µi−ηj+g when rij 6=null

0 when rij=null

(2)

Based on the normalized user-item rating matrix, LensKit
computes an item-item similarity matrix within which the cell
at row k and column l represents the similarity between items
k and l. Specifically, as shown in Equation 3, it computes the
cosine similarity between columns k and l in the user-item
rating matrix, where ||~x||2 represents the Euclidean norm of
~x, and ~a∗,k is a vector, (a1k, a1k, ..., ank), representing all the
ratings received by item k.

8

sim(k, l) =
~a∗,k · ~a∗,l

||~a∗,k||2||~a∗,l||2
(3)

Now, to recommend items to a user, LensKit computes the
most similar items to the items previously rated by the user.

The workload that we use is a public, real-world data
set from movie recommendation website MovieLens [14]. It
has three subsets: (1) 100,000 ratings from 1,000 users on
1,700 movies, (2) 1 million ratings from 6,000 users on 4,000
movies, and (3) 10 million ratings from 72,000 users on
10,000 movies. We used LensKit’s default settings in all our
experiments.

A. The Attack – System Inference

Since there exists a prior system inference attack against
recommendation systems [29], we reproduced this attack
against LensKit and verified the effectiveness of the attack.
As described by Calandrino et al. [29], the attacker knows
the item-item similarity matrix and some items that the user
bought from the past. To infer a newly bought item of the
user, the attacker computes a delta matrix between the current
item-item similarity matrix and the one without the item. Then,
based on the delta matrix, the attacker could infer an initial list
of items that might lead to the delta matrix, i.e., potential items
that the user might have newly bought. Comparing the list of
inferred items and the user’s purchasing history, the attacker
could infer the newly bought item. Following the attack steps,
we first record the item-item similarity matrix of LensKit and
one user’s rating history. Then, we add one item to the user’s
rating history, compute the delta matrix and then successfully
infer the added rating from the delta matrix and the user’s
rating history.

B. Analytical Results

To support unlearning in LensKit, we converted its recom-
mendation algorithm into the summation form. Equation 4
shows this process. We start by substituting ~a∗,k and ~a∗,l
in Equation 3 with their corresponding values in Equation 2
where n is the number of users and m the number of items, and
expanding the multiplications. We then simplify the equation
by substituting some terms using the five summations listed
in Equation 5. The result shows that our summation approach
applies to item-item recommendation using cosine similarity.

Skl =
n∑

i=1

(rik − µi)(ril − µi)

Sk =
n∑

i=1

(rik − µi) Sl =
n∑

i=1

(ril − µi)

Skk =

n∑
i=1

(rik − µi)2 Sll =

n∑
i=1

(ril − µi)2

(5)

We now discuss analytically the completeness and timeli-
ness of unlearning in LensKit. To forget a rating in LensKit,
we must update its item-item similarity matrix. To update the
similarity between items k and l, we simply update all the
summations in Equation 4, and then recompute sim(k, l) using

Algorithm 1 Learning Stage Preparation in LensKit
Input:

All the users: 1 to n
All the items: 1 to m

Process:
1: Initializing all the variables to zero
2: for i = 1 to n do
3: for j = 1 to m do
4: if rij 6= null then
5: Sumµi ← Sumµi + rij
6: Countµi++
7: Sumηj ← Sumηj + rij
8: Countηj ++
9: Sumg ← Sumg + rij

10: Countg++
11: end if
12: end for
13: µi ← Sumµi/Countµi
14: end for
15: g ← Sumg/Countg
16: for k = 1 to m do
17: ηk ← Sumηk/Countηk
18: for i = 1 to n do
19: Sk ← Sk + (rik − µi)
20: end for
21: for l = 1 to m do
22: for i = 1 to n do
23: Skl ← Skl + (rik − µi) ∗ (ril − µi)
24: end for
25: Calculate sim(k, l)
26: end for
27: end for

the summations. This unlearning process is 100% complete
because it computes the same value of sim(k, l) as recom-
puting from scratch following Equation 3. The asymptotic
time to unlearn sim(k, l) is only O(1) because there is only
a constant number of summations, each of which can be
updated in constant time. Considering all m2 pairs of items,
the time complexity of unlearning is O(m2). In contrast, the
time complexity of retraining from scratch is O(nm2) because
recomputing sim(k, l) following Equation 3 requires the dot-
product of two vectors of size n. Thus, unlearning has a
speedup factor of O(n) over retraining. This speedup is quite
huge because a recommendation system typically has much
more users than items (e.g., Netflix’s users vs movies).

Now that we have shown mathematically how to convert
LensKit’s item-item similarity equation into the summation
form and its analytical completeness and timeliness, we pro-
ceed to show algorithmically how to modify LensKit to sup-
port unlearning. While doing so is not difficult once Equation 4
is given, we report the algorithms we added to provide a
complete picture of how to support unlearning in LensKit.

We added two algorithms to LensKit. Algorithm 1 runs
during the learning stage of LensKit, which occurs when the
system bootstraps or when the system operator decides to
retrain from scratch. This algorithm computes the necessary
summations for later unlearning. To compute the average
rating of each user i (µi, line 13), it tracks the number of
ratings given by the user (Countµi , line 6) and the sum
of these ratings (Sumµi , line 5). It similarly computes the
average rating of each item k (ηk, line 17) by tracking the
number of all ratings received by item k (Countηk , line 8)
and the sum of these ratings (Sumηk , line 7). It computes the

9

sim(k, l) =

n∑
i=1

aikail√
n∑

i=1
a2ik

n∑
i=1

a2il

=

n∑
i=1

(rik − µi − ηk + g)(ril − µi − ηl + g)√
n∑

i=1
(rik − µi − ηk + g)2

n∑
i=1

(ril − µi − ηl + g)2

=

n∑
i=1

(rik − µi)(ril − µi)− ηk
n∑

i=1
(ril − µi)− ηl

n∑
i=1

(rik − µi)− g(ηk + ηl)N + ηkηlN + g2N + g
n∑

i=1
(rik + ril − 2µi)√

n∑
i=1

(rik − µi)2 − 2(ηk − g)
n∑

i=1
(rik − µi) + (ηk − g)2N

√
n∑

i=1
(ril − µi)2 − 2(ηl − g)

n∑
i=1

(ril − µi) + (ηl − g)2N

=
Skl − ηkSl − ηlSk + g(Sk + Sl)− g(ηk + ηl)N + ηkηlN + g2N√
Skk − 2(ηk − g)Sk + (ηk − g)2N

√
Sll − 2(ηl − g)Sl + (ηl − g)2N

= Learn(Skl, Sk, Sl, Skk, Sll, g, ηk, ηl)

(4)

Algorithm 2 Unlearning Stage in LensKit
Input:

u : the user who wants to delete a rating for an item . User u
t : the item, of which the user wants to delete the rating . Item t
rut : the original rating that the user gives . Rating rut

Process:
1: oldµu ← µu
2: µu ← (µu ∗ Countµu − rut)/(Countµu − 1)
3: ηt ← (ηt ∗ Countηt − rut)/(Countηt − 1)
4: g ← (g ∗ Countg − rut)/(Countg − 1)
5: St ← St − (rut − oldµu)
6: St ← Stt − (rut − oldµu) ∗ (rut − oldµu)
7: for j = 1 to m do
8: if ruj 6= null && j 6= t then
9: Sj ← Sj + oldµu − µu

10: Sjj ← Sjj−(ruj−oldµu)∗(ruj−oldµu)+(ruj−µu)∗(ruj−µu)
11: end if
12: end for
13: for k = 1 to m do
14: for l = 1 to m do
15: if ruk 6= null && rul 6= null && k 6= l then
16: if j = t || l = t then
17: Skl ← Skl − (ruk − oldµu) ∗ (rul − oldµu)
18: else
19: Skl ← Skl − (ruk − oldµu) ∗ (rul − oldµu) + (ruk −µu) ∗

(rul − µu)
20: end if
21: end if
22: Update sim(k, l)
23: end for
24: end for

average of all ratings (g, line 15) by tracking the total number
of ratings (Countg , line 10) and the sum of them (Sumg , line
9). In addition, it computes additional summations Sk and Skl
(line 19 and 23) required by Equation 4. Once all summations
are ready, it computes the similarity of each pair of items
following Equation 4. It then stores the summations µi and
countµi for each user, ηj and countηj for each item, g and
countg , Sk for each item, and Skl for each pair of items for
later unlearning.

Algorithm 2 is the core algorithm for unlearning in LensKit.
To forget a rating, it updates all relevant summations and
relevant cells in the item-item similarity matrix. Suppose that
user u asks the system to forget a rating she gave about
item t. Algorithm 2 first updates user u’s average rating µi,
item t’s average rating ηj , and the global average rating g by
multiplying the previous value of the average rating with the
corresponding total number, subtracting the rating to forget
rut, and dividing by the new total number (lines 1–3). It then

updates item t’s summations St and Stt by subtracting the
value contributed by rut which simplifies to the assignments
shown on lines 4–5. It then updates Sj and Sjj (lines 6–11) for
each of the other items j that received a rating from user m.
Because the ratings given by the other users and their averages
do not change, Algorithm 2 subtracts the old value contributed
by user u and adds the updated value. Algorithm 2 updates
Sjk similarly (lines 12–20). Finally, it recomputes sim(j, k)
based on updated summations following Equation 4 (line 21).

Note that while these algorithms require additional n +
m2 + 2m space to store the summations, the original item-
item recommendation algorithm already uses O(nm) space
for the user-item rating matrix and O(m2) space for the item-
item similarity matrix. Thus, the asymptotic space complexity
remains unchanged.

C. Empirical Results

To modify LensKit to support unlearning, we have inserted
302 lines of code into nine files spanning over three LensKit
packages: lenskit-core, lenskit-knn, and lenskit-data-structures.

Empirically, we evaluated completeness using two sets of
experiments. First, for each data subset, we randomly chose
a rating to forget, ran both unlearning and retraining, and
compared the recommendation results for each user and the
item-item similarity matrices computed. We repeated this
experiment ten times and verified that in all experiments, the
recommendation results were always identical. In addition, the
maximum differences between the corresponding similarities
were less than 1.0×10−6. These tiny differences were caused
by imprecision in floating point arithmetic.

Second, we verified that unlearning successfully prevented
the aforementioned system inference attack [29] from gaining
any information about the forgotten rating. After unlearning,
LensKit gave exactly the same recommendations as if the
forgotten rating had never existed in the system. When we
launched the attack, the delta matrices (§IV in [29]) used in the
attack contained all zeros, so the attacker cannot infer anything
from these matrices.

We evaluated timeliness by measuring the time it took
to unlearn or retrain. We used all three data subsets and
repeated each experiment three times. Table II shows the
results. The first row shows the time of retraining, and the

10

TABLE II: Speedup of unlearning over retraining for LensKit. The
time of retraining increases by the factor of the number of total
ratings, and the overhead of unlearning increases by the factor of
the number of total users.

100K Ratings from 1M Ratings from 10M Ratings from
1,000 users & 6,000 users & 72,000 users &
1,700 items 4,000 items 10,000 items

Retraining 4.2s 30s 4min56s

Unlearning931ms 6.1s 45s

Speedup 4.51 4.91 6.57

second row the time of unlearning, and the last row the
speedup of unlearning over retraining. Unlearning consistently
outperforms retraining. The speedup factor is less than the
O(n) analytical results because there are many empty ratings
in the data set, i.e., a user does not give ratings for every movie.
Therefore, the retraining speed is closer to O(Nm), and the
speedup factor is closer to O(N/m), where N is the number
of ratings and m is the number of users. For a larger data set,
the speedup may be even larger. For example, IMDb contains
2,950,317 titles (including TV shows, movies, etc.) and 54
million registered users [9, 19], which may produce billions
or even trillions of ratings. In that case, the unlearning may
take several hours to complete, while the retraining may take
several days.

VII. UNLEARNING IN ZOZZLE

We start by describing Zozzle’s JavaScript malware de-
tection algorithm. Zozzle first extracts the structure of the
JavaScript abstract syntax tree (AST) nodes and uses chi-
squared test to select representative features. The chi-squared
test is shown in Equation 6, where N+,F means the number
of malicious samples with feature F , N−,F benign samples
with F , N+,F̂ malicious samples without F , and N−,F̂ benign
samples without F .

χ
2
=

(N+,FN−,F̂ −N+,F̂N−,F)2

(N+,F +N+,F̂)(N−,F +N−,F̂)(N+,F +N−,F)(N+,F̂ +N−,F̂)

(6)

Then, Zozzle trains a naı̈ve Bayes classifier using the se-
lected AST features, and then classifies an incoming JavaScript
sample as malicious or benign. (The details of a naı̈ve Bayes
classifier have been shown before in Equation 1.)

Because Zozzle is closed-source, to avoid any bias, we
ask Xiang Pan [21] to follow the original system [35] and
re-implement Zozzle. The re-implemented Zozzle uses the
Eclipse JavaScript development tools [11] to generate ASTs
of JavaScript and extract the corresponding features into a
MySQL database. Then, it performs chi-squared test with the
same threshold as in the original system (10.83, which “cor-
responds with a 99.9% confidence that the values of feature
presence and script classification are not independent” [35]) to
select features for the feature set. It also implements its own
naı̈ve Bayes classifier with the same training steps.

To test Zozzle, we used the following workload. We crawled
the top 10,000 Alexa web sites [2] to serve as the benign data
set. In addition, from Huawei, we obtained 142,350 JavaScript
malware samples, collected at their gateways or reported by
their customers; all malware samples were manually verified
by Huawei and cross-tested by multiple anti-virus software
systems. We divided the whole data set equally into ten parts,
nine of which are for training and the remaining one for
testing. After training, Zozzle selected 2,398 features in total,
out of which 1,196 are malicious features and 1,202 are benign
features. The detection rate is shown in the first column of
Table III. The re-implemented Zozzle achieved a 93.1% true
positive rate and a 0.5% false positive rate, comparable to the
original Zozzle system.

A. The Attack – Training Data Pollution

To perform data pollution and influence the detection of
Zozzle, an attacker might craft malicious samples by injecting
features that do not appear in any benign samples. In such
case, those crafted malicious samples could be captured by
Zozzle’s ground-truth detector (such as Nozzle [59]), and
included in the training data set. The injected features (such
as an if statement with an unusual condition) in the crafted
malicious samples can influence both the feature selection
and the sample detection stage of Zozzle. In the feature
selection stage, the injected features are likely to be selected,
and influence existing malicious features so that they are less
likely to be picked. In the sample detection stage, the injected
features influence the decision for a true malicious sample.

First, because the injected features do not appear in benign
samples but only malicious samples, in the chi-squared test
(Equation 6), N+,F and N−,F̂ are large, and N−,F and N+,F̂

are small. Therefore, the feature selection process is likely to
pick the injected features.

In addition, the injected features can make a real malicious
feature that would have been selected – Freal – less likely
to be selected. Because the attacker does not change any
benign training sample or remove the Freal in existing ma-
licious samples, but only add new samples, in the chi-squared
test, N+,Freal , N−,Freal and N−,F̂real remain the same, and
N+,F̂real

increases. Therefore, the feature selection process is
less likely to pick up Freal as a malicious feature.

Second, the presence of an injected feature, Finject, lowers
the accuracy of the naı̈ve Bayes classifier. Let us consider
how the detection of a sample with one malicious feature,
Fmal, is influenced in the presence of Finject – i.e., how the
value of P (+|Fmal) is lowered. Intuitively, since both Fmal
and Finject appear to be good indicators that a sample is
malicious, Zozzle splits the weight it were to place on Fmal
alone onto both Fmal and Finject. Therefore, the weight on
Fmal is lowered.

In addition, if a single Finject cannot lower the accuracy
of the naı̈ve Bayes classifier significantly, the attacker could
inject a large number of Finject to further lower the accuracy.
Because of the independence assumption in the naı̈ve Bayes

11

classifier, the larger the number of Finject, the smaller the
weight of Fmal.

Now, we formally show how the accuracy of the naı̈ve
Bayes classifier is lowered. Before computing P (+|Fmal) –
the probability of malice of samples with Fmal, let us take
a first look at the computation of P (+|Fmal, Finject), and
then we deduce P (+|Fmal) based on P (+|Fmal, Finject).
Suppose, the attacker can inject samples with Fmal and
another crafted feature, Finject. As discussed, in the feature
selection stage, Finject is selected based on the chi-squared
test. Now, we have Equation 7 for samples with Fmal and
Finject.

P (+|Fmal, Finject) =
P (Fmal, Finject|+)P (+)

P (Fmal, Finject)

=
P (Finject|+)P (Fmal|+)P (+)

P (Finject)P (Fmal)

=
P (Finject|+)

P (Finject)
P (+|Fmal)

(7)

Through transformation (note that in Equation 7, naı̈ve
Bayes assumes that Fmal and Finject are independent –
i.e., derived from the independence assumption), we have
Equation 8 for P (+|Fmal), the probability of malice for
samples with just Fmal.

P (+|Fmal) = P (+|Fmal, Finject)
P (Finject)

P (Finject|+)
(8)

In Equation 8, if P (+|Fmal) is below 0.5 and thus less than
P (−|Fmal), Zozzle classifies samples with Fmal as benign
(−). The purpose of pollution is to make this happen. Because
P (Finject)

P (Finject|+)
is a value corresponding to the percentage of

malicious samples in the training set and thus less than 1,
P (+|Fmal) is lowered due to the existence of Finject.

As discussed in last few paragraphs, the injection of one
Finject lowers P (+|Fmal). Now, we show that more injected
features lower P (+|Fmal) even further. Suppose, the injection
of one feature cannot decrease P (+|Fmal) in Equation 8 to a
value below 0.5. An adversary can introduce enough number
of Finject, and as a generalization of Equation 8, we have
Equation 9.

P (+|Fmal) = P (+|Fmal, F1,inject, ..., Fk,inject)

×
P (F1,inject)

P (F1,inject|+)
...

P (Fk,inject)

P (Fk,inject|+)

(9)

Because each P (Fi,inject)

P (Fi,inject|+)
is less than 1, if k is large

enough, the attacker can eventually decrease P (+|Fmal) to a
value below 0.5, and hence Zozzle classifies the sample with
Fmal as benign. In summary, by injecting enough features, an
adversary could subvert the detection decision of a malicious
sample in Zozzle.

In practice, to pollute the training data, we inject five
features that do not exist in any existing benign samples into
10% of the training set. We retrained the system with the
same training set as well as the newly added samples with
injected features, and the testing samples are still the same

TABLE III: Zozzle’s Detection Rate. The first column and the third
column are exactly the same, illustrating that our unlearning is
complete.

Original Polluted Unlearned

True Positive 93.1% 37.8% 93.1%

False Positive 0.5% 0.3% 0.5%

as those before pollution. The detection results are shown in
the second column of Table III. Because of the injection of
features, the true positive rate drops significantly from 93.1%
to 37.8%. The false positive rate also drops a little bit from
0.5% to 0.3%, because more benign features are selected from
the feature sets.

B. Analytical and Empirical Results

Unlearning in Zozzle works as follows. First, the unlearning
process groups all the data to forget together and extract corre-
sponding features from the data to forget. Then, the chi values
of all the features are updated. Since N+,F , N−,F , N+,F̂ , and
N−,F̂ in the chi value calculation (Equation 6) are counts of
samples, or a summation of outputs of indicator functions, one
can easily update the chi value of features. If the chi value of
one feature cannot meet the threshold, the feature is removed.
We reuse the feature selection process implemented by Zozzle
to extract features from the data to forget, and then update the
chi values stored in the database. Then, a new list of features is
generated based on the new chi values. Second, the unlearning
process updates all the conditional probability values related
to updated features found in the first step. The detailed process
has already been described in §IV. Note that because none of
the aforementioned updates involve the size of training data
set, the time complexity is O(q), where q is the number of
features.

Empirically, we added only 21 lines of code to support
unlearning in Zozzle, i.e., updated all the chi values and
conditional probability. Then, we evaluated the completeness
of unlearning by removing all the crafted samples from Zozzle.
The results show that the feature sets and conditional prob-
abilities after pollution and unlearning are the same as those
generated by unpolluted data, as if the whole pollution process
does not exist. Further, the true positive and false positive after
pollution and unlearning shown in the third column of Table III
are the same as those without data pollution as expected.

Next, we evaluate the timeliness of unlearning. Because
the size of training samples is huge, the overall learning
process takes one day and two hours. In contrast, unlearning
one training sample takes less than one second on average,
and the speedup is 9.5×104. The overhead of unlearning is
a linear function to the number of the samples to forget.
As mentioned in §III-A2, when the number of samples to
forget increases, the overhead of unlearning increases, but
the overhead of retraining decreases. When the number of
samples to forget exceeds 63% of the total training samples,
the retraining process is faster than the unlearning technique

12

used in this section. In such an unlikely case, one may use
retraining to achieve the unlearning task.

VIII. UNLEARNING IN AN OSN SPAM FILTER

We start by introducing how OSNSF [46] uses machine
learning to filter OSN spams. In the training stage, OSNSF
first clusters OSN messages based on the text shingling
distance [26] and the URL elements of the messages, and
then extracts the features of each cluster, such as cluster
size, average social degree, and average time interval of
messages. Next, the features of clusters are used to train a C4.5
decision tree3 [58] for spam filtering. In the detection/filtering
stage, OSNSF incrementally clusters incoming messages and
classifies spam based on the features of the cluster that the
incoming messages belong to.

We obtained the original implementation [45] of OSNSF.
During our evaluation, we adopted all the default values for all
the parameters within their released source code. That is, the
window size is 100,000, aging factor is 0.8, and the shingling
size is 10. The only exception is that the number of threads
is undefined and only affecting the training speed. Thus, we
arbitrarily chose to execute the system in two-thread mode.

In their paper, they evaluated their system upon both Twitter
and Facebook, however we only obtained the original Face-
book data set from the authors. We believe that the pollution
and unlearning process should be similar for the Facebook
and Twitter data sets, which only differ in the data format but
use the same core algorithm. The Facebook data set contains
217,802 spam wall posts and 995,630 legitimate wall posts.
We partition the data set into ten parts, from which nine parts
are used for training and one part is used for testing. Next,
we introduce how we pollute the training data to affect the
detection rate of the spam filtering system.

A. The Attack – Training Data Pollution

OSNSF is more robust to training data pollution than a
traditional machine learning-based detection system. The rea-
sons are twofold: manually picked features and pre-clustering
before machine learning. While manually picked features
introduce human efforts and cannot evolve over time, they pre-
vent an attacker from polluting the feature selection stage (in
which she can craft data to inject fake features). Pre-clustering
of incoming samples can reduce the noises (polluted samples)
introduced by attacks. For example, in the experiment, if we
directly input random mislabeled training data, the filtering
rate is affected to a very small degree (approximately 1%
difference).

However, during pre-clustering stage, if the injected samples
are crafted so that they can form a cluster, they significantly
influence the filtering result. We utilize this fact to successfully
manipulate OSNSF by polluting its training data. In particular,
we craft training data based on two features in OSNSF:

3In their paper, they have tested both decision tree and support vector
machine (SVM). However, they report that “decision tree yields better
accuracy, i.e., higher true positive rate and lower false positive rate”, and
consequently they pick decision tree as the classifying module.

average message interval and social degree, because we find
that the two features are more effective than other features
such as cluster size. In the evaluation, we entirely removed the
cluster size parameter from OSNSF and found that the filtering
rate only drops a little. In comparison, both average message
interval and social degree have large impacts on OSNSF, and
further an attacker can manipulate the two parameters. For
example, an attacker can send more or less messages to affect
the average message interval, and friend or de-friend spam
accounts that she owns to change the social degree.

By manipulating the two parameters in OSNSF, we suc-
cessfully pollute the training data and lower the true positive
rate as shown in Figure 3. The x-axis is the rate of polluted
samples in all the training data and the y-axis is the true
positive rate of the system, i.e., the number of true spams
divided by the number of detected spams. As mentioned,
because of the existence of clustering, when the pollution rate
is lower than 1.7%, the effect of pollution on true positive
rate is small. However, when the polluted samples successfully
form into a new cluster, the system utilizes the feature values
represented by the new cluster containing the polluted samples.
Therefore, the true positive rate decreases significantly. This
is also reflected in the generated decision tree, containing a
branch of the injected feature values.

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

Polluted Sample Rate (%)

T
ru

e
 P

o
s
it
iv

e
 (

%
)

Fig. 3: True Positive Rate of OSNSF vs Percentage of Polluted
Training Data. After only 1.75% of the training data is polluted,
OSNSF’s true positive rate drops sharply because the polluted training
data starts to form a cluster.

B. Analytical and Empirical Results
To enable unlearning for OSNSF, there are two steps:

decremental clustering and decremental decision tree. The first
step – decremental clustering – can be implemented by feeding
polluted samples with the opposite labels into the incremental
clustering interface of the current system, which either merges
new samples into the existing cluster or creates a new cluster.
Therefore, we focus on integrating a decremental decision tree
into the system.

The C4.5 decision tree incorporated by OSNSF does not
support any incremental or decremental algorithm for incom-

13

TABLE IV: OSNSF’s Detection Rate.

Original Polluted Unlearned

True Positive 99.1% 17.6% 98.5%

False Positive 0.4% 0.0% 0.4%

ing data. Therefore, to support unlearning, we adopted another
incremental decision tree – VFDT [38], the implementation of
which is available in the VFML (Very Fast Machine Learning)
toolkit, and the analytical overhead of which is O(logN)
for learning one sample as shown in the VFDT paper. To
incorporate VFDT into OSNSF, we modify VFDT to read the
decision tree generated by C4.5 and learn polluted samples
with the opposite labels. Since VFDT supports the C4.5 data
format, the intermediate output of OSNSF (i.e., the extracted
feature values for each cluster) can be easily fed into VFDT.

Now we show the empirical results. We first feed polluted
samples into OSNSF, and OSNSF outputs the features of
newly created clusters. Next, our modified version of VFDT
reads the polluted C4.5 decision tree and starts incremental
building upon the polluted decision tree instead of a single
leaf in the original implementation. After that, a new decision
tree is outputted in the C4.5 format and used as the decision
tree of OSNSF. The modified version only introduces 33 lines
of code into main.cpp of the implementation of OSNSF to
support the aforementioned process.

We then show the completeness results in Table IV. The first
column shows the original true positive and false positive rate.
After polluting 1.75% of the training data, both true and false
positive rates decrease. Then, after unlearning the polluted
samples, both the true positive rate and false positive rate
increase. Note that the unlearning process does not restore the
true positive rate to its pre-pollution value . This is because the
two decision trees are generated by C4.5 and VFDT – different
algorithms. VFDT will not generate the same decision tree as
the C4.5 algorithm, even if the inputs as well as the order of the
inputs are the same. However, we believe that the filtering rate
(true positive) after unlearning is enough for a spam filtering
system. Further, for 99.4% of testing samples, the original
system and the unlearned system generate the same result,
achieving 99.4% for the completeness of unlearning, a fairly
high number. We also evaluate the timeliness of unlearning.
The retraining takes 30mins, and the unlearning of one sample
takes only 21.5ms, leading to a speedup factor of 8.4×104.

IX. UNLEARNING IN PJSCAN

We start by describing the learning technique used in PJS-
can [51]. PJScan first extracts all the JavaScript using Poppler,
analyzes it by Mozilla’s SpiderMonkey, and then tokenizes it.
After that, PJScan learns and classifies malicious JavaScript
using one-class SVM, i.e., PJScan uses only malicious but
not benign JavaScript from PDFs to train an SVM engine. To
implement one-class SVM, PJScan first uses an existing SVM
classifier called libSVM [13] to generate the α values [20]
of all support vectors, and then calculates the center and the

TABLE V: PJScan’s Detection Rate. After unlearning, the detection
rate of PJScan is the same as it was before pollution, illustrating that
our unlearning is complete.

Pollution Rate Unlearned
0% 21.8% 28.2%

Detection Rate 81.5% 69.3% 46.2% 81.5%

radius of an n-sphere in a space with n+1 dimensions. Then,
if an incoming data sample falls within the n-sphere, the data
sample is classified as malicious; otherwise, the data sample is
classified as benign. We are aware of other machine learning-
based PDF detection engines [66, 68] after PJScan, however
we choose PJScan because it is open-source and unique in
adopting one-class machine learning.

Because the source code of PJScan [16] dates back to
2011, PJScan does not support some of the recent up-to-
date libraries. In particular, we installed an old Poppler with
version 0.18.2, because some of APIs used in PJScan are not
supported by the latest version of Poppler. Meanwhile, the
most recent version of Boost library has some conflicts with
PJScan, and we made several modifications to PJScan so that
those two are compatible with each other. In particular, we
needed to modify boost :: filesystem :: path.file string()
to boost :: filesystem :: path.string(), change the definition
of BOOST FILESY STEM V ERSION from 2 to 3, and
delete an obsolete catch block dealing with a file reading
exception. Then, we simply executed the “install.sh” provided
by PJScan for installation. For the PJScan experiment, we also
use the data set from Huawei, which contains 65 malicious
PDF samples with corresponding JavaScript. Because the size
of the data set is small, half of the PDFs are used for training,
and the other half are used for testing.

A. The Attack – Training Data Pollution

To pollute PJScan, we need to move the center of the
new, polluted n-sphere far away from the original center. In
practice, we repeat the same alert functions (alert(1);) and
inject such a fixed pattern into PDFs to achieve it.

We show the pollution results in Table V. The first column
of Table V shows that without pollution PJScan classifies
81.5% of the malicious PDFs as malicious. When we pollute
21.8% of the training samples, the detection rate decreases
to 69.3%. Then, when we increase the percentage of polluted
training samples to 28.2%, the detection rate finally drops to
46.2%. The result indicates that one-class machine learning is
harder to pollute than two-class machine learning. Specifically,
two-class SVM classifier needs to draw a line between the
sphere labeled as benign and the sphere labeled as malicious,
and therefore the radius of one sphere is constrained by
the other. In contrast, one-class SVM classifier can always
increase the radius of the sphere and keep the percentage of
included data samples in the sphere as a constant. This also
aligns with the fact that one-class machine learning is robust
to mimic attacks [57].

14

B. Analytical and Empirical Results

The unlearning process can be divided into two stages due
to inherent properties of one-class SVM in PJScan. The first
stage of unlearning is to re-calculate the new α value [20] of
each support vector calculated by the solver in libSVM, and
the second stage is to recalculate the center and the radius of
the sphere. In the first stage, the calculation of α values is an
iterative process of adaptive SQ learning, which starts from
an initial assignment of α values, and in the end reaches the
optimal point. Since the changes of α during unlearning is
relatively small, we just need to feed the old values of α into
the iteration process and then let the iteration process output
the new α.

The second stage of unlearning recalculates the value of the
center and the radius. The calculation of the center is in the
form of α1x1 + α2x2 + ... – a summation. If the value of α
changes in the first stage, we need to multiply the delta of α
by the support vector and add it to the summation. If a new
support vector emerges or an old one disappears, we also need
to add or subtract corresponding values from the summation.
Meanwhile, the calculation of the radius is based on the
distance between the support vector with the smallest α and
the center. If that support vector changes, the unlearning needs
to recalculate the value of radius from scratch. Otherwise, as
in the calculation of the center, the unlearning can utilize some
of the partial calculation results from the past.

Empirically, in total, we added 30 lines of code into the
libsvm oc module of PJScan to update the α value, the center
and the radius. Next, we evaluate the completeness by showing
the unlearning result in the last column of Table V, the same
as the original detection rate. In addition, we also evaluate the
timeliness of unlearning. To calculate the α value, retraining
takes 42 iterations, and unlearning one data sample takes 2.4
iterations on average, significantly smaller than retraining.

X. DISCUSSIONS

Unlearning, or forgetting systems in general, aim to restore
privacy, security, and usability. They give users and service
providers the flexibility to control when to forget which data.
They do not aim to protect the data that remains in the
system. Private data in the system may still be leaked, polluted
training data in the system may still mislead predication, and
incorrect analytics in the system may still result in bogus
recommendations.

Before unlearning a data sample, we must identify this
sample. This identification problem is orthogonal to what
we have solved in this paper. Sometimes, the problem is
straightforward to solve. For instance, a user knows precisely
which of her data items is sensitive. Other times, this problem
may be solved using manual analysis. For instance, a vigilant
operator notices an unusual drop in spam detection rate,
investigates the incident, and finds out that some training data
is polluted. This problem may also be solved using automated
approaches. For instance, a dynamic program analysis tool
analyzes each malware training data sample thoroughly and

confirms that the sample is indeed malicious. Unlearning is
complimentary to these manual or automatic solutions.

We believe our unlearning approach is general and widely
applicable. However, as shown in our evaluation (§VIII), not
every machine learning algorithm can be converted to the
summation form. Fortunately, these cases are rare, and custom
unlearning approaches exist for them.

XI. RELATED WORK

In §I, we briefly discussed related work. In this section,
we discuss related work in detail. We start with some attacks
targeting machine learning (§XI-A), then the defenses (§XI-B),
and finally incremental machine learning (§XI-C).

A. Adversarial Machine Learning

Broadly speaking, adversarial machine learning [22, 47]
studies the behavior of machine learning in adversarial en-
vironments. Based on a prior taxonomy [47], the attacks
targeting machine learning are classified into two major cate-
gories: (1) causative attacks in which an attacker has “write”
access to the learning system – she pollutes the training data
and subsequently influences the trained models and prediction
results; and (2) exploratory attacks in which an attacker has
“read-only” access – she sends data samples to the learning
system hoping to steal private data inside the system or evade
detection. In the rest of this subsection, we discuss these two
categories of attacks in greater detail.

1) Causative Attacks: These attacks are the same as data
pollution attacks (§II-B2). Perdisci et al. [56] developed an
attack against PolyGraph [55], an automatic worm signature
generator that classifies network flows as either benign or ma-
licious using a naı̈ve Bayes classifier. In this setup, the attacker
compromises a machine in a honeynet and sends packets with
polluted protocol header fields. These injected packets make
PolyGraph fail to generate useful worm signatures. Nelson et
al. [54] developed an attack against a commercial spam filter
SpamBayes [18] which also uses naı̈ve Bayes. They showed
that, by polluting only 1% of the training data with well-
crafted emails, an attacker successfully causes SpamBayes
to flag a benign email as spam 90% of the time. While
these two attacks target Bayesian classifiers, other classifiers
can also be attacked in the same manner, as illustrated by
Biggio et al.’s attack on SVM [24]. Instead of focusing on
individual classifiers, Fumera et al. [44] proposed a framework
for evaluating classifier resilience against causative attacks at
the design stage. They applied their framework on several
real-world applications and showed that the classifiers in these
applications are all vulnerable.

Our practical pollution attacks targeting Zozzle [35], OS-
NSF [46], and PJScan [51] fall into this causative attack
category. All such attacks, including prior ones and ours, serve
as a good motivation for unlearning.

2) Exploratory Attacks: There are two sub-categories of
exploratory attacks. The first sub-category of exploratory
attacks is system inference or model inversion attacks, as
discussed in §II-B1. Calandrino et al. [29] showed that, given

15

some auxiliary information of a particular user, an attacker
can infer the transaction history of the user. Fredrikson et
al. [43] showed that an attacker can infer the genetic markers
of a patient given her demographic information. These attacks
serve as another motivation for unlearning.

In the second sub-category, an attacker camouflages mali-
cious samples as benign samples, and influences the prediction
results of a learning system. In particular, for those systems
that detect samples with malicious intentions, an attacker
usually crafts malicious samples to mimic benign samples
as much as possible, e.g., by injecting benign features into
malicious samples [30, 49, 76, 77]. As suggested by Srndic et
al. [76], in order to make learning systems robust to those
attacks, one needs to use features inherent to the malicious
samples. These attacks are out of scope of our paper because
they do not pollute training data nor leak private information
of the training data.

B. Defense of Data Pollution and Privacy Leakage

In this subsection, we discuss current defense mechanisms
for data pollution and privacy leakage. Although claimed to
be robust, many of these defenses are subsequently defeated
by new attacks [43, 56]. Therefore, unlearning serves as an
excellent complimentary method for these defenses.

1) Defense of Data Pollution: Many defenses of data pollu-
tion attacks apply filtering on the training data to remove pol-
luted samples. Brodley et al. [27] filtered mislabeled training
data by requiring absolute or majority consensus among the
techniques used for labeling data. Cretu et al. [34] introduced
a sanitization phase in the machine learning process to filter
polluted data. Newsome et al. [55] clustered the training data
set to help filter possible polluted samples. However, they are
defeated by new attacks [56]. None of these techniques can
guarantee that all polluted data is filtered. Another line of
defense is to increase the resilience of the algorithms. Dekel et
al. [36] developed two techniques to make learning algorithms
resilient against attacks. One technique formulates the problem
of resilient learning as a linear program, and the other uses
the Perceptron algorithm with an online-to-batch conversion
technique. Both techniques try to minimize the damage that
an attacker could cause, but the attacker may still influence the
prediction results of the learning system. Lastly, Bruckner et
al. [28] model the learner and the data-pollution attacker as a
game and prove that the game has a unique Nash equilibrium.

2) Defense of Privacy Leaks: In general, differential pri-
vacy [75, 80] preserves the privacy of each individual item in
a data set equally and invariably. McSherry et al. [52] built
a differentially private recommendation system and showed
that in the Netflix Prize data set the system can preserve
privacy without significantly degrading the system’s accu-
racy. Recently, Zhang et al. [80] proposed a mechanism to
produce private linear regression models, and Vinterbo [75]
proposed privacy-preserving projected histograms to produce
differentially-private synthetic data sets. However, differential
privacy requires that accesses to data fit a shrinking privacy
budget, and are only to the fuzzed statistics of the data set.

These restrictions make it extremely challenging to build
usable systems [43]. In addition, in today’s systems, each
user’s privacy consciousness and each data item’s sensitivity
varies wildly. In contrast, forgetting systems aim to restore
privacy on select data, representing a more practical privacy
vs utility tradeoff.

C. Incremental Machine Learning

Incremental machine learning studies how to adjust the
trained model incrementally to add new training data or
remove obsolete data, so it is closely related to our work.
Romero et al. [62] found the exact maximal margin hyperplane
for linear SVMs so that a new component can be easily added
or removed from the inner product. Cauwenberghs et al. [31]
proposed using adiabatic increments to update a SVM from
l training samples to l + 1. Utgoff et al. [74] proposed an
incremental algorithm to induce decision trees equivalent to
the trees formed by Quinlan’s ID3 algorithm. Domingos et
al. [38] proposed a high performance construction algorithm of
decision trees to deal with high-speed data streams. Recently,
Tsai et al. [73] proposed using warm starts to practically build
incremental SVMs with linear kernels.

Compared to prior incremental machine learning work,
our unlearning approach differs fundamentally because we
propose a general efficient unlearning approach applicable to
any algorithm that can be converted to the summation form,
including some that currently have no incremental versions.
For instance, we successfully applied unlearning to normalized
cosine similarity which recommendation systems commonly
use to compute item-item similarity. This algorithm had no
incremental versions prior to our work. In addition, we applied
our learning approach to real-world systems, and demonstrated
that it is important that unlearning handles all stages of
learning, including feature selection and modeling.

Chu et al. [33] used the summation form to speed up ma-
chine learning algorithms with map-reduce. Their summation
form is based on SQ learning, and provided inspiration for our
work. We believe we are the first to establish the connection
between unlearning and the summation form. Furthermore, we
demonstrated how to convert non-standard machine learning
algorithms, e.g., the normalized cosine similarity algorithm,
to the summation form. In contrast, prior work converted
nine standard machine learning algorithms using only simple
transformations.

XII. CONCLUSION AND FUTURE WORK

We have presented our vision of forgetting systems that
completely and quickly forget data and its lineage to restore
privacy, security, and usability. They provide numerous ben-
efits. For privacy, they enable a concerned user to remove
her sensitive data, ensuring that no residual linage of the
data lurks around in the system. For security, they enable
service providers to remove polluted training data including
its effect from anomaly detectors, ensuring that the detectors
operate correctly. For usability, they enable a user to remove

16

noise and incorrect entries in analytics data, ensuring that a
recommendation engine gives useful recommendations.

We have also presented machine unlearning, the first step
towards making system forget. Our unlearning approach tar-
gets machine learning systems, an important and widely used
class of systems. Unlearning transforms some or all learning
algorithms in a system into a summation form. To forget a
training data sample, unlearning updates a small number of
summations, and is asymptotically faster than retraining from
scratch. Our unlearning approach is general and applies to
many machine learning algorithms. Our evaluation on real-
world systems and workloads has shown that our approach is
general, effective, fast, and easy to use.

Unlearning is only the first (albeit important) step; the bulk
of work still lies ahead. We plan to build full-fledged forgetting
systems that carefully track data lineage at many levels of
granularity, across all operations, and at potentially the Web
scale. We invite other researchers to join us in exploring the
exciting direction opened up by forgetting systems.

XIII. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
feedback; Daniel Hsu for insightful discussions and back-
ground on statistical query learning; David Williams-King
for careful proofreading and editing; Xin Lu for early con-
tributions to the LensKit experiment; and Yang Tang, Gang
Hu, Suzanna Schmeelk, and Marios Pomonis for their many
valuable comments. This work was supported in part by AFRL
FA8650-11-C-7190 and FA8750-10-2-0253; ONR N00014-
12-1-0166; NSF CCF-1162021, CNS-1054906; an NSF CA-
REER award; an AFOSR YIP award; and a Sloan Research
Fellowship.

REFERENCES

[1] Private Communication with Yang Tang in Columbia University.
[2] Alexa Top Websites. http://www.alexa.com/topsites.
[3] BlueKai — Big Data for Marketing — Oracle Marketing Cloud. http:

//www.bluekai.com/.
[4] Booklens. https://booklens.umn.edu/about.
[5] Confer. http://confer.csail.mit.edu/.
[6] Delete search history. https://support.google.com/websearch/answer/

465?source=gsearch.
[7] Google now. http://www.google.com/landing/now/.
[8] iCloud security questioned over celebrity photo leak 2014:

Apple officially launches result of investigation over hacking.
http://www.franchiseherald.com/articles/6466/20140909/celebrity-
photo-leak-2014.htm.

[9] IMDb database status. http://www.imdb.com/stats.
[10] iText - programmable pdf software. http://itextpdf.com/.
[11] Javascript development tools (JSDT). http://www.eclipse.org/webtools/

jsdt/.
[12] LibraryThing. https://www.librarything.com/.
[13] LibSVM – a library for support vector machines. http://www.csie.ntu.

edu.tw/∼cjlin/libsvm/.
[14] Movielens. http://movielens.org/login.
[15] New IDC worldwide big data technology and services forecast shows

market expected to grow to $32.4 billion in 2017. http://www.idc.com/
getdoc.jsp?containerId=prUS24542113.

[16] PJScan source code. http://sourceforge.net/projects/pjscan/.
[17] Project honey pot. https://www.projecthoneypot.org/.
[18] SpamBayes. http://spambayes.sourceforge.net/.
[19] Wikipedia: Internet Movie Database. http://en.wikipedia.org/wiki/

Internet Movie Database.

[20] Wikipedia: Support Vector Machine. http://en.wikipedia.org/wiki/
Support vector machine.

[21] Xiang Pan’s LinkedIn home page. https://www.linkedin.com/pub/xiang-
pan/38/454/258.

[22] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of
machine learning. Mach. Learn., 81(2):121–148, Nov. 2010.

[23] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a
needle in haystack: Facebook’s photo storage. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
OSDI, 2010.

[24] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against
support vector machines. In Proceedings of International Conference
on Machine Learning, ICML, 2012.

[25] M. Brennan, S. Afroz, and R. Greenstadt. Adversarial stylometry: Cir-
cumventing authorship recognition to preserve privacy and anonymity.
ACM Trans. Inf. Syst. Secur., 15(3):12:1–12:22, Nov. 2012.

[26] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
clustering of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166,
Sept. 1997.

[27] C. E. Brodley and M. A. Friedl. Identifying mislabeled training data.
Journal of Artificial Intelligence Research, 11:131–167, 1999.

[28] M. Brückner, C. Kanzow, and T. Scheffer. Static prediction games for
adversarial learning problems. J. Mach. Learn. Res., 13(1):2617–2654,
Sept. 2012.

[29] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and
V. Shmatikov. You might also like: Privacy risks of collaborative
filtering. In Proceedings of 20th IEEE Symposium on Security and
Privacy, May 2011.

[30] Y. Cao, X. Pan, Y. Chen, and J. Zhuge. JShield: Towards real-time
and vulnerability-based detection of polluted drive-by download attacks.
In Proceedings of the 30th Annual Computer Security Applications
Conference, ACSAC, 2014.

[31] G. Cauwenberghs and T. Poggio. Incremental and decremental support
vector machine learning. In Advances in Neural Information Processing
Systems (NIPS*2000), volume 13, 2001.

[32] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding your
garbage: Reducing data lifetime through secure deallocation. In Pro-
ceedings of the 14th Conference on USENIX Security Symposium, 2005.

[33] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng,
and K. Olukotun. Map-reduce for machine learning on multicore. In
B. Schölkopf, J. C. Platt, and T. Hoffman, editors, NIPS, pages 281–288.
MIT Press, 2006.

[34] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis.
Casting out Demons: Sanitizing Training Data for Anomaly Sensors. In
Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP,
2008.

[35] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle: Fast and
precise in-browser javascript malware detection. In Proceedings of the
20th USENIX Conference on Security, 2011.

[36] O. Dekel, O. Shamir, and L. Xiao. Learning to classify with missing
and corrupted features. Mach. Learn., 81(2):149–178, Nov. 2010.

[37] M. Deshpande and G. Karypis. Item-based top-n recommendation
algorithms. ACM Trans. Inf. Syst., 22(1):143–177, Jan. 2004.

[38] P. Domingos and G. Hulten. Mining high-speed data streams. In
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD, 2000.

[39] M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. Riedl. Rethinking the
recommender research ecosystem: reproducibility, openness, and lenskit.
In RecSys, pages 133–140. ACM, 2011.

[40] G. Elbaz. Data markets: The emerging data economy. http://techcrunch.
com/2012/09/30/data-markets-the-emerging-data-economy/.

[41] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
OSDI, 2010.

[42] M. J. Foley. How microsoft’s bing-related research is funneling back into
products. http://www.zdnet.com/how-microsofts-bing-related-research-
is-funneling-back-into-products-7000013001/.

[43] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart.
Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing. In Proceedings of USENIX Security, August 2014.

[44] G. Fumera and B. Biggio. Security evaluation of pattern classifiers under
attack. IEEE Transactions on Knowledge and Data Engineering, 99(1),
2013.

17

[45] H. Gao. A syntactic-based spam detection tool. http://list.cs.
northwestern.edu/osnsecurity/syntactic files/download.php.

[46] H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. N. Choudhary. Towards
online spam filtering in social networks. In Proceedings of Network and
Distributed Systems Security Symposium, NDSS, 2012.

[47] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar.
Adversarial machine learning. In Proceedings of the 4th ACM Workshop
on Security and Artificial Intelligence, AISec, 2011.

[48] M. Kearns. Efficient noise-tolerant learning from statistical queries. J.
ACM, 45(6):983–1006, Nov. 1998.

[49] M. Kearns and M. Li. Learning in the presence of malicious errors.
In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC, 1988.

[50] A. Kharpal. Google axes 170,000 ‘right to be forgotten’ links. http:
//www.cnbc.com/id/102082044.

[51] P. Laskov and N. Šrndić. Static detection of malicious javascript-bearing
pdf documents. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC, 2011.

[52] F. McSherry and I. Mironov. Differentially private recommender sys-
tems: Building privacy into the netflix prize contenders. In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD, 2009.

[53] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, and S. Kumar. F4: Facebook’s warm
blob storage system. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI, 2014.

[54] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein,
U. Saini, C. Sutton, J. D. Tygar, and K. Xia. Exploiting machine learning
to subvert your spam filter. In Proceedings of the 1st Usenix Workshop
on Large-Scale Exploits and Emergent Threats, LEET, 2008.

[55] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating
signatures for polymorphic worms. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy, 2005.

[56] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. I. Sharif. Misleading
worm signature generators using deliberate noise injection. In Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy, 2006.

[57] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-class
svm classifiers to harden payload-based anomaly detection systems.
In Proceedings of the Sixth International Conference on Data Mining,
ICDM, 2006.

[58] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106,
Mar. 1986.

[59] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense against
heap-spraying code injection attacks. In Proceedings of 18th USENIX
Security Symposium, 2009.

[60] J. Reardon, S. Capkun, and D. Basin. Data node encrypted file system:
Efficient secure deletion for flash memory. In Proceedings of the 21st
USENIX Conference on Security Symposium, Security, 2012.

[61] C. Riederer, V. Erramilli, A. Chaintreau, B. Krishnamurthy, and P. Ro-
driguez. For sale : Your data: By : You. In Proceedings of the 10th
ACM Workshop on Hot Topics in Networks, HotNets-X, 2011.

[62] E. Romero, I. Barrio, and L. Belanche. Incremental and decremental
learning for linear support vector machines. In Proceedings of the 17th
International Conference on Artificial Neural Networks, ICANN, 2007.

[63] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th
International Conference on World Wide Web, WWW, 2001.

[64] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and
Y. Zhou. Detecting adversarial advertisements in the wild. In Proceed-
ings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD, 2011.

[65] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. T.
Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray,
M. A. Koval, K. W. Last, A. Norton, T. A. Lister, J. Mesirov, D. S.
Neuberg, E. S. Lander, J. C. Aster, and T. R. Golub. Diffuse large
B-cell lymphoma outcome prediction by gene-expression profiling and
supervised machine learning. Nature Medicine, 8(1):68–74, Jan. 2002.

[66] C. Smutz and A. Stavrou. Malicious pdf detection using metadata and
structural features. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC, 2012.

[67] R. Spahn, J. Bell, M. Z. Lee, S. Bhamidipati, R. Geambasu, and
G. Kaiser. Pebbles: Fine-grained data management abstractions for mod-
ern operating systems. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI, 2014.

[68] N. Srndic and P. Laskov. Detection of malicious PDF files based
on hierarchical document structure. In 20th Annual Network and
Distributed System Security Symposium, NDSS, 2013.

[69] J. Sutter. Some quitting facebook as privacy concerns escalate. http:
//www.cnn.com/2010/TECH/05/13/facebook.delete.privacy/.

[70] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman. Secure overlay
cloud storage with access control and assured deletion. IEEE Trans.
Dependable Secur. Comput., 9(6):903–916, Nov. 2012.

[71] D. Tax and R. Duin. Support vector data description. Machine Learning,
54(1).

[72] The Editorial Board of the New York Times. Ordering google to
forget. http://www.nytimes.com/2014/05/14/opinion/ordering-google-
to-forget.html? r=0.

[73] C.-H. Tsai, C.-Y. Lin, and C.-J. Lin. Incremental and decremental
training for linear classification. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD, 2014.

[74] P. E. Utgoff. Incremental induction of decision trees. Mach. Learn.,
4(2):161–186, Nov. 1989.

[75] S. A. Vinterbo. Differentially private projected histograms: Construction
and use for prediction. In P. A. Flach, T. D. Bie, and N. Cristianini,
editors, ECML/PKDD (2), volume 7524 of Lecture Notes in Computer
Science, pages 19–34. Springer, 2012.

[76] N. Šrndic and P. Laskov. Practical evasion of a learning-based classifier:
A case study. In Proceedings of the 2014 IEEE Symposium on Security
and Privacy, 2014.

[77] G. Wang, T. Wang, H. Zheng, and B. Y. Zhao. Man vs. machine:
Practical adversarial detection of malicious crowdsourcing workers. In
Proceedings of USENIX Security, August 2014.

[78] R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou. Learning your
identity and disease from research papers: Information leaks in genome
wide association study. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS, pages 534–544, New
York, NY, USA, 2009. ACM.

[79] V. Woollaston. How to delete your photos from iCloud: Simple
step by step guide to stop your images getting into the wrong
hands. http://www.dailymail.co.uk/sciencetech/article-2740607/How-
delete-YOUR-photos-iCloud-stop-getting-wrong-hands.html.

[80] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional
mechanism: Regression analysis under differential privacy. Proceedings
of VLDB Endow., 5(11):1364–1375, July 2012.

18

